储罐区VOCs治理规范和方法(之一)

储罐区VOCs治理规范和方法(之一)
储罐区VOCs治理规范和方法(之一)

储罐区VOCs治理规范和方法

----之一:规范、标准、实施方法

张丽邹松林

摘要:储罐呼出排放VOCs不但造成资源损失,还污染大气环境。治理储罐区VOCs排放是节约资源减少损失的需要,保护大气环境的需要。治理主要方法是安装顶空联通气相管路和末端油气回收装置,油气回收处理装置的尾气达标排放。安装罐顶联通管路系统,必须正确选型储罐保护的罐顶配置、合理设置氮封和各种保护配置的压力控制区间、稳妥做好群罐防火防爆的系统设计。

关键词:呼吸阀、氮封控制、防爆轰型阻火器

1,关注储罐区VOCs排放

石油化工和煤化工的液态油品产品在储罐进料发

料和储存过程,不断地会发生VOCs的排放。被称为“大

呼吸”的呼出排放和“小呼吸”的呼出排放。

“大呼吸”呼出排放是储罐在进料时,液体进入储

罐内,罐内液位升高,挤压罐内空间,当空间压力超过“呼吸阀”的呼出控制压力时,将VOCs气体排放到大气环境。

“小呼吸”呼出排放则是随着气温升高的热胀冷缩效应,罐内液体气体体积膨胀过程,将空间VOCs气体排放到大气环境。

与呼出排放对应,还有储罐发料过程的“大呼吸”吸入和“小呼吸”吸入空气,稀释罐内空间气体浓度,加剧液面蒸发,再次形成饱和浓度的挥发气体,待下次发生大小呼出排放时,将VOCs气体排放到大气环境,同时造成液态油品化工品的损耗。

储罐呼出排放VOCs,不但造成资源损失,还污染大气环境。治理储罐区VOCs排放,不但是节约资源减少损失的需要,更是保护大气环境的需要。

2,储罐VOCs治理的法规标准

环保部“十二五”规划就提出要求对储罐区呼吸排放的VOCs加以控制。根据《中华人民共和国国民经济和社会发展第十二个五年规划纲要》制定的《重点区域大气污染联防联控“十二五”规划》规定:“加强石化生产、输送和储存过程挥发性有机物泄漏的监测和监管;严格控制储罐、运输环节的呼吸损耗,原料、中间产品、成品储存设施应全部采用高效密封的浮顶罐,或安装顶空联通置换油气回收装置(即储罐尾气联通并回收处理)”。要求“原料、中间产品与成品应密闭储存,对于实际蒸汽压大于2.8kpa、储量大于100m3的有机液体储罐,”都要采取控制措施。

2015年4月颁布的国家标准《石油化学工业污染物排放标准》(GB31571-2015)第5章“大气污染物排放控制要求”在“5.2挥发性有机液体

储罐污染控制要求”规定:“储存真实蒸气压≥ 76.6kPa的挥发性有机液体应采用压力储罐。”“储存真实蒸气压≥ 5.2 kPa但< 27.6 kPa的设计容积≥150 m3的挥发性有机液体储罐,以及储存真实蒸气压≥ 27.6kPa但< 76.6kPa 的设计容积≥ 75m3的挥发性有机液体储罐”采用内浮顶罐的,内浮顶罐的浮盘与罐壁之间应采用液体镶嵌式、机械式鞋形、双封式等高效密封方式。采用固定顶罐的,应安装密闭排气系统至有机废气回收或处理装置。

2016年1月1日起施行的新修订的《中华人民共和国大气污染防治法》规定:储油储气库、加油加气站、原油成品油码头、原油成品油运输船舶和油罐车、气罐车等,应当按照国家有关规定安装油气回收装置并保持正常使用。否则将受到停产整顿和重度罚款的处理。

2016年10月25日出台的《石油化工储运区VOCs治理项目油气联通工艺实施方案及安全措施指导意见》(127号函)(以下简称《指导意见》),对不同储罐型式的联通实施方法、呼出排放的稳定控制、罐顶附件的基本配置、管路材料的选择、防止罐群安全事故等的控制措施、以及氮封系统平衡控制等,给出了具体的意见。《石化行业挥发性有机物综合整治方案》(环发〔2014〕177号)中“二-(四)-4”也要求“苯、甲苯、二甲苯等危险化学品应在内浮顶罐基础上安装油气回收装置等处理设施”

3,实施储罐VOCs治理的方法

实施储罐VOCs治理的主要方法,是把呼出排放的VOCs收集起来,进行处理。简言之,就是要在罐顶“安装密闭排气系统至有机废气回收或处理装置”。简而言之,实施储罐VOCs治理的方法,主要就是“罐顶联通”。将罐区多个储罐罐顶VOCs呼出排放口,用气相管路密闭联通,并汇集到一起,然后在气相管路汇集的末端安装VOCs气体回收治理设备。

如何安装密闭排气系统至有机废气回收或处理装置,一方面,罐体呼吸排放口的外部安装了密闭气相管路,呼吸排气增加一定阻力,会带来储罐罐体承压的安全问题,另一方面,多个罐顶联通,如何防备万一其中一个储罐发生火灾意外而殃及其他储罐,如何控制罐顶联通所造成群罐防火防爆的安全隐患,确保罐体的运行安全、杜绝意外事故对罐区安全的影响,是实施储罐VOCs治理研究的重要课题。

综合考虑火灾危险性、污染源距离、废气组成、浓度及气量、能耗、运行费用等因素,储罐呼出排放的VOCs,宜分区域、分种类集中收集。

4,罐顶基本配置

罐顶基本配置主要有安全压力控制的配

置和防火控制的配置。基本的压力保护设施有

全天候呼吸阀、单呼阀、紧急呼吸阀。全天候

呼吸阀是确保罐体承压安全的基本设施,单呼

阀是安装密闭排气系统专用的单向阀件,紧急

呼吸阀是防止储罐遇到意外情况(包括操作原

因或天气原因发生的意外情况)时,保护罐体

安全的关键设施。根据罐体设计技术条件,紧

急呼吸阀有呼吸式、泄放式、吸入式。

5,罐顶配置简化

罐顶安装密闭收集管路,先要确认原有呼吸阀参数(呼吸阀是“呼气阀”与“吸气阀”合为一体的罐顶附件),确认呼吸阀“开启压力”(“呼出”或“吸入”状态时的压力)参数与设计安装气相密闭管路后所设定的压力是否合理。在项目实施中,对罐顶压力保护设施的配置简化,将呼吸阀进行改造,保留呼吸阀吸入口,将呼出口改为法兰连接方式。不用单呼阀。简化的方法,有利于

6,氮封压力控制

储罐氮封的作用主要是为了防止储罐出现负压而从呼吸阀吸入空气,以保持罐内微正压;《石油化工储运系统罐区设计规范》(SH/T3007-2014)规定:“储存Ⅰ、Ⅱ级毒性的甲B、乙A类液体储罐不应大于10000m3,且应设置氮气或其他惰性气体密封保护系统”。石化行业在实际操作中,凡是甲B、乙A类中间原料储罐、芳烃类储罐、轻污油储罐、酸性水罐、排放气中含有较高浓度油气和硫化物等的需要对排放气体进行收集治理的储罐,都要求设置氮气密封系统。《指导意见》关于氮封的控制方案:

1)在每台储罐上设置氮封阀组和限流孔板旁路,正常情况下使用氮封阀组维持罐内气相空间压力在 0.3kPa 左右,当气相空间压力高于 0.5kPa 时,氮封阀关闭,停止氮气供应;当气相空间压力低于 0.2kPa 时,氮封阀开启,开始补充氮气。当氮封阀需要检修或故障时,使用限流孔板旁路给储罐内补充氮气。2)当氮封阀事故失灵不能及时关闭,造成罐内压力超过 1.5kPa时,通过带阻火器的呼吸阀外排;当氮封阀事故失灵不能及时开启时,造成罐内压力降低至-0.3kPa 时,通过带阻火器呼吸阀向罐内补充空气,确保罐内压力不低于储罐的设计压力低限(-0.5kPa)。

3)为确保设置氮封储罐事故工况下的安全排放,应在储罐上设置事故泄压设备,紧急泄放阀定压不应高于储罐的设计压力上限(2.0kPa)。

4)在厂区收集总管上设置在线氧分析仪,判断储罐氮封系统的可靠性,并满足后续油气处理设施的安全性。

氮封控制示意图:

完整的氮封系统有氮封控制阀、带阻火器呼吸阀、VOCs排放管路单呼阀、紧急泄放阀等组成。在带氮封的常压储罐系统安装VOCs排放密闭管路,必须合理设置罐顶呼吸阀、单呼阀、紧急泄放阀等附件的压力控制区间数据,保证各安全附件的动作压力区间不能有交集。《指导意见》给出了参考数据:氮封阀压力定值为200pa开、500pa关,呼吸阀压力定值为1350-1485pa开启、1010-1150回座,单向阀压力定值为900-990pa开启、675-765pa回座,紧急泄放阀压力定值为1800-1980pa开启、1530-1620pa回座。

7,在用内浮顶罐

目前储罐区实施VOCs治理的项目,很多为难的实际问题是,在用内浮顶罐怎么样实行罐顶密闭排放管路的安装。《石化行业挥发性有机物综合整治方案》(环发〔2014〕177号)中“二-(四)-4”也要求“苯、甲苯、二甲苯等危险化学品应在内浮顶罐基础上安装油气回收装置等处理设施”。《指导意见》第四章“旧罐改造”,对在用内浮顶罐、旧罐实施VOCs治理,意见是:“内浮顶储罐的旧罐改造,首先将罐壁(顶)的排气口等与外界连通的开口封闭,尽量利用储罐原有开口增设 VOCs 收集管道并完善压力仪表检测措施及紧急泄放设施。”“封闭后的内浮顶储罐承压能力有所不同,需重新校核罐体强度,对储罐结构等进行适应性改造,根据储罐承压能力重新核定呼吸阀进气和排气压力。”

如前所述,在用内浮顶罐实施VOCs治理项目,很多为难的实际问题是,在用内浮顶罐怎么样实行罐顶密闭排放管路的安装。因为内浮顶罐或在罐顶边沿、

或在罐壁上部外圈,有若干排气口(透气窗),需要将其封闭。封闭的操作绝不可以动火,已经有的储罐区采用预制封板扣在排气口,并采用耐油密封胶涂抹封闭的方法解决这一难题。

8,群罐安全保障

多个罐顶联通,联通管路中集输的VOCs是易燃易爆气体,如何防备万一其中一个储罐发生火灾意外而殃及其他储罐,保障群罐安全,成为备受关注的重大问题。针对化学品罐区多次发生泄漏、火灾或爆炸事故,国家安监总局监督管理三司于2014/07/16下发了68#通知,要求“立即暂停使用多个化学品储罐尾气联通回收系统,经安全论证合格后方可投用。”

要从四个方面控制罐顶联通所造成群罐防火防爆的安全隐患,确保罐体的运行安全、杜绝意外事故对罐区安全的影响,一是各储罐 VOCs 气相支线靠近储罐位置、废气处理装置入口等必须设置阻爆轰型阻火器,材质应选用不锈钢。二是油气收集技术应选用本质安全的技术,并应确保技术成熟、可靠、节能、经济、操作简便。三是企业应设立 VOCs 处理设施操作岗位,制订系统运行操作规程和工艺卡片并严格执行。四是针对下游废气处理装置异常和事故时 VOCs 的控制和处理,建立应急处理机制和措施。选用的阻爆轰型阻火器必须通过现行国际标准ISO16852和国家标准GB/T 13347规定的测试要求,并出具第三方实验验证文件。且阻力降不应大于0.3 kPa。阻爆轰型阻火器两端宜设置切断阀,并应根据气象条件和油气性质设置清堵、防冻措施。

vocs处理设计方案

有限公司VOC废气治理项目 技 术 方 案 有限公司 二O—七年一月

技术方案及说明 1设计基础资料 1.1 臭气处理指标 1.1.1废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量9.6万/台,废气的 主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF 丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。 1.1.2 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554 —96)《恶 臭污染物排放标准》(GB14554 —93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未 经处理未达到《大气污染物综合排放标准》(GB 16297-1996 )、 《恶臭污染物排放标准》(GB14554-1993的二级标准执行。

根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》(GB 16297-1996)表2新污染源大气污染物排放限值所示: 1)感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依Weber, Fechner 为:I=K log C+a Steve ns 为匸KCN 式中,I为臭气强度,C为成分浓度 2)臭气防治法所谓的臭气强度,以快、慢表示。(如表-1,表-2,表-3所示)

VOCs治理方案模板

北京运通博雅汽车销售服务有限公司 喷烤漆房废气治理 项 目 建 议 书 设计单位:北京燕山翔宇环保工程技术有限公司 编制时间:2015年12月

1项目概况 1.1企业简介 (企业全称、主要业务、特设产品,规模大小,地理位置及其他信息) 北京运通博雅汽车销售服务有限公司系北京运通汽车集团旗下4S经销店之一,是上海通用汽车授权销售服务以及售后服务中心,别克车型的整车销售、配件供应、售后服务、信息反馈4S汽车销售服务一体化经营。公司位于北京经济技术开发区东环北路乙1号,占地面积约为5700平方米,展厅营业面积1500余平方米,维修车间面积4500平方米。 1.2项目现状 (与VOC治理有关的状况:区域大小数量、现有工艺设备技术状况、VOC主要组成浓度性质、达标情况等。尽量数据化,表格化) 公司现有4套喷烤漆房,对需要进行喷漆的车辆进行喷烤漆维护。喷烤漆房排放的尾气——VOCs(苯、甲苯、二甲苯和非甲烷总烃等)通过喷烤漆房集气系统对废气进行收集,收集后的气体通过漆房自带的活性炭吸附装置进行处理后经排气烟囱排放至大气。 通过现场走访了解,目前公司使用的油漆均为油性漆,这些油性漆用于汽车喷涂上的面漆、中层漆和底漆。目前公司还没有使用环保的水性漆。 表1 公司VOCs调查表 序号组成原浓度 (mg/l) 排放浓 度(mg/l) 去除 率 原总量 (kg) 排放总 量(kg) 去除 率 备注

1 VOC 2 粉尘 3 注:VOCs排放总量包括油漆、固化剂、有机溶剂中甲苯、二甲苯、三甲苯、乙酸乙酯、异丙醇、轻芳烃溶剂石脑油等有机挥发物产生总量和减去现有装置活性炭吸附总量(活性炭吸附量按产生总量的20%计算)。 1.3 存在问题 (针对现有执行标准,从设备工艺技术、指标参数、管理使用维护等各方面列出存在的问题或需要解决的问题) 因目前的活性炭吸附装置吸附效率低,VOCs未得到有效的控制,仍对环境造成了污染。按照国家环保管理部门的最新要求,必须严格控制汽车修理过程中VOCs的排放量及颗粒物的排放量,拟对公司喷漆房废气净化系统进行改造,确保:(1)、VOCs排放值达到地方排放标准;2、VOCs排放总量降低90%以上,即从原先每年的产生量2931kg,减排2637.9kg,实现企业社会与经济效益双赢。 我公司在该公司提供的数据和现场勘察的基础上,根据同类企业废气数据及工程实施经验,编制了本项目的设计方案,供环保部门审查和厂方选用。 2设计规范 2.1 设计依据 (有新的或更严格的标准,需要及时更新填充进去) 《中华人民共和国环境保护法》及其它相关环境保护法律、法规和规章 《中华人民共和国大气污染防治法》(于2016年1月1日生效)

VOCs处理法

RCO蓄热式催化燃烧装置 一、RCO净化设备适用范围 RCO设备可直接应用于中高浓度(1000mg/m3-10000 mg/m3)的有机废气 净化;RCO设备也可应用于活性炭吸附浓缩催化燃烧系统,用于替代催化燃烧和加热器部分。 RCO处理技术特别适用于热回收率需求高的场合,也适用于同一生产线上,因产品不同,废气成分经常发生变化或废气浓度波动较大的场合。应用行业包括汽车、造船、摩托车、自行车、家用电器、集装箱等生产厂的涂装生产线。石油、化工、橡胶、油漆,涂料、制鞋粘胶、塑胶制品、印铁制罐、印刷油墨、电缆及漆包线等生产线的废气处理,尤其适用于需要热能回收的企业或烘干线废气处理,可将能源回收用于烘干线,从而达到节约能源的目的。可处理的有机物质种类包括苯类、酮类、酯类、酚类、醛类、醇类、醚类和烃类等等。 二、RCO净化原理 在工业生产过程中,排放的有机尾气通过引风机进入设备的旋转阀,通过选转阀将进口气体和出口气体完全分开。气体首先通过陶瓷材料填充层 (底层)预热后发生热量的储备和热交换,其温度几乎达到催化层(中层)进行催化氧化所设定的温度,这时其中部分污染物氧化分解;废气继续通过加热区(上层,可采用电加热方式或天然气加热方式)升温,并维持在设定温度;其再进入催化层完成催化氧化反应,即反应生成CO2和H2O,并释放大量的热量,以达到预期的处理效果。经催化氧化后的气体进入其它的陶瓷填充层,回收热能后通过旋转阀排放到大气中,净化后排气温度仅略高于废气处理前的温度。系统连续运转、自动切换。通过旋转阀工作,所有的陶瓷填充层均完成加热、冷却、净化的循环步骤,热量得以回收。 RCO蓄热式催化燃烧装置使用旋转阀替代了传统设备中众多的阀门以及 复杂的液压设备。有机物去除率可以达到98%以上,热回收率达到95-97%。 三、设备特点 1.操作费用低,RCO一般在有机废气达到一定浓度(1000mg/m3以上)时, 净化装置中的加热室不需进行辅助加热,节省了费用; 2.不产生氮氧化 物(NOX)等二次污染物; 3.全自动控制、操作管理方便; 4.安全性高、净化效率高达99%以上; 5. 高效的热量回收率,热回收效率≥95%。

(完整版)VOCs末端治理技术及选择

VOCs末端治理技术及选择 VOCs末端治理技术分类 (目前VOCs处理方法众多,可分为非破坏性和破坏性两类。非破坏性的方法有吸收、吸附、膜分离技术、冷凝等,一般通过物理方法浓缩、分离挥发性有机物。破坏性的方法有氧化、直接燃烧、催化燃烧、蓄热燃烧、等离子、生物法、光催化等,主要通过化学或生化反应,利用光、热、微生物、催化剂等将挥发性有机物转化成无害的CO2和H2O以及其他五毒的无机化合物。以上方法可以相互组合使用。) VOCs末端治理技术对比 技术方法原理适用场合工艺特点 吸附法利用多孔固体(吸附剂)将气 体的一种或多种组分积聚在 表面,达到分离目的中低浓度的VOCs处理去除效率高,易于自动化控制 高温有机废气需做降温预处理,需与其他 技术组合使用 燃烧法在氧气作用下,将VOCs气体 完全分解成二氧化碳和水等 无机物中高浓度的VOCs处理催化燃烧:燃烧温度低,催化剂具有一定寿 命 蓄热燃烧:能效比高,燃烧温度高,节省 空间 冷凝法利用组分冷凝温度不同,将易 凝结的VOCs组分凝结成液 体而分离高浓度、有回收价值的 VOCs处理 VOCs浓度≥5000ppm,使用冷凝技术才有 经济性 经常搭配其他控制技术或作为前处理步 骤 生物降解 法微生物以VOCs为代谢底物, 将其降解转化为无害物质 用于低浓度易生物降 解的场合 能耗低,但占地面积大,对部分VOCs处理 效果差 吸收法利用各组分在特定吸收剂中 溶解度不同,采用吸收剂达到 分离目的高水溶性VOCs处理技术成熟,对酸性气体高效去除,但存在 后续废水处理问题,维护费用高 膜分离法利用膜作为渗透介质,根据组重点用于储运油气回回收效率高于97%,但成本较高,膜稳定

VOCs常见废气处理工艺方案

1.生物除臭工艺 BCE系列生物除臭设备适用行业 海德利尔HB系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。 生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)。 生物净化工艺介绍 各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。 含硫系列臭气被氧化分解成S、SO32—、SO42—。硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列臭气被氧化分解成NH4+、NO2—、NO3—,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为H2S时,专性的自养型硫氧化菌会在一定的条件下将H2S氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H2S,然后H2S再由自养型微生物氧化成硫酸根。H2S+O2+自养硫化细菌+CO2→合成细胞物质+SO42—+H2O CH3SH→CH4+H2S→CO2+H2O+SO42— 当恶臭气体为NH3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细

菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。 硝化:NH3+O2→HNO2+H2O HNO2+O2→HNO3+H2O 反硝化:HNO3→HNO2→HNO→N2O→N2 后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等) BCE系列生物净化装置性能特点 微生物活性强生物填料寿命长 表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小及良好的布气布水等特性,使用寿命可达8-10年。 设备操作简单实现自动控制 工艺运行按PLC设置实现完全自动、运行稳定、无人管理,可24小时连续运行,也适合于间断运行。 运行能耗少 由于本填料良好的保湿性能,喷淋水间歇运行,水的消耗量少。填料本身耐生物腐蚀,填料本身没有损耗,可长期稳定运行。 除臭工艺先进、合理无二次污染 有效去除硫化氢、氨气、甲硫醇等特定污染物,去除率高达95%以上,任何季节、气候条件下都能满足各地最严格的除臭环保要求。排放产物人畜无害,属环境友好性技术,无二次污染。 2.低温等离子体技术 低温等离子体除臭设备适用行业

vocs处理设计方案

v o c s处理设计方案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

有限公司 VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月 技术方案及说明 1 设计基础资料 臭气处理指标 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味;

3) 严重危害了工厂内部及周边生活环境。 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》( GB 16297-1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示:

七大VOCs废气处理技术工艺详细讲解

七大VOCs废气处理技术工艺详解 当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。 一、VOC废气处理技术——热破坏法 热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。 热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。这种方法主要分为两种,即直接火焰燃烧和催化燃烧。直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到99%。而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。这种方法比直接燃烧用时

更少,是高浓度、小流量有机废气净化的首选技术。 二、VOC废气处理技术——吸附法 有机废气中的吸附法主要适用于低浓度、高通量有机废气。现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。实践证明,这种处理方法值得推广应用。 但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。所以,使用此方法处理废气的关键在于吸附剂。当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。 此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。 三、VOC废气处理技术——生物处理法 从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O和其它简单无机物等。这是一种无害的有机废气处理方式。 一般情况下,一个完整的生物处理有机废气过程包括3个基本步骤:a) 有机废气中的有机污染物首先与水接触,在水中可以迅速溶解;b) 在液膜中溶解的有机物,在液态浓度低的情况下,可以逐步扩散到生物膜中,进而被附着在生物膜上的微生物吸收;c) 被微生物

VOCs治理技术有哪些

VOCs治理技术有哪些

VOCs治理技术有哪些? VOCs正在成为我国大气污染防治的重点目标,早在2010年我国就已将其作为污染物开始系统控制和防治。VOCs危害极大,是导致臭氧污染的重要前体物,对城市灰霾和光化学反应具有重要贡献。对人体的刺激极大,长期曝露在VOCs废气中,有可能达到癌症和畸形的发生。 对这一污染控制行业,围绕政策法规、标准、技术、工程实践等,有很多需要关注和讨论的问题。此文将对VOCs的治理技术进行探讨,期待大家关注和参与。 图为RTO(蓄热式热力焚烧技术)浓缩及废热回收系统,可将低浓度、大风量的VOCs废气浓缩为高浓度、小风量的废气,然后高温燃烧,并将储热体的热量重新回收,利用在废气预热和热转换设备上。

活性炭吸附技术简单易行、成本低,是喷涂、包装印刷企业首选的治理技术。但对单个企业来说,建设相应的活性炭再生装置费用高,难以承担。 各地环保部门为了减轻单个企业的VOCs治理投资负担,组织建设统一的活性炭异地再生系统,收集吸附后的活性炭,并进行集中再生处置,是可行且成本低的一种模式 “目前应用范围最广的VOCs治理技术主要包括吸附回收技术、吸附浓缩技术、催化燃烧技术和高温焚烧技术等。此外,低温等离子体技术、生物治理技术和组合技术得到了快速发展。”中国环保产业协会废气治理委员会副秘书长、解放军防化研究院研究员栾志强在中华环保联合会近日举办的“第一期VOCs 污染治理与监测技术(系列)培训班”上说。 工业上,VOCs排放涉及的行业众多,污染物种类繁多,组成复杂,其种类有烃类、酮类、酯类、醇类、酚类、醛类、胺类、氰类等。所以治理技术体系复杂,涉及10多种技术及组合技术。 业内人士认为,总体来说,VOCs治理有两类基本技术,一类是回收技术,治理的基本思路是对排放的VOCs进行吸收、过滤、分离,然后进行提纯等处理,再资源化循环利用。比如吸附回收技术、吸收技术和膜技术等。另一类是销毁技术,处理的基本思路是通过燃烧等化学反应,把排放的VOCs分解化合转化为其他无毒无害的物质。比如燃烧技术、生物技术和等离子体技术等。目前,这两类技术都得到研究和应用。 新的吸附(再生)工艺不断发展和完善

vocs处理设计方案

有限公司 VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月 技术方案及说明 1 设计基础资料 1.1 臭气处理指标 1.1.1 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量9.6万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。

1.1.2 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》( GB 16297-1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示:

1) 感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依 Weber , Fechner 为: I=K log C+a Stevens 为 I=KCN 式中,I 为臭气强度,C 为成分浓度 2) 臭气防治法所谓的臭气强度,以快、慢表示。(如表-1,表-2,表-3 所示)。 表1 9阶段快、慢表示法 表2 6 阶段臭气强度表示法

VOCs治理技术综述

VOCs治理技术综述 宗晓东 (镇海石化工程股份有限公司,浙江宁波315042) 摘要:VOCs是挥发性有机化合物(volatile organic compounds)的英文缩写。大多数VOCs物种本身就具有毒理特性,其中一些物种还具有较强的光化学反应活性,是造成O3污染的重要前体物;同时其大气化学反应的产物是细颗粒物中的重要组分,也是导致灰霾天气的重要前体物。可见VOCs对复合型大气污染的形成具有十分重要的促进作用。随着我国环保要求的不断提高,对挥发性有机物(VOCs)排放的限制越来越严格。 关键词:VOCs;吸附;吸收;冷凝;膜分离;催化氧化;焚烧;蓄热焚烧 中图分类号:文献标识码:A文章编号:1006—7981(2018)05—0094—03 VOCs是挥发性有机化合物(volatile organic compounds)的英文缩写。其定义有好几种,这些VOCs的定义分为二类,一类是普通意义上的VOCs 定义,只说明什么是挥发性有机物,或者是在什么条件下是挥发性有机物;另一类是环保意义上的定义,也就是说,是活泼的那一类挥发性有机物,即会产生危害的那一类挥发性有机物。非常明显,从环保意义上说,挥发和参加大气光化学反应这两点是十分重要的。不挥发或不参加大气光化学反应就不构成危害。《石油炼制工业污染物排放标准》(GB31570-2015)中对挥发性有机物的定义为参加大气光化学反应的有机化合物,或者根据规定的方法测量或核算确定的有机化合物。 1VOCs 櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆 废气治理技术 [9]Liu H,Huang T,Jiang X,et al.Preparation and desulfurization performance of pyrolusite modified activated coke[J].Environmental Progress&Sustainable Energy,2016,35(6): 1679 1686. [10]Wang J,Meng X,Chen J,et al.Desulphuri-zation Performance and Mechanism Study by in Situ DRIFTS of Activated Coke Modified by Oxidization[J].Industrial&Engineering Chemistry Research,2016,55(13). [11]Gao X,Liu S,Zhang Y,et al.Physicochemi-cal properties of metal-doped activated car- bons and relationship with their performance in the removal of SO 2 and NO[J].Journal of Hazardous Materials,2011,188(1):58 66. Research Progress of Activated Coke Desulfurization Technology WANG Cheng (architecture and environment college,Sichuan university,Chengdu610000,Sichuan,China) Abstract:Active coke desulfurization technology is an efficient desulfurization technology,with advantages of low cost and high desulfurization efficiency.This paper mainly introduces the properties of activated coke and the desulfurization mechanism,as well as the current research status and future development direction of active coke desulfurization technology. Key words:Sulfur dioxide;Active coke;Desulfurization performance 49内蒙古石油化工2018年第5期*收稿日期:2018-03-13

vocs处理设计方案

v o c s处理设计方案内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

有限公司 VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月 技术方案及说明 1 设计基础资料 臭气处理指标 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。 臭气处理标准

臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》( GB 16297-1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示: 1) 感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依

vocs处理设计方案

v o c s处理设计方案公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

有限公司VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月

技术方案及说明 1 设计基础资料 臭气处理指标 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。

本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》( GB 16297-1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示: 1) 感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依Weber, Fechner 为: I=K log C+a Stevens 为 I=KCN 式中,I 为臭气强度,C 为成分浓度

VOC治理技术(2018年)

第四章VOC废气处理技术 一、VOC废气处理简介 (一)来源 大气中VOCs污染物是人为源和天然源排放到大气中有机化合物-非甲烷烃类的总称,目前正受到日益广泛的关注。 全世界在空气中检出的VOCs已经有约150余种,其中有毒的约80余种。人们关注的大气中的VOCs主要来自人为污染源:即生产工艺过程排放。这些工艺过程包括:石化厂、炼油厂及在生产过程中大量使用有机溶剂的相关行业,如涂料生产、涂装、印刷、制药、皮革加工、树脂加工等。 (二)危害 VOCs是强挥发、有特殊气味、有刺激性、有毒的有机气体,部分己被列为致癌物,如氯乙烯、苯、多环芳烃等。其危害主要有: (l)在阳光照射下,NOx和大气中的VOCs发生光化学反应,生成臭氧、过氧硝基酞(PAN)、醛类等光化学烟雾,造成二次污染,刺激人的眼睛和呼吸系统,危害人的身体健康。这些污染物同时也会危害农作物的生长,甚至导致农作物的死亡。 (2)大多数VOCs有毒、有恶臭,使人容易染上积累性呼吸道疾病。在高浓度突然作用下,有时会造成急性中毒,甚至死亡。 (3)大多数VOCs都易燃易爆,在高浓度排放时易酿成爆炸。 (4)部分VOCs可破坏臭氧层。 (三)污染控制技术 VOCs的控制技术基本分为两大类。 第一类是预防性措施,以更换设备、改进工艺技术、防止泄漏乃至消除VOCs排放为主,这是人们所期望的,但是以目前的技术水平,向环境中排放和泄露不同浓度的有机废气是不可避免的,这时就必须采用第二类技术。 第二类技术为控制性措施,以末端治理为主。末端控制技术包含两类,第一类是非破坏

性方法,即采用物理方法将VOCs回收;第二类是通过生化反应将VOCs氧化分解为无毒或低毒物质的破坏性方法。常用的控制技术如图所示 图27 VOCs污染控制技术类型 对于比较高浓度的或比较昂贵的VOCs宜采用回收技术加以循环利用。常用的回收技术主要有吸附、吸收、冷凝、膜技术等。 挥发性有机化合物(VOCs)废气处理的控制技术包括直燃焚化法、触媒焚化法、活性碳吸附法、吸收法、冷凝法等。 有机废气的处理方法主要有两类:一类是回收法。就是通过物理方法,在一定温度、压力下,用选择性吸附剂和选择性渗透膜等方法来分离挥发性有机化合物(VOCs) ,主要包括活性碳吸附、变压吸附、冷凝法和生物膜法等;另一类是消除法。消除法是通过化学或生物反应,用光、热、催化剂和微生物等将有机物转化为水和二氧化碳,主要包括热氧化、催化燃烧、生物氧化、电晕法、等离子体分解法、光分解法等。 表99VOC废气处理技术简介 处理方法原理适用 回吸附 技术 吸附法是目前最广泛使用的VOCs回收法。它 属于干法工艺,是通过具有较大比表面积的吸 附剂对废气中所含的VOCs进行吸附,将净化 后的气体排入大气。常见的的吸附剂有粒状活 主要用于吸附回收脂肪和芳香族碳氢化合 物、大部分含氯溶剂、常用醇类、部分酮 类和酯类等;活性炭纤维吸附低浓度以至痕 量的吸附质时更有效,可用于回收苯乙烯

有机废气(VOCs)处理技术综述

有机废气(VOCs)处理技术综述 来源:内蒙古环境科学更新时间:09-8-21 13:47 作者: 马生柏汪斌 近年来随着经济的发展 ,化工企业的大量新起 ,在加上环保投资力度的不够 ,导致了大量工业有机废气的排放 ,使得大气环境质量下降 ,给人体健康来严重危害 ,给国民经济造成巨大损失 ,因此 ,需要加大对有机废气的处理。对有机废气的治理 ,人们早就有研究 ,而且已经开发出一些卓有成效的控制技术 ,如广泛采用并且研究较多的有热破坏法、冷凝法、吸收法等 ,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对上述方法作较为详细的介绍。 1 有机废气处理技术 1 . 1 热破坏法 热破坏是目前应用比较广泛也是研究较多的有机废气治理方法 ,特别是对低浓度有机废气 ,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低 ,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下 ,可以达到 99%的热处理效率。 催化燃烧是有机物在气流中被加热 ,在催化床层作用下 ,加快有机物化学反应 (或破坏效率的方法 ) ,催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐 ,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是 Pt、 Pd,技术成熟 ,而且催化活性高 ,但价格比较昂贵而且在处理卤素有机物 ,含 N、 S、 P等元素时 ,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多 ,而且多集中于非贵金属催化剂并取能得了很多成果。例如 V2O5 +MOX (M:过渡族金属 ) +贵金属制成的催化剂用于治理甲硫醇废气 , Pt + Pd + Cu催人剂用于治理含氮有机醇废气。 由于有机废气中常出现杂质 ,很容易引起催化剂中毒 ,导致催化剂中毒的毒物 (抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂 ,增大催化剂有效面积 ,使催化剂具有一定机械强度 ,减少烧结 ,提高催化活性和稳定性的作用。能作为载体的材料主要有 AL2O3、铁钒、石棉、陶土、活性炭、金属等 ,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝

UV光解处理VOCs存在的问题及解决方案

广州和风环境技术有限公司 https://www.360docs.net/doc/805181238.html,/ UV光解处理VOCs存在的问题及解决方案更多有关废气处理核心技术,请百度:和风环境技术。 挥发性有机物(VOCs)是形成臭氧和二次气溶胶污染的重要前体物,严重影响着大气质量,影响着动植物生长和人类的健康。某些有毒VOCs废气有致残、致畸、致癌作用,对长期暴露其中的人体造成严重伤害。为此,我国于1997年颁布并实施的《大气污染综合排放标准》,限定33种污染物的排放限值,其中包括苯、甲苯、二甲苯等挥发性有机物;与此同时,不同行业的国家标准和地方标准不断制定和颁布,同时颁布《重点行业VOCs污染控制技术指南》、《中华人民共和国大气污染防治法(修订草案)》,特别强调的是在“十三五”期间,严格控制VOCs在重点区域、重点行业推进挥发性有机物排放总量。UV光解因具有操作简单、应用范围广、运行成本低、设计成本少等特点,已经被众多中小企业应用到中。现在把UV光解技术降解原理、存在的问题及改进措施介绍如下。 一、UV光解原理 VU光解是利用紫外灯对VOCs进行近距离照射,破坏化学键,氧化一部分的VOCs 为二氧化碳、水和氯化氢;同时将部分的大分子VOCs裂解为小分子化合物,其中小分子化合物大多数均为含C-O、C﹦O的小分子化合物。紫外灯是UV光解的核心组成部分,比如采用185nm紫外灯照射VOCs或恶臭气体,能将键能小于647KJ/mol的化合物破坏,同时185nm紫外灯中波长更短的紫外线也可将部分VOCs进行氧化分解。常见化合物分子的键能如下:

广州和风环境技术有限公司 https://www.360docs.net/doc/805181238.html,/ UV光解能去除挥发性有机物(VOCs)、硫化氢、氨气、硫醇类、苯系物等污染物,为此很多企业在大力推广UV光解技术。但不得不说,单一的UV光解技术在使用上有很大的局限性,突破其技术瓶颈真正服务于VOCs治理是亟待解决的问题。 二、UV光解存在的问题 UV光解存在的一个问题是:产生了不完全氧化的副产物,这些副产物可能比原始VOCs有着更大的毒性,比如说三氯乙烯在光解过程中生成碳酰氯。碳酰氯被称为光气,是剧烈窒息性毒气,高浓度吸入可致肺水肿,其毒性比氯气约大10倍。 UV光解存在的另一个问题是:产生了大量的臭氧。为了更好地氧化、分解或破环VOCs,通常会使用过量的紫外灯,紫外线产生的臭氧直接排放到大气中,将会对人体,尤其是对眼睛、呼吸道、肺等有侵蚀和损害作用,也对人类生活的自然环境造成一定的伤害。 三、UV光解降解VOCs的改进措施 1、UV光解与光催化联用 UV光解阶段生成部分氧化的副产物很容易在光催化部分氧化,比如UV光解阶段可以将碳氢化合物氧化成醛、酮,而醛和酮比初始的碳氢化合物在光催化阶段具有更好的反应活性;另外,光解阶段产生的副产物在光催化阶段不仅有利于转变成二氧化碳和水,同时也促进最初的工业废气的氧化、分解与破坏。光解阶段产生的副产物进入光催化阶段促进光催化剂的表面反应,比如链反应,也影响催化剂表面的界面反应,能够快速氧化其它污染物。因此,UV光解光催化是一个协同反应过程。 UV光解光催化技术应用在具体工业VOCs废气治理时,有一些关键因素必须加以重视和控制,真正掌握UV光解光催化的核心内涵。 光解阶段影响VOCs转化的关键因素在于温度、停留时间和紫外灯的强度等。通常光解部分的温度控制在20-65℃之间,太低或太高的温度均不利于光解有效功率和光强的发挥;气体的停留时间在0.1-50s之间,太长的停留时间不利于实用化和工业应用;紫外灯的波长控制在185-375nm之间;提高光解的途径

VOCs的治理技术

VOCs的治理技术 1.热破坏法 热破坏法是目前应用比较广泛也是研究较多的VOCs治理方法,可分为直接燃烧和催化燃烧。VOCS的热破坏可能包含一系列分解、聚合及自由基反应;最重要的VOCs的破坏机理是氧化和热裂解、热分解。直接燃烧是VOCs在气流中直接燃烧和辅助燃烧的方法。 直接燃烧在适当的温度和保留时间下,可以达到99%的热处理效率。催化燃烧是VOCs在气流中被加热,在催化床层作用下,加快VOCs 的化学反应,催化剂的存在使VOCs比直接燃烧法需要更少的保留时间和更低的温度。催热破坏能达到的热破坏效率在90%-95%之间,稍低于直接法,是由于VOCE在催化床层的停留时间长,降低了摧化剂有效表面积,从而降低破坏效率。另外,催化剂常见对特定类型化合物反应,所以,催化燃烧的应用就受到了限制。 用于VOCs的净化的催化剂主要有金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt,Pd,技术成熟,催化活性高,但价格昂贵,而且对卤素有机物在含N,P,S等元素时,会发生氧化使催化剂失活。近年来,催化剂的研制主要集中在非贵金属,并取得了成果。如V205 + MOx (M:过渡族金属)+贵金属制成的催化剂用于治理甲硫醇废气;Pt+ Pd+ CuO催化剂用于治理含氮有机醇废气。 由于 VOCs废气中常出现杂质,易引起催化剂中毒。这些杂质有P,Pt ,Bi ,As,Sn,Hg,Fe2+,Zn,卤素等。 催化剂载体起到节省催化剂,增大催化剂有效面积、减少凝结、

提高催化活性和稳定性的作用。能作为载体的有:活性炭、氧化铝、石棉、陶土、金属等,最常见的是陶瓷载体,一般制成网状、球状、蜂窝状或柱状。而近年来研究较多且成功的有丝光氟石等。对催化燃烧而言,今后研究的重点与热点是探索高效活性催化剂及其载体,催化氧化机理。 2.吸附法 吸附法的应用广泛,具有能耗低,工艺成熟,去除率高,净化彻底,易于推广的优点,有很好的环境和经济效益。缺点是设备庞大,流程复杂,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。吸附法主要用于低浓度,高通量的VOCs处理。 决定吸附法处理VOCS的关键是吸附剂,吸附剂应具有密集的细孔、结构,内表面积大,吸附J性能好,化学性质稳定,不易破碎对空气阻力小,常用的有活性炭、氧化铝、硅胶、人工沸石等。目前,多数采用活性炭,其去除效率高,物流中有机物浓度在1000ppm以上,吸附率可达95%以上。活性炭有粒状和纤维状两类。颗粒状活性炭结构气孔均匀,除小孔外,还有10 -100nm的中孔和1.5-5tm的大孔,处理气体从外向内扩散,吸附脱附都较慢;而纤维活性炭孔径分布均匀,孔径小且绝大多数是1.5-3nm的微孔,由于小孔都向外,气体扩散距离短,因而吸附脱附快。经过氧化铁或氢氧化钠或臭氧处理的活性炭往往具有更好的吸附性能,You等研究表明氧化后的活性炭具有更强的亲VOCs能力,吸附有效传质系数比未处理的活性炭大。为了提高VOCs的净化效率,吸附法常和其他方法联用,可采用液体吸收和活性

挥发性有机物VOC处理进展概述

挥发性有机物VOC处理进展概述 一、有机废气的各种净化方法 1.1吸附法 吸附法是一种从有机废气中去除可吸附的VOC组分或回收溶剂的一种传统方法。吸附操作的原理是在气相中需要分离的气体组分(吸附质)可以选择性的与固体表面(吸附剂)相结合,然后再经解吸又回到气相中,通常吸附分为物理吸附和化学吸附两种。VOC的净化主要采用物理吸附的方法,与其他方法相比,吸附法可以吸附浓度很低的(甚至痕量)组分,经解吸后可大大增浓,因而可以从废气中出去溶剂蒸气和最后经分离来回收溶剂。它有很多优点:不需要水,不需要辅助燃料,而且能适应废气浓度的变化和吸附卤代烃类和含无机物的挥发组分。 典型的吸附等温曲线如图3所示,工业上吸附等温曲线方程常用经验公式表示,其中与最事实最吻合的是由布鲁诺(Brunauer)、埃麦特(Emmet)和泰勒(Teller)于1938年在兰米尔方程基础上提出的描述多分子层吸附理论的方程(BET方程)。 在实际应用过程中,当气体混合物通过填装固体吸附剂的床层时,要分离组分被吸附在固体表面上;当吸附剂达到饱和时,被吸附的物质通过加热或减压而解吸,在这个过程中吸附剂得到再生。由于吸附剂的吸附容量较低,因此至少需要两套吸附器来完成吸附、解吸的连续操作过程。若用热空气或过热蒸汽来解吸,则不仅可以使床层温度升高,而且可使要吸附的气体组分的分压降低;分离出的气体组分就处于热空气或水蒸气中,经冷却、冷凝分离。在用水蒸气解吸的情况下,由于大部分的VOC在水中的溶解度极低,经冷凝而成为两相,因此很容易分离。 有机废气净化常用的吸附剂是活性炭或活性焦炭,因为它们不仅具有较大的比表面积,而且对非极性物质具有优异的吸附性能,而对极性物质如水的吸附性能很差,因而就有可能方便的用水蒸气再生。

废气(VOCs)处理技术

微波催化技术 技术作用原理 频率从300MHz~300GMHz的电磁波,其方向和大小随时间作周期性变化;微波与废气物分子直接作用,将超高频电磁波能量对废气进行微波辐射,使细胞中极性物质随高频微波场的摆动受到干扰和阻碍,引起微生物细胞的蛋白质,核酸等生物大分子受凝固或变性失活,从而导致其突变或死亡,同时对磁共振使之产生强磁辐射对废气分子进行切割、破坏、断裂,如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,彻底达到脱臭及杀灭细菌的目的。最后采用特制合成催化剂对废气进行光合还原反应。可有效地破坏废气中分子链,将有毒有害物质改变成为低分子无害物质,如水和二氧化碳等。 ■适用领域 氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯、甲醛等多种复杂性废气。运用于化工、造纸、医药、食品、橡胶、轮胎、汽车、喷涂等多个领域。

■技术特点 1、处理能力比传统技术强,可根据不同工况特制。 2、设备占地小、质量轻,如:处理10万风量的废气,设备占地只需3个平方,总质量仅为200多千克 3、免维护:设备无需添加任何易耗材料,整体设使用寿命在5年以上,无需人工看管维护。 4、节能:设备运行过程中单台设备运行只需1-6度电,6度电可以处理10万风量的废气,真正意义上做到节能环保。 5、稳定性:整机所有配件均属于持续性材料,适用于24小时不间断运行。 6、安全性:主体设备无电路,真正实现远程智能操作,无安全隐患。 UV光氧化技术 技术原理 一、利用特制的高能UV紫外线光束照射恶臭气体,裂解恶臭气体如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子键。 二、利用高臭氧分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧,使呈游离状态的污染物分子与臭氧氧化结合成小分子无害或低害的化合物。如CO2、H2O等。UV+O2→O-+O*(活性氧)O+O2→O3(臭氧)。 三、利用特制的催化剂进行氧化还原反应;运用高能UV紫外线光束、臭氧及催化剂对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,彻底达到脱臭及杀灭细菌的目的。

相关文档
最新文档