马坑铁矿的合理选矿工艺流程探讨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马坑铁矿的合理选矿工艺流程探讨摘要:讨论了马坑铁矿的矿石性质、选矿试验及合理的选矿工艺,提出了推荐的选矿工艺原则流程。
关键词:马坑;铁矿;选矿工艺
福建省马坑铁矿,是我国华东地区最大的磁铁矿床之一,已探明磁铁矿地质储量b+c+d级为4.3487亿t,其中b+c级为3.1255亿t,d级为1.2231亿t。虽然其储量大、矿石品位中等,选别加工性能还好。但是,由于其矿体埋藏深、地下涌水量大,造成开采难度大、生产运营费用高等原因,以前未能对其进行大规模开以利用。
近几年来由于国内铁矿石生产随着长期开发利用而逐渐减少,老矿山生产能力逐步下降,新矿山的建设又相对滞后,造成国内铁矿石需求缺口较大。为了满足市场需求,也为当地钢铁企业建立起一个比较稳定的铁矿石原料基地,开发利用马坑铁矿有着重要意义。
2 原矿性质
2.1矿床特征和矿石类型
马坑铁矿为大型矽卡岩型磁铁矿床,按矿石自然类型分为石榴型磁铁矿、透辉石型磁铁矿和石英型磁铁矿,按矿物成分含量分为原生磁铁矿和以含磁铁矿为主而伴生辉钼矿的铁钼矿。其中,铁钼矿和原生磁铁矿性质极为近似。
2.2矿石的矿物组成
矿石中金属矿物主要有磁铁矿、赤铁矿、褐铁矿等。非金属矿物以硅酸盐矿物为主,矿石中含量最多的脉石矿物为石榴石,其他还有透辉石、钙铁辉石、符山石、石英、方解石、绿泥石、角闪石等。
2.3矿石的结构构造
矿石主要为半自形晶粒状或它形晶粒状结构、似海绵陨铁结构以及各种交代结构,其次为块状构造,稀疏浸染状构造及角砾状构造等。
2.4原矿化学多元素分析及铁物相分析
原矿化学多元素分析结果见表1,原矿铁物相分析结果见表2。
从原矿多元素、铁物相分析结果可知:马坑铁矿的原矿是以磁铁矿为主的矿石,其它铁矿物含量较低。矿石中磷含量很低,但s 含量相对偏高。对矿物中sio2、al2o3、cao、mgo 分析表明该矿物为酸性铁矿石。
3 选矿试验
在1976年6月曾由江苏省地质局实验室对龙岩马坑中矿段磁铁矿及氧化矿进行可选性试验,其最终精矿品位仅为63%左右,以及选矿试验内容深度亦较浅,未能满足选矿厂二期建设的要求,为此2002年12月由马鞍山矿山研究院提交了《福建龙岩马坑矿业有限
责任公司一期技改选矿试验研究报告》,试验研究进行了选铁的小型试验及扩大连选试验,为一期选矿厂一期技改提供了设计依据。但随着矿石开采深度的加大,矿石性质可能有所变化,尤其是嵌布粒度亦可能发生变化,为此马坑矿业股份有限公司委托中钢集团马鞍山矿山研究院有限公司对其采出的有代表性的二期矿样进行了小型及连续扩大选矿试验研究。并在2009年7月提交了《马坑矿业股份有限公司二期铁矿石小型及连续扩大选矿工艺研究报告》,为二期选矿厂建设提供了设计依据。试验工作在完成小型试验的基础上,再完成了扩大连选试验。扩大连选试验进行了细筛闭路循环和细筛筛上单独再磨再选两种流程试验。试验流程及指标分别见图1 和图2。
由试验报告可以看出:
1)将原矿破碎到50~0mm粒度条件下,进行干式磁选预选,可抛除产率20.74%、铁品位6.89%的废石,干式磁选预选较果较好。
2)马坑铁矿石属粗细不均匀嵌布,采用阶段磨矿阶段选别流程是合理的,可以及早丢弃合格尾矿,减少了二段磨矿的入磨量。当一
段磨矿细度-0.076mm50%左右,经一次弱磁选可选出产率为20.97%、铁品位为8.86%的合格尾矿。
3)无论采用阶段磨选—细筛筛上单独再磨再选流程还是采用阶
段磨选—细筛筛上返回二段磨矿流程,在二段磨矿细度-0.076mm达到85%时,采用细筛工艺,经过两次精选均可获得铁品位65%、回收率>87%的铁精矿,而且两种流程试验指标几乎一样。且无论采用哪一种流程,对细筛的给料都需要进行有效地脱磁,才能达到使用细筛的目的。
4)磁铁矿嵌布粒度细,细磨是提高精矿品位的关键,采用细筛工艺是稳定精矿产品质量的有效手段。
5)试验中由于合同约定只做到精矿品位65%。为了适应将来可能用于生产球团矿的需要,就会需要更高的精矿品位。所以,进一步提高精矿品位的试验探索是很有必要的。
6)本次试验矿样只针对马坑铁矿一期技改工程设计的需要采取,对一期技改工程具有一定的代表性,但对整个矿区而言,其试验结果仅能作为整个矿区选矿厂工艺流程设计的参考。
4合理选矿工艺流程
据马坑铁矿地质报告显示,该矿石伴生有钼等有用组分,但限于试验工作的深度及本文的探讨范围,这里只考虑铁的回收选矿工艺。
根据扩大连选试验结果,无论采用阶段磨选—细筛筛上单独再磨再选流程,还是采用阶段磨选—细筛筛上返回二段磨矿流程,都可获得合格的铁精矿。为了保证生产流程的可靠、稳定,推荐采用干选抛废石—阶段磨选—细筛筛上单独再磨再选的选铁工艺流程,
其具体流程见图3。
推荐采用干选抛废石—阶段磨选流程的理由是显而易见的。采用干选抛弃废石后,矿石品位可以恢复甚至略高于地质品位,降低了入磨矿量,显著降低选矿成本。同样的理由,采用阶段磨选流程可以及早丢弃合格尾矿,符合“能丢早丢”的原则,有利于选矿工序节能降耗。
试验结果表明,采用细筛工艺可以稳定铁精矿的产品质量指标的作用。当磨矿细度-0.076mm占85%时,如果不设细筛,只靠磁选得
不到65%的精矿品位,同样的磨矿细度时,磁选精矿通过细筛分级,筛下部分可以获得大于65%的品位。在上述磨矿细度时,精矿筛析试验结果表明,+0.104mm品位为58.30%,-0.104mm品位为65.48%,即在-0.104mm粒级处存在着品位较大幅度上升这样的分离点;且筛上产率为12.46%。这样的结果适合于采用细筛工艺来提高精矿品位的条件。
细筛筛上返回二段磨矿流程,又称为自循环流程。尽管它可以使得流程结构相对较为简单,少一段磨矿和选别作业。但是,如果筛上物料为连生体等难磨粒子时,再进入二段磨矿后并未得当很好的解离,往往又以合格产品分级出来,容易产生筛上循环负荷逐渐增大,形成恶性循环,造成磨矿作业、选别作业生产过程不正常。