新型分子筛催化剂的研究进展

合集下载

分子筛催化剂的研究

分子筛催化剂的研究

分子筛催化剂的研究首先,我们将介绍分子筛催化剂的基本原理。

分子筛是一种多孔结构的固体材料,具有规则的孔道结构和大的比表面积。

分子筛催化剂的活性位点通常集中于孔道内壁或孔道口,通过孔道结构可以控制催化反应的活性和选择性。

此外,分子筛催化剂还具有良好的热稳定性和化学稳定性,可以在高温或酸碱条件下进行反应。

其次,我们将讨论分子筛催化剂的制备方法。

目前,常见的分子筛催化剂制备方法包括水热法、离子交换法、溶胶-凝胶法等。

水热法是最常用的制备方法之一,通过在高温和高压条件下反应源材料和模板分子,可以得到具有规则孔道结构的分子筛。

离子交换法则是通过与离子交换树脂进行交换,将离子交换树脂转化为分子筛。

溶胶-凝胶法则是将溶胶中的成分通过凝胶的沉淀形成固态材料,再经过煅烧和孔道开放处理形成分子筛。

接下来,我们将探讨分子筛催化剂在石油加工中的应用研究。

石油加工是分子筛催化剂广泛应用的领域之一、分子筛催化剂可以用于石油加工中的催化裂化、异构化、芳构化等反应。

例如,分子筛催化剂可以将重质石油馏分转化为高辛烷值的汽油,提高石油产品的质量。

此外,分子筛催化剂还可以用于催化裂化废液的再生利用,减少废液的排放和资源浪费。

最后,我们将介绍分子筛催化剂在有机合成和环境保护中的研究进展。

在有机合成领域,分子筛催化剂可以用于合成有机化合物、催化氧化反应等。

分子筛催化剂具有高的活性和选择性,可以有效地催化有机反应。

在环境保护方面,分子筛催化剂可以用于处理废水和废气中的污染物。

例如,分子筛催化剂可以去除废气中的有害物质,并将其转化为无害物质。

综上所述,分子筛催化剂是一类重要的催化剂,在石油加工、有机合成和环境保护等领域具有广泛的应用前景。

为了进一步提高分子筛催化剂的性能,需要加强对其制备方法和催化机理的研究。

通过深入研究分子筛催化剂的性质和催化机理,可以为其在工业应用中的优化和改进提供参考。

分子筛催化剂研究进展

分子筛催化剂研究进展

ZSM - 5 沸石合成方面的研究热点主要集中于:
( 1) 小晶粒沸石, 尤其是纳米沸石的合成; ( 2) 含杂原子ZSM - 5沸石的合成; ( 3) 以不同的材料为载体合成ZSM - 5沸石。
请老师同学批评指正
ZSM-5典型应用

1 二甲苯异构化 在二甲苯异构化反应中, 大晶粒ZSM-5对于对二甲苯具
有更好的选择性, 可是催化活性比同结构的小晶粒低。

2 从甲醇合成汽油 用ZSM-5 作催化剂, 可使甲醇转化为汽油, 所得汽油 产品的辛烷值高’为优质汽油产品中不含C10以上的烃类, 烃类产品中 汽油馏分约占88% , 转化率达到100%。B2O3型沸石可用于甲醇转化为 汽油的催化剂,ZSM-5沸石用于甲醇转化为汽油, 表现出自催化性质。
国内发展情况
上世纪60年代左右, 上海试剂五厂等开展沸石分子筛的研制开发 工作, 合成出A 型、X 型、Y型沸石分子筛。 上世纪80年代, 金陵石化有限公司炼油厂首次工业化生产ZSM· 5 沸石分子筛。已有南开大学、北京石科院、兰化炼油厂等单位纷纷 开展ZSM· 5沸石分子筛的开发生产, 并将其广泛应用于催化裂解、辛 烷值助剂、柴油、润滑油降凝、芳烃烷基化、异构化及精细化工等 领域。 中科院大连化物所自上世纪80年代以来开展沸石分子筛的合成 及改性研究工作, 开发出二甲醚裂解制低碳烯烃催化剂及甲醇转化制 低碳烯烃催化剂。已完成中试放大试验, 据称, 该研究所采用改性 SAPO-34分子筛催化剂可使二甲醚单程转化率大于97% , 低碳烯烃 选择性达90%。 上海骜芊科贸发展有限公司生产经营ZSM· 5高硅沸石分子筛结晶 粉体、疏水晶态ZSM· 5吸附剂等系列分子筛, 广泛应用于石油化工中 异构催化, 环保吸附除去废气, 精细化工行业中抑制粘结剂副反应等。

分子筛催化剂研究进展

分子筛催化剂研究进展

分子筛催化剂研究进展分子筛催化剂是一类以分子筛为主要活性组分的催化剂,分子筛是一种具有均匀孔道和大比表面积的晶体材料,在催化反应中起到分子尺度筛分和表面活性中心提供的作用。

分子筛催化剂的研究进展主要包括应用领域扩展、催化性能优化和新型分子筛的合成。

首先,分子筛催化剂在应用领域上不断扩展。

最早应用于石油化工领域的分子筛催化剂如ZSM-5型分子筛,在汽油裂化和甲烷转化等反应中取得了成功。

随着人们对环境污染和能源危机的关注,分子筛催化剂逐渐应用于环境保护、新能源和精细化工等领域。

例如,分子筛催化剂在VOCs (挥发性有机污染物)的净化、重金属离子的去除以及甲醇合成等方面展现出了良好的应用潜力。

其次,研究人员通过改性和浸渍等方法对分子筛催化剂进行性能优化。

传统的分子筛催化剂通常存在孔道尺寸过小、酸性不足等问题,限制了其在一些催化反应中的应用。

为了解决这些问题,研究人员通过金属离子交换、酸性修饰和晶格挤压等方法对分子筛进行改性,提高了其催化活性和选择性。

此外,研究人员还通过浸渍等方法向分子筛催化剂中引入其他活性组分,如贵金属、过渡金属和纳米颗粒等,以进一步提高其催化性能。

最后,研究人员不断合成新型的分子筛催化剂。

分子筛的合成方法决定了其晶体结构和孔道结构,直接影响其催化性能。

以往的分子筛催化剂主要是通过水热合成方法制备,由于合成条件的限制,很难合成具有特殊孔结构和高晶体质量的分子筛。

为了克服这一问题,研究人员发展了一系列新型的分子筛合成方法,如溶剂热法、离子液体法和高压合成法等。

这些新合成方法为分子筛催化剂的开发提供了更多的可能性,并且可以调控催化剂的孔径、酸碱性和热稳定性等性能。

总之,分子筛催化剂的研究进展表明其在环境保护、新能源和精细化工等领域具有广阔的应用前景。

未来的研究重点将集中在催化性能的优化、新型分子筛的合成以及催化机理的深入研究上,以推动分子筛催化剂的进一步发展和应用。

分子筛催化剂在炼油与石油化工中的应用进展

分子筛催化剂在炼油与石油化工中的应用进展

分子筛催化剂在炼油与石油化工中的应用进展1. 引言1.1 分子筛催化剂的定义分子筛催化剂是一种通过分子筛结构中的微孔对分子进行选择性吸附和催化反应的催化剂。

分子筛是一种具有规则孔道结构的晶体物质,其孔径可以根据需要进行调控,具有较高的比表面积和孔容量。

分子筛催化剂可以提高反应的选择性和效率,降低能耗和环境污染,被广泛应用于炼油和石油化工等领域。

分子筛催化剂在炼油与石油化工中发挥着重要作用,可以用于裂化、重整、脱氮脱硫、重整裂化和芳烃转化等反应过程。

通过优化分子筛的孔径和孔道结构,可以实现对不同分子的选择性催化转化,同时提高反应速率和产率。

分子筛催化剂的研究和应用具有重要意义,可以推动炼油与石油化工的高效、清洁和可持续发展。

1.2 炼油与石油化工的重要性炼油与石油化工是现代工业的支柱,对于国民经济发展具有重要的意义。

炼油是将原油中的各种成分在高温、高压下进行分馏、裂解、重组等处理,以提取出各种石油产品的工艺过程,主要产品包括汽油、柴油、液化气、石蜡等。

这些产品广泛应用于交通运输、工业生产、农业等各个领域,为社会提供了便利,推动了经济的发展。

石油化工是利用石油、煤炭、天然气等化石燃料及生物质资源为原料,经过加工、分离、裂化、重组等过程,生产有机化学产品的工业部门。

石油化工产品广泛应用于医药、农药、合成纤维、橡胶、塑料、合成树脂等领域,为人们的日常生活和各个行业提供了必要原料,促进了各行业的发展。

炼油与石油化工的发展水平直接影响着一个国家或地区的工业化程度和经济实力。

现代炼油与石油化工技术的不断创新和应用,不仅提高了能源利用效率,减少了对环境的污染,还促进了科技的进步和产业的发展。

炼油与石油化工的重要性不可忽视,对于推动经济增长和社会进步具有重要作用。

2. 正文2.1 分子筛催化剂在催化裂化中的应用催化裂化是炼油与石油化工中广泛应用的一种重要反应过程,而分子筛催化剂在催化裂化中发挥着重要作用。

分子筛催化剂通过其特殊的孔道结构和化学性质,能够有效地催化裂化反应,提高产品产率和质量。

分子筛NH3-SCR脱硝催化剂研究进展

分子筛NH3-SCR脱硝催化剂研究进展

分子筛NH 3-SCR 脱硝催化剂研究进展刘军强,贾媛媛,张 鹏,刘光利,唐中华,刘兴誉(中国石油 石油化工研究院 兰州化工研究中心,甘肃 兰州 730060)[摘要]选择性催化还原(SCR )是目前最有效的脱硝技术,它的核心是脱硝催化剂。

分子筛脱硝催化剂具有很好的脱硝活性和水热稳定性,宽的温度窗口可覆盖低中高温烟气或工业尾气脱硝,是很有应用潜力的SCR 脱硝催化剂。

介绍了分子筛NH 3-SCR 脱硝催化剂的研究现状,包括Fe 系、Cu 系、Mn 系及Ce 系分子筛催化剂,综述了不同拓扑结构的分子筛催化剂(ZSM -5,BEA ,SAPO -n ,SSZ -13)的水热稳定性和脱硝活性,并对分子筛催化剂未来研究进行了展望。

[关键词]分子筛;NH 3-选择性催化还原;氮氧化物;脱硝[文章编号]1000-8144(2020)10-1012-10 [中图分类号]TQ 426.8 [文献标志码]AResearch progress of zeolite NH 3-SCR catalysts for NO x removalLiu Junqiang ,Jia Yuanyuan ,Zhang Peng ,Liu Guangli ,Tang Zhonghua ,Liu Xingyu(Lanzhou Petrochemical Research Center ,Petrochemical Research Institute of PetroChina ,Lanzhou Gansu 730060,China )[Abstract ]Selective catalytic reduction(SCR) is the most effective technology to reduce the emission of nitrogen oxides at present ,and the key to SCR technology is denitration catalysts. Zeolite denitration catalysts have good denitration activity and hydrothermal stability ,and its wide working temperature window can cover low ,medium and high-temperature flue gas or industrial tail gas. Thus ,zeolite catalysts have great application potential. The research status of zeolite catalysts for NH 3-SCR ,including Fe/zeolite ,Cu/zeolite ,Mn/zeolite ,and Ce/zeolite catalysts are introduced. The hydrothermal stability and denitrification activity of zeolite catalysts with different topological structures(ZSM-5,BEA ,SAPO-n ,SSZ-13) are reviewed. Besides ,future research on the zeolite catalyst is also analyzed.[Keywords ]zeolite ;NH 3-SCR ;nitrogen oxide ;denitrationDOI :10.3969/j.issn.1000-8144.2020.10.014[收稿日期]2020-05-08;[修改稿日期]2020-07-15。

新型分子筛催化剂的研究进展

新型分子筛催化剂的研究进展

新型分子筛催化剂的研究进展随着科学技术的不断进步和催化剂研究的发展,新型分子筛催化剂成为当前热门的研究领域之一、分子筛是一种具有特定孔径和结构的微孔材料,具有良好的催化活性和选择性,广泛应用于催化领域。

本文将介绍新型分子筛催化剂的研究进展。

首先,基于分子筛的合成方法不断改进。

传统的分子筛合成方法包括水热合成、气相合成和掺杂合成等,但这些方法在合成速度、晶体尺寸控制以及稳定性方面存在一定的限制。

近年来,研究人员提出了多种新型合成方法,如溶剂热法、微波辅助合成、离子液体模板合成等。

这些方法能够实现快速合成、细微尺寸调控和孔径修饰,从而获得更优异的催化性能。

其次,新型分子筛催化剂在催化反应中展现出更高的活性和选择性。

研究人员通过控制分子筛的晶体结构、形貌和孔隙结构,提高了分子筛的负载能力和催化活性。

例如,将金属离子负载到分子筛的活性位点上,能够提高催化剂对特定反应的催化活性。

同时,通过调控分子筛的孔道结构和孔径尺寸,可实现对反应物分子的选择性吸附和转化,提高产物选择性。

此外,新型分子筛催化剂在环境保护和能源转化领域具有广阔的应用前景。

分子筛可以通过表面修饰和功能化来实现对环境污染物的高效吸附和催化降解,有望用于有机废水处理和大气污染物净化。

同时,分子筛也可以用于催化领域的能源转化,如催化裂化、催化加氢和催化重整等。

这些领域对催化剂的活性和稳定性要求较高,而新型分子筛催化剂具有较高的特异性和选择性,能够满足这些需求。

最后,新型分子筛催化剂的开发离不开理论模拟和先进表征技术的支持。

理论模拟可以通过计算分子筛的结构和催化反应机理,为催化剂设计和性能优化提供指导。

先进表征技术如傅里叶变换红外光谱、X射线衍射和傅里叶变换核磁共振等,可以对分子筛催化剂的晶体结构、孔隙结构和催化活性进行详细分析,揭示分子筛催化剂的结构性能关系。

综上所述,新型分子筛催化剂的研究已取得了重要进展。

基于新型合成方法和先进的表征技术,研究人员能够合成具有优异性能的分子筛催化剂,并实现对催化反应的高效控制。

分子筛催化剂的研究与应用

分子筛催化剂的研究与应用

分子筛催化剂的研究与应用分子筛催化剂是当今化学领域中的一个重要的研究方向,它是指具有精细空间网络结构的固体材料,通过其特殊的空间结构和化学功能,可以在化学反应中起到催化作用。

分子筛催化剂广泛应用于石油加工、化学制品、环境保护等领域,是一个非常有前途的研究领域。

一、分子筛催化剂的基本原理分子筛催化剂的催化原理基于它特殊的孔道结构,孔道尺寸与特定反应分子的尺寸相匹配。

当反应分子通过孔道时,会与分子筛中的活性位点发生相互作用,实现催化反应。

因此,作为催化剂,分子筛材料的最重要的性质是大孔度和优秀的比表面积,以及催化位置和反应选择性。

二、分子筛材料的制备分子筛材料的制备需要引入模板分子,它尺寸与孔道相一致,可以帮助形成分子筛结构。

通常使用有机碱或某些有机分子作为模板剂。

分子筛材料的制备方法一般分为两大类:溶胶-凝胶法和晶种法。

其中,溶胶-凝胶法是将硅酸酯、铝酸酯等合成原料与模板分子在水和乙醇中混合,在高温条件下转化为固态材料。

而晶种法则是将已经合成好的分子筛加入合成反应体系中,主要应用于制备特定形式的分子筛。

三、分子筛催化剂的应用与研究分子筛催化剂广泛应用于石油加工、化学制品、环境保护等领域。

在石油化工生产中,分子筛催化剂被广泛用于汽油和柴油加氢、裂化和异构化等过程中;在化学制品生产中,分子筛催化剂被用于合成各种有机分子,如医药、染料和催化剂等;在环境保护方面,分子筛催化剂也有广泛的应用。

例如,NOx催化还原、VOC催化氧化等领域。

在研究方面,分子筛材料不仅被广泛应用于催化反应,而且还成为研究具有新型性质和应用的材料的热点之一。

例如,有人研究了纳米分子筛材料和分子筛/金属有机骨架材料,具有较高的比表面积和催化活性,可以用于制备更高效的催化剂。

另外,还有一些关于分子筛催化剂的新型材料的研究。

研究人员使用不同的合成方法制备了具有不同空间结构、孔径和成分的新型分子筛材料,带来了更多的研究方向。

总之,分子筛催化剂作为一种高效而广泛应用于各种反应的催化剂,在化学领域中发挥着重要的作用。

负载Pt分子筛催化剂研究进展及应用前景

负载Pt分子筛催化剂研究进展及应用前景

负载Pt分子筛催化剂研究进展及应用前景负载Pt分子筛催化剂(下文简称Pt/分子筛催化剂)是一种新型的催化材料,在催化领域具有广泛的研究和应用前景。

本文将对负载Pt分子筛催化剂的研究进展及其应用前景进行综述。

首先,我们来了解一下Pt/分子筛催化剂的基本概念和特点。

Pt/分子筛催化剂是通过将贵金属铂(Pt)负载到分子筛材料上制备而成的。

分子筛是一种由硅酸盐、氧化铝等材料组成的多孔结构固体,具有高比表面积和孔隙度,能够提供丰富的活性位点和高的催化活性。

而负载铂的作用是增强催化剂的稳定性和选择性,改善催化反应的效果。

近年来,研究人员对Pt/分子筛催化剂进行了广泛的研究。

首先,研究人员对负载Pt的方法进行了改进和优化,以提高催化剂的负载量和利用率。

例如,采用化学还原法、溶胶-凝胶法等制备方法,在合成过程中控制反应条件,可以实现高效的负载Pt分子筛催化剂的制备。

其次,研究人员对Pt/分子筛催化剂的结构和性能进行了深入研究。

通过X射线衍射、透射电子显微镜等表征手段,可以揭示催化剂的晶体结构、粒径分布和形貌特征。

同时,利用X射线光电子能谱、傅里叶变换红外光谱等技术手段,可以研究催化剂的表面化学状态和活性位点分布情况。

这些研究有助于深入理解Pt/分子筛催化剂的催化机理,并为进一步优化催化剂的设计和制备提供了基础。

此外,研究人员还探索了Pt/分子筛催化剂在多种重要催化反应中的应用。

比如,在甲醇脱氢制备氢气的催化反应中,Pt/分子筛催化剂表现出优异的催化活性和稳定性,可用于氢能源的生产。

在质子交换膜燃料电池中,Pt/分子筛催化剂作为催化层的关键组成部分,可以提高电池的效率和寿命。

此外,Pt/分子筛催化剂还可以应用于汽车尾气处理、有机合成等领域,具有广阔的应用前景。

尽管Pt/分子筛催化剂在研究和应用方面取得了显著的进展,但仍面临一些挑战和问题。

首先,铂是一种昂贵的贵金属,限制了催化剂的大规模应用。

因此,寻找替代负载金属或开发新型合成方法是今后的研究方向之一。

分子筛催化剂的发展及研究进展

分子筛催化剂的发展及研究进展

分子筛催化剂的发展及研究进展摘要:分子筛是一种具有特定空间结构的新型催化剂,具有活性高、选择性好、稳定性和抗毒能力强等优点,因此,近几十年来它作为一种化工新材料发展的很快,应用也日益广泛。

特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用。

本文介绍了几种常见的分子筛及应用前景,并对分子筛的性能做了详尽的概述[1]。

关键词:分子筛;催化剂;应用;性能Development and research of the molecular sieve catalystAbstract:Zeolite is a new catalyst with specific spatial structure, with high activity, good selectivity, advantages, stability and antitoxic ability etc. Therefore, in recent decades, as a kind of new material chemical development soon, have been widely applied in. Especially as industrial catalysts in refining and petrochemical petroleum plays a very important role. This paper introduces the composition and application of molecular sieve, and the properties of molecular sieves as described in detail.Key words:Molecular sieve;catalyst;application;performance1.分子筛的发展现状所谓分子筛催化剂,就是将气体或液体混合物分子按照不同的分子特性彼此分离开的一类物质,实际上是一些具有实际工业价值且具有分子筛作用的沸石分子筛,构成沸石分子筛基本结构特征主要是硅氧四面体和铝氧四面体,这些四面体交错排列形成空间网状结构,存在大量空穴,在这些空穴内分布着可移动的水分和阳离子。

分子筛型催化剂

分子筛型催化剂

分子筛型催化剂摘要:一、分子筛型催化剂的定义与特点1.定义2.特点二、分子筛型催化剂的分类1.按照骨架结构分类2.按照孔径大小分类三、分子筛型催化剂的应用领域1.石油化工2.环保产业3.生物医药四、分子筛型催化剂的发展趋势与前景1.研究进展2.市场前景3.发展挑战与机遇正文:分子筛型催化剂是一种具有高活性、高选择性的催化剂,其核心成分为分子筛。

分子筛是一种具有规则孔道结构的晶体材料,其孔道大小可精确控制,因此具有很高的催化活性和选择性。

分子筛型催化剂广泛应用于石油化工、环保产业、生物医药等领域,具有重要的经济价值和科研价值。

按照骨架结构,分子筛型催化剂可分为几种类型,如A型、X型、Y型等。

其中,A型分子筛具有最高的活性和选择性,广泛应用于石油化工领域。

X 型分子筛具有较大的孔径,适用于较大分子的催化反应。

Y型分子筛具有较高的热稳定性,可应用于高温催化反应。

按照孔径大小,分子筛型催化剂可分为微孔型、中孔型和大孔型。

微孔型分子筛主要用于小分子催化反应,如甲醇制氢、烃类裂解等。

中孔型分子筛主要用于大分子催化反应,如苯胺合成、环己酮氧化等。

大孔型分子筛则可用于吸附、分离等过程。

在石油化工领域,分子筛型催化剂被广泛应用于裂化、重整、加氢、异构化等反应过程,以提高产物的收率和纯度。

在环保产业中,分子筛型催化剂可应用于废气净化、废水处理等过程,有助于减少污染物排放和提高资源利用率。

在生物医药领域,分子筛型催化剂可用于药物合成、生物催化等过程,提高生产效率和产品质量。

随着科技的进步,分子筛型催化剂的研究取得了一系列突破,为我国相关产业的发展提供了强大的技术支持。

然而,分子筛型催化剂的研究仍面临一定的挑战,如催化剂的合成工艺、活性位点的揭示、催化机理的研究等。

钛硅分子筛催化剂的研究进展

钛硅分子筛催化剂的研究进展

Research progress of titanium silicalite catalys tZhangxiaoming Zhangzhaorong Soujiquan Lishuben(Lanzhou Institute of Chemical Physics fine petrochemical intermediates National Engineering Research Center, Lanzhou 730000)The role of titanium catalyst in the oxidation reaction of organic compounds is well known [1, 2]. Introduced in the molecular sieve framework due to the molecular sieve having a regular pore structure and large specific surface area characteristics, hetero atom, having an oxidation-reduction ability to preparenovel catalytic oxidation catalyst, has been more interesting subject in 1983 ENI [3] the T ar amasso its collaborators first successful synthesis of the titanium-containing zeolite catalyst of TS-1, a subsequent study found, Tammonia oxidation [7] S-1 with H2O2 aqueous solution as oxidant and the oxidation reaction of a series of organic compounds, such as olefin epoxidation [4], the aromatic hydrocarbon ring hydroxylation [5, 6], ketone, alkane oxidation[8, 9] and the alcohol oxidation [10] and so the process has a unique shape-selective catalytic function as compared with other types of catalytic systems, the system (1) the mild reaction conditions (atmospheric pressure, 0 - 100 ° C); (2) the unique function of the shape-selective catalytic oxidation; (3) environmental friendliness.TS-1 has been very limited because the aperture is only about 0. 55 nm, and its range of applications where the aerodynamic diameter is greater than 0.60 nm substrate molecules can not enter within its pores without reactivity. Orderovercome this limitation, the type of catalyst to get a wider range of applications, the majority of scientists have successfully synthesized T S-2 [11], Ti-Beta [12] and a series of large aperture zeolite catalysts.In recent years, with the development of the petroleum refining and fine petrochemical technology requires the use of some reorganization of the oil to be effective. M41S [13, 14], HMS [15] and MSU [16] series of mesoporous molecular sieves Tiheteroatom derivatives T i-MCM-41 [17], Ti-MCM-48 [18], Ti-HMS [19, 20] and of Ti-the MSU [16] emerged, the latter in the selective oxidation of organic compoundsshowed higher catalytic activity.This paper reviews the recent years, the progress made in terms of microporous and mesoporous titanium silicalite catalyst preparation, characterization, and catalytic reaction.T S-1 is first synthesized, and also so far been studied most, and more thoroughly of a class of titanium silicalite catalyst. T S-1 is a Silicalite-1 isomorphously substituted derivatives thereof, having the MFI structure. TS- work and the results achieved many comments have been reported [10, 21 - 24] here only a brief overview of the TS-1 preparation, characterization, and their corresponding catalytic reaction.The classical method of preparing a zeolite catalyst is a hydrothermal synthesis method in the the earliest patent literature, Tar amasso [3] reported two preparation T S-1 The method of one is tetraethyl orthosilicate (T EOS) and tetraethylammonium n-titanate (TEOT) as silica source and a titanium source, and tetrapropyl ammonium hydroxide (TPA OH) as templating agent;other is a silica sol as a silicon source, and to dissolve in H2O2 the titanate as titanium source TPAOH templating agent in addition to the hydrothermal synthesis method, the TS -1 can also be obtained by the method of secondary synthesis TiCl4 and dealumination of ZSM-5 for vapor phase reaction, to give with hydrothermal synthesis method is similar to the structure [25], but this method is easy to cause anatase. Huanxin et al [26] for the titanium source, TEOS as a silicon source, and succeeded in synthesizing a T S-1 to T iCl3 The same catalytic activity, with the same reported in the literature, and the process can be effectively prevented from generation of anatase In addition, Tuel and T aarit, continuous coverage positive ions with phosphorus [27], 1, 6 - hexamethylene diammonium ion (Di -TPA) [28], tetraethyl ammonium hydroxide (TEAOH) / T PAOH and T EAOH / tetrabutyl ammonium hydroxide (T BA OH) [29] as a template to prepare T S-1 process. described using different Preparation of Template T S-1 is likely the. Preparation of Titanium Silicalite reagent over Na +, K + and other alkali metal ions of the concentration should be sufficiently low, because the alkali metal ions will hinder the titanium atom in the molecular sieve framework embedded; another the one hand, to prevent the preparation process difficult to dissolve the anatase anatase formation will lead to subsequent reaction of H2O2 decomposition and reduce the catalytic activity in order to prevent the generation of anatase, the preparation process should be vigorously stirred, so that titanium source in the silicon source is highly fragmented., Thangaraj, [7] the slower rate of hydrolysis the of tetrabutylammonium positive titanate (TBOT) Alternate TEOT, with anhydrous isopropyl alcohol as a co-solvent, and achieved good effect.TS-1 zeolite catalyst unique shape-selective catalytic oxidation function, undoubtedly has a direct relationship with the skeleton of T i (Ⅳ) Therefore, the focus of such zeolite characterization is to determine the existence of T i (Ⅳ) in the molecular sieveits ligand environment. characterization of TS-1, except for routine characterization of X-ray diffraction (XRD), N2 adsorption / desorption method, Fourier transform infrared spectroscopy (FT-IR) 29Si magic anglespinning nuclear magnetic resonance spectroscopy(29Si-MAS-NMR), diffuse reflectance UV - visible spectrum (DR UVVis), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure analysis (XANES) and other technologies exist in the form of tetrahedral coordination T i (Ⅳ) provided the basis forAccording to the naming of IUPAC [40], the aperture between 2 - 50 nm molecular sieves for mesoporous molecular sieves. 1990s, class zeolite inorganic materials separation, ion exchange and catalytic disciplines one of the hot to longchain surfactants as templating agent, have been successfully synthesized M41S [13, 14], HMS [15] and MSU [16] and a series of mesoporous molecular sieves. formation mechanism of the pore structure of mesoporous molecular sieve research has been reported[41 - 46] At the sametime, Ti [17 - 20], V [47], Zr [48], Mn [49] and Cr [50] with the redox ability of transition metal atoms into mesoporous molecular sieveskeleton structure, get a lot of new catalysts for the preparation of fine chemicals which T i atom isomorphous substitution in the hole titanium silicalite has important significance of theoretical research and industrial application value.The Gont ier and T uel [20] also Press T anev to method prepared Ti-HMS, and preparation process of various factors such as the proportion of T iO2 / SiO2, isopropanol, surface active agent chain length, characteristic of the titanium source and of Surf / SiO2 system. found that in the preparation process, when the two reagents is mixed for 15 min, the resulting product had with Hex ago nal various characteristics of most of Surf / SiO2 the best ratio of 0.3 increase this proportion of the aperture increases, but the specific surface area and adsorption capacity is greatly reduced.Reviewed above on the synthesis, characterization and catalytic oxidation properties of titanium silicalite and mesoporous molecular sieves prepared its heteroatom derivatives can be seen, the titanium silicalite as a new type of selective oxidation catalyst demandis very important to the increasing volume of the preparation of fine chemicals. especially in recent years, the success of a series of mesoporous molecular sieves synthesis and application, making the range of applications greatly broaden the field has attracted more and more attention of researchersbut we should also see that there are still many problems in the field, such as the titanium silicalite catalytic reaction mechanism, the formation mechanism of mesoporous molecular sieves and skeleton in the presence of T i (Ⅳ) way for further exploration of these issuesand research will become a research focus in the coming period.钛硅分子筛催化剂的研究进展张小明张兆荣索继栓李树本( 中国科学院兰州化学物理研究所精细石油化工中间体国家工程研究中心兰州730000) 含钛催化剂在有机化合物氧化反应中的作用是众所周知的[ 1, 2] . 由于分子筛具有规整的孔道结构和较大的比表面积等特点, 在分子筛骨架中引入具有氧化还原能力的杂原子, 以制备新型的催化氧化催化剂, 一直是人们比较感兴趣的课题. 1983 年ENI[ 3] 的T ar amasso 及其合作者首次成功地合成了含钛的分子筛催化剂TS-1. 随后的研究发现, T S-1 在以H2O2 水溶液为氧化剂的一系列有机化合物的氧化反应, 如烯烃的环氧化[ 4]、芳烃环的羟基化[ 5, 6] 、酮的氨氧化[ 7] 、烷烃的氧化[ 8, 9] 及醇的氧化[ 10] 等过程中有独特的择形催化功能. 同其他类型的催化体系相比较,该体系有( 1)反应条件温和( 常压, 0- 100℃);( 2) 独特的择形催化氧化功能;( 3)环境友好等优点。

分子筛催化剂的前沿进展

分子筛催化剂的前沿进展

分子筛催化剂的前沿进展随着环保意识的增强,对清洁能源的不断提高,人们越来越多研究环保型催化剂。

目前,分子筛催化剂在炼油行业和化工行业都广泛应用,如催化裂化、低碳烯烃转化、芳烃的烷基化、烃类异构化、烃类芳构化、酯化反应、甲醇转化为烯烃、酮醛缩合、聚合缩合乙酰化、异构脱蜡及光催化等反应。

分子筛载体及催化剂的合成方法主要有以下几种:水热晶化法、微波辐射合成法、离子热合成法、超声波合成法、固相合成法、气相转移合成法、干胶法及软硬模板法。

分子筛具有稳定的骨架结构、可调变的孔径、较高的比表面积和吸附容量,在催化领域引起广泛的关注。

近年来,不少学者通过改变骨架元素组成、调控分子筛孔径尺寸及表面物化性质,使得分子筛品种不断增加、结构更加丰富、性能更齐全。

此外,分子筛催化剂在石油炼制、有机合成、废水处理和气体吸附与分离等方面取得了成功,反映了分子筛基催化材料具备良好的应用潜力。

1 分子筛的发展现状上世纪50 年代末发现小分子的催化反应可以在分子筛的孔道中进行,才使得这种材料得以迅速的发展。

美国的多家公司,具有代表的是Linder公司、Mobil 公司、Exxon公司、联合碳化公司(UCC模拟天然沸石的类型与生成条件,开发了一系列低硅/铝和中硅/铝的人工合成沸石,如:A,X,丫,MOR, L沸石等。

从20 世纪50 年代末进入了沸石材料发展的全盛时期,不同硅铝比的沸石得以全面开发,大大推动了沸石的应用和产业化发展。

然而,低硅铝比沸石存在热稳定性、水热稳定性差和酸强度低等缺点,阻碍了沸石的工业应用。

1961 年,Barrer R. M和Denny P J将有机季铵碱引入沸石合成体系中,合成出一批高硅沸石,并提出了模板剂的概念。

随后,大量的有机分子被用作模板剂(或结构导向剂),合成出了很多新的拓扑结构的沸石。

60 年代末期,有机碱引入沸石合成中,合成出大量的高硅铝比沸石分子筛,还得到了全硅分子筛ZSM-5、ZSM-11、ZSM-12 ZSM-34 ZSM-39 ZSM-4&这类沸石特点是保持空旷的骨架结构,具有优良的择形催化性能、较高的抗酸性、热稳定性和水热稳定性。

分子筛催化剂

分子筛催化剂

分子筛催化剂分子筛催化剂的研究进展摘要: 20 世纪 90 年代以来 ,随着石油化工、精细化工产业的发展和环保要求的日趋严格,对新催化剂材料的需求也不断增加。

目前,国内已开发出一批有发展前景的高功能化、多功能化、精密化的分子筛催化剂材料。

分子筛是一种特定空间结构的新型催化剂,其中包括了多种类型的分子筛催化剂,并且它的性质及活性的研究对分子筛的应用有很大的作用。

分子筛催化剂常用于石油化工与工业生产。

目前,对分子筛催化剂的研究越来越多,有人正在开发出环境友好型催化剂,使得分子筛催化剂成为今后发展的热点。

关键词:分子筛;应用;发展前景1.分子筛的发展历史50年代中期,美国联合碳化物公司首先生产X-型和Y-型分子筛,它们是具有均一孔径的结晶性硅铝酸盐,其孔径为分子尺寸数量级,可以筛分分子。

1960年用离子交换法制得的分子筛,增强了结构稳定性。

1962年石油裂化用的小球分子筛催化剂在移动床中投入使用,1964年XZ-15微球分子筛在流化床中使用,将石油炼制工业提高到一个新的水平。

自分子筛出现后,1964年联合石油公司与埃索标准油公司推出载金属分子筛裂化催化剂。

利用分子筛的形状选择性,继60年代在炼油工业中取得的成就,70年代以后在化学工业中开发了许多以分子筛催化剂为基础的重要催化过程。

在此时期,石油炼制工业催化剂的另一成就是1967年出现的铂-铼/氧化铝双金属重整催化剂。

2.分子筛催化剂的特征分子筛是具有均匀微孔,其孔径与一般分子大小相当的薄膜类物质 ,是由SiO2、Al2O3和碱金属或碱土金属组成的无机微孔材料,其化学组成式通常表示为:M X O· AlO3· YSiO2· ZH2O(M:K、 Na、 Ca、Mg)1930年 Panling提出分子筛的结构由 SiO4四面体和AlO4四面体以O/ (Al +Si) = 2 (原子比)的比例排列组成的骨架为基体。

按照硅铝比( X) 的不同 ,分子筛可分为低硅(A 型) ,中硅(X、 Y型) ,高硅(ZSM- 5 型) 和全硅型(Silicalite) 。

分子筛催化剂的研究进展

分子筛催化剂的研究进展

分子筛催化剂的研究进展一、本文概述分子筛催化剂,作为一种重要的多孔材料,因其独特的孔道结构和优异的催化性能,在石油化工、精细化工、环保和新能源等领域具有广泛的应用前景。

随着科学技术的不断进步,分子筛催化剂的研究和开发也日益受到人们的关注。

本文旨在综述近年来分子筛催化剂的研究进展,包括其合成方法、改性技术、催化性能优化以及应用领域的拓展等方面。

本文将介绍分子筛催化剂的基本概念和分类,阐述其孔道结构、酸性、表面性质等关键因素对催化性能的影响。

接着,重点回顾分子筛催化剂的合成方法,包括水热合成、溶剂热合成、离子交换法等,并分析不同合成方法对催化剂结构和性能的影响。

本文还将探讨分子筛催化剂的改性技术,如金属离子交换、表面修饰、复合改性等,旨在提高催化剂的活性、选择性和稳定性。

在催化性能优化方面,本文将分析催化剂活性位点的调控、反应条件的优化以及催化剂再生等方面的研究进展。

关注分子筛催化剂在石油化工、精细化工、环保和新能源等领域的应用实例,展示其在催化裂化、烷基化、酯化、氧化等反应中的优异性能。

本文将对分子筛催化剂的未来发展趋势进行展望,探讨新型分子筛催化剂的设计思路、合成方法以及应用领域拓展等方面的挑战与机遇。

通过本文的综述,旨在为相关领域的研究人员和企业提供有益的参考和借鉴,推动分子筛催化剂技术的不断创新和发展。

二、分子筛催化剂的基本原理分子筛催化剂,以其独特的孔道结构和高的比表面积,广泛应用于石油加工、精细化工以及环境保护等领域。

其基本原理主要源于分子筛的择形催化效应和酸性催化效应。

择形催化效应是分子筛催化剂最显著的特点之一。

由于分子筛具有规则的孔道结构和狭窄的孔径,只有尺寸小于孔径的分子才能进入孔道内部进行反应,而大于孔径的分子则被排斥在外。

这种效应使得分子筛催化剂在催化反应中表现出独特的选择性,能够实现某些特定化学反应的高效催化。

酸性催化效应是分子筛催化剂的另一重要原理。

分子筛表面的酸性位点能够催化多种酸碱反应,如裂化、异构化、烷基化等。

分子筛催化剂的制备与催化性能研究

分子筛催化剂的制备与催化性能研究

分子筛催化剂的制备与催化性能研究分子筛催化剂是一类具有高度有序孔道结构的固体催化剂,其在化学工业中具有广泛的应用。

分子筛催化剂的制备和催化性能研究一直是催化领域的热点问题。

本文将从制备方法、表征手段和催化性能三个方面探讨分子筛催化剂的研究进展。

首先,分子筛催化剂的制备方法多种多样,常见的有溶胶-凝胶法、水热法、离子交换法等。

其中,溶胶-凝胶法是一种常用的制备方法,通过将溶胶中的金属离子或有机物与凝胶剂反应,形成固体凝胶,并经过干燥和煅烧等步骤得到分子筛催化剂。

水热法则是利用高温高压条件下的水热合成反应来制备分子筛催化剂。

离子交换法是通过将金属离子交换到分子筛的孔道中,形成金属分子筛催化剂。

这些制备方法各有优劣,选择适合的制备方法对于获得高性能的分子筛催化剂至关重要。

其次,分子筛催化剂的表征手段主要包括X射线衍射、扫描电子显微镜、透射电子显微镜等。

X射线衍射是一种常用的表征手段,通过测量样品对X射线的衍射图案来确定分子筛的晶体结构和晶格参数。

扫描电子显微镜和透射电子显微镜则可以观察到分子筛的形貌和孔道结构。

此外,还可以利用傅里叶变换红外光谱、氮气吸附等手段来研究分子筛的表面性质和孔道结构等。

最后,分子筛催化剂的催化性能研究是分子筛研究的核心内容之一。

分子筛催化剂的催化性能与其孔道结构、酸碱性质以及金属离子的状态等因素密切相关。

例如,分子筛的孔道结构对于反应物的扩散和产物的选择性有重要影响。

分子筛的酸碱性质则可以调控反应物的吸附和解离,影响催化反应的速率和选择性。

此外,金属离子的状态也会影响催化剂的催化性能,如金属离子的还原态和氧化态分别对应不同的催化反应。

在分子筛催化剂的催化性能研究中,还需要考虑反应条件、反应机理等因素。

通过调节反应条件,如温度、压力、反应物浓度等,可以优化催化反应的效果。

同时,通过研究反应机理,可以深入理解催化反应的过程和机制,为催化剂的设计和改进提供理论指导。

综上所述,分子筛催化剂的制备与催化性能研究是一个复杂而有挑战性的课题。

分子筛型催化剂

分子筛型催化剂

分子筛型催化剂
摘要:
1.分子筛型催化剂的定义和特点
2.分子筛的结构和分类
3.分子筛型催化剂的应用领域
4.我国分子筛型催化剂的研究进展和前景
正文:
分子筛型催化剂是一种具有多孔性质的催化剂,其内部结构类似筛子,可以吸附和筛选分子,因此得名。

这种催化剂具有高效的催化效果和广泛的应用领域,已经成为催化剂研究的热点之一。

分子筛是一种硅酸盐晶体,其结构中有许多笼状空腔和通道,可以容纳和筛选分子。

根据空腔的大小和形状,分子筛可以分为多种类型,如A 型、X 型、Y 型等。

这些类型的分子筛具有不同的吸附和催化性能,可以满足不同领域的应用需求。

分子筛型催化剂的应用领域非常广泛,包括石油化工、环境保护、有机合成等。

在石油化工领域,分子筛型催化剂可以用于催化裂化、催化重整等过程,提高石油产品的质量和产量。

在环境保护领域,分子筛型催化剂可以用于催化降解有害物质,如NOx、SOx 等,减少环境污染。

在有机合成领域,分子筛型催化剂可以用于催化分子筛的结构和分类
随着我国经济的发展和科技的进步,分子筛型催化剂的研究取得了显著成果。

我国已经成功研制出多种具有自主知识产权的分子筛型催化剂,并在多个领域得到了应用。

未来,我国分子筛型催化剂的研究将继续深入,以满足更多
领域的应用需求。

总之,分子筛型催化剂是一种具有多孔性质和高效催化效果的催化剂,其应用领域广泛,研究前景广阔。

基于新型分子筛的催化反应技术研究

基于新型分子筛的催化反应技术研究

基于新型分子筛的催化反应技术研究在当今社会中,科技的发展和革新让各个领域的工作和生活得到了很大的改善。

化学领域作为现代科技重要的组成部分,也在不断地发展和革新。

随着化学能力和理解的不断深入,化学家们越来越深刻地认识到了催化反应技术的重要性。

新型分子筛,是一种高效的催化剂,能够发挥诸多作用,为催化反应提供强大的支撑,因此目前在化学领域中得到了广泛的应用。

那么,针对新型分子筛的催化反应技术,究竟有哪些优势,该如何应用呢?1. 新型分子筛的优势新型分子筛作为一种高效的催化剂,具有很好的难降解污染物、催化制备精细化工产品、提高产物选择性、增加反应速率的作用。

采用新型分子筛制备的催化剂,具有晶型完整、孔洞大小均匀、反应活性高、抗水性好、热稳定性强等优点,是催化剂领域的研究热点。

2. 新型分子筛的应用新型分子筛具有应用广泛、反应速度快、选择性高等特点,因此被广泛应用于多种领域。

例如,分子筛催化剂在生物柴油制备、氧化反应、加氢脱氧等过程中具有显著的催化效果。

另外,在制备高分子材料、有机合成、金属离子和有机小分子的配合反应等多个方面也有很好的应用前景。

3. 新型分子筛催化反应技术的研究针对新型分子筛催化反应技术的研究,目前主要集中在两个方面:一是寻找高效的催化剂材料;二是优化反应工艺,提高反应效率。

在催化剂材料的选择上,化学家们正在探索各种分子筛,开发出一系列新的催化剂。

这些催化剂在催化反应中,能够起到更好、更快、更有效的作用。

同时,人们也在对新型分子筛的物理性质、化学性质以及催化机理等方面进行探索。

在反应工艺的优化方面,人们尝试使用新型分子筛增强催化活性,提高催化反应的选择性和效率。

例如,一些新型分子筛通过调整孔道大小和分子组成等参数,使其适应各种不同的催化反应,从而提高反应效果。

总之,新型分子筛催化剂在化工行业和其他领域中具有广泛的应用前景。

针对催化反应技术的研究,不仅需要我们开发出更好、更高效的催化剂材料,更需要化工行业注重实际应用,完善应用技术以及加强科学研究。

分子筛催化剂在苯与烯烃烷基化中的研究进展

分子筛催化剂在苯与烯烃烷基化中的研究进展
Fu hu 0 , a n n s n 1 3 A e i w s p o i e o h r g e so e e r h o sr c : r v e i r v d d f r t e p o r s fr s a c n molc l rs e e c t l s s i l — e u a iv a a y t n a ky
Al y a i n o n e e wih O l fn k l to f Be z n t e i s
CUIXio y n a — a ,W ANG Ie,SHEN in .i Ja
( p rme t De a t n o,P toh mia ehulg erc e  ̄lTc rJ y,Lio ig Unvri J P toe m & Chmia eh oo y o a nn iest o erlu y e c lT cn lg
化剂. 关键词 : 子筛催化剂 ; ; 烃 ; 分 苯 烯 烷基 化反 应 ; 究 进 展 研 中 图分 类 号 : 2 . 】 O 65 1 文 献 标 识 码 : A 文 章 编 号 :0 8 1 l ( 0 0 0 —0 9 —0 10 — 0 12 1 )3 0 2 5
Pr g e s o s a c n M o e u a i v t l s s i o r s f Re e r h o l c l r S e e Ca a y t n
( 宁石 油 化 工 大学 石 油化 工 学 院 , 宁 抚 顺 1 3 0 ) 辽 辽 1 0 1

要 : 绍 了 国 内外 分 子 筛 催 化 剂 在 苯 与烯 烃 烷 基 化 中的 研 究 进 展情 况 , 重 介绍 了微 孔 分 子 筛 、 孔 分 子 筛 介 侧 介

铜改性分子筛催化甲烷氧化制甲醇研究新进展

铜改性分子筛催化甲烷氧化制甲醇研究新进展

甲烷是天然气的主要成分,甲烷的转化和应用是天然气化工领域的重要研究方向,尤其是随着页岩气等非常规天然气资源的开发,甲烷催化转化制备化学品受到广泛关注。

甲醇常温下是液体,也是有机化工原料和C1化学的核心。

甲醇作为基本化工原料,可以很容易通过甲醇制烯烃、甲醇制芳烃工艺过程转化成烯烃、芳烃等重要的化工原料及燃料。

目前工业上制备甲醇主要采用一氧化碳催化加氢的方法,基本上都是采取合成气或煤气进行转换,属于甲烷的间接转化,这种间接途径碳原子利用率低,能耗较高,并且还伴随着多步反应过程。

因此,迫切需要开发一种可以替代间接路线的低成本直接转化工艺。

但是甲烷是一种稳定性很高的分子,由于其低的电子和质子亲和力、低的极性、高的电离能和强的C鄄H键(约440kJ·mol鄄1),难以被活化。

甲烷直接催化氧化制取甲醇是一条由甲烷一步直接制备甲醇的路线,长期以来受到研究者们广泛的关注。

甲烷的C鄄H键可以通过氧化反应过程被活化,但是,作为氧化中间产物之一甲醇中的C鄄H键比甲烷弱,在甲烷活化的反应条件下容易被完全氧化为二氧化碳。

受到生物体系中甲烷单加氧酶(MMO)室温选择氧化甲烷为甲醇的启发,研究人员发现模拟甲烷单加氧酶的金属改性分子筛催化剂能够实现催化甲烷氧化制甲醇,而铜改性的分子筛催化剂在催化甲烷氧化制甲醇反应中表现出良好的催化性能。

铜改性分子筛催化剂具有优异的催化性能、高温水热稳定性及良好的抗积炭能力,广泛应用于NO x的催化还原、低碳烷烃氧化以及羰基化等反应。

近年来学术界研究发现铜改性分子筛催化剂在催化甲烷制甲醇反应表现出优异的催化性能,并开展了广泛深入研究。

本文在梳理催化甲烷氧化制甲醇最新研究结果的基础上,综述了铜改性分子筛催化甲烷氧化直接制甲醇催化剂研究的最新进展。

铜改性分子筛催化甲烷氧化制甲醇研究新进展陈景润,刘俊霞*,张伟,袁亚飞,张亮,张磊,班渺寒(陕西延长石油(集团)有限责任公司大连化物所西安洁净能源(化工)研究院,陕西西安710065)摘要:甲烷直接催化氧化制取甲醇是近年来研究人员广泛关注的天然气资源高效利用新路线。

Y型分子筛改性研究进展

Y型分子筛改性研究进展

1551 引言作为一种新型化工材料,沸石分子筛近些年来发展迅速,应用也越来越广泛。

常用的沸石分子筛包括A型、X型、Y型、SAPO-34、SSZ-13、丝光沸石、ZSM-5等。

沸石分子筛具有分子大小、均匀规整的孔道结构,酸性可调和比表面积大的优点,故其具有良好的择形催化作用,在新材料合成、石油化工和催化化学工业等方面应用广泛[1-4]。

Y型分子筛是一种具有优异热稳定性和催化活性的八面型(FAU)沸石,已被广泛应用于石油炼制行业,主要用作催化裂化过程(FCC)的催化剂,直接影响该过程的产品质量[5-6]。

Y型分子筛的人工合成是开始于合成NaY分子筛,NaY分子筛的单位晶胞由八个方钠笼组成,而单位晶胞由192个硅氧四面体和铝氧四面体构成,NaY分子筛典型晶胞组成为Na 56[Al 56Si 136O 384]·264H 2O。

由于NaY 分子筛含有较多Na +致使高温下分子筛结构易遭破坏,除阳离子的种类之外,硅铝元素的比例及材料的结构等因素均影响Y型分子筛的活性,因此需要通过一系列方法改性处理使其具有更好的吸附、催化等性能。

改性方法主要包括离子交换改性(利用其他元素与Na +交换改性)和脱铝改性(水热或化学法脱铝)[7]。

本文介绍了关于Y型分子筛改性的不同方法,综述了其相关研究进展和改性结果,为今后的研究提供一些参考和借鉴。

图1 Y型分子筛改性方法1.1 Y 型分子筛沸石是一种多孔的晶体硅铝酸盐,化学组成式为:M 2/n O·Al 2O 3·xSiO 2·yH 2O(M代表金属阳离子,n代表阳离子的电价;x,y分别表示相应SiO 2和H 2O的物质的量)。

它具有一定均匀的空腔和孔道,在脱水之后,可以使不同分子大小的物质通过或不通过,起到筛选不同分子物质的作用,故又称“分子筛”。

沸石分子筛具有孔径在分子尺寸范围内的定义明确的微孔结构和孔隙,这些都是沸石成功应用于炼油、石油化工、精细化工和特种化工等不同领域的关键因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综 述文章编号:1002-1124(2006)02-0027-03 新型分子筛催化剂的研究进展汪慧智(辽宁省大连市渤海实验室,辽宁大连116000) 摘 要:本文主要介绍分子筛材料催化剂的特征、合成工艺、应用及理论研究和发展方向,并对其应用和发展前景作了总结和评述。

关键词:分子筛;催化剂材料;应用中图分类号:T Q424.25 文献标识码:AAdvances in molecular sieve catalystsW ANG Hui-zhi(Dalian Bohai Laboratory,Dalian116000,China) Abstract:Advances in charactere,synthesis technology,application,theoretical research and development direc2 tion of m olecular sieve catalysts material were reviewed in this paper,and their prospect of application were discussed.K ey w ords:m olecular sieve;catalysts material;application 20世纪90年代以来,随着石油化工、精细化工产业的发展和环保要求的日趋严格,对新催化剂材料的需求也不断增加。

目前,国内外已开发出一批有发展前景的高功能化、多功能化、精密化的分子筛催化剂材料[1]。

1 分子筛催化剂的特征分子筛是具有均匀微孔,其孔径与一般分子大小相当的薄膜类物质,是由SiO2、Al2O3和碱金属或碱土金属组成的无机微孔材料,其化学组成式通常表示为:M X O・AlO3・Y SiO2・Z H2O(M:K、Na、Ca、Mg)1930年Panling提出分子筛的结构由SiO4四面收稿日期:2006-01-05作者简介:汪慧智(1973-),男,助理工程师,1996年毕业于沈阳化工学院精细化工系。

体和AlO4四面体以O/(Al+Si)=2(原子比)的比例排列组成的骨架为基体[2]。

按照硅铝比(X)的不同,分子筛可分为低硅(A型),中硅(X、Y型),高硅(ZS M-5型)和全硅型(Silicalite)。

分子筛的耐酸性、热稳定性及催化性能都随X值的不同而有所变化。

1883年Eichhorn首先观察到沸石的离子交换性并进行了应用[3]。

1925年Weigel和Steinheff发现菱沸石脱水后,能强烈吸附H2O和乙醇,而对乙醚、丙酮和苯等都完全不吸附。

1945年Barrer应用天然菱沸石分子筛进行气体分离。

此后,随硅酸盐X射线研究的进展,逐渐掌握了结晶构造和吸附分离性能的关系,相继阐明了各种无机和有机气体的选择性和吸附现象。

1954年第一次人工合成沸石分子筛并作为吸附剂而商品化。

1957~1959年先后合成了A型和X 型分子筛以及与天然八面沸石结构相似的Y型分[2] 胡建芳,张其清,等1[J]1材料研究学报,1994,8(1):82-871[3] Hans J G riesser et al1P olymer international,1992,27:10921[4] ZhangMC,K angET,Neohkg,et al1Adhesion enhancement of thernallyevaporated aluminum to surfaceg graft copolymerized poly(tetrafluoroethylene)film[J]1Journal Adhesion Science T echnology, 1999,13(7):819-8351[5] 马於光,等1[J]1高分子学报,1990,(5):5701[6] Chen X D,Sun R H,H U YJ,et al1[J]1J Radiat Res Radiat Proces,1998,16(4):209-2121[7] 陈晓东,孙瑞焕,等1聚四氟乙烯的CH4/O2混合气体等离子体表面亲水改性研究[J]1辐射研究与辐射工艺学报,2000,18(1):25-291[8] 潘林峰,田晓梅,等1介质阻挡放电处理PTFE的研究[J]1中南民族大学学报,2004,23(1):59-611[9] 方志,邱毓昌,等1用大气压下空气辉光放电对聚四氟乙烯进行表面改性[J]1西安交通大学学报,2004,38(2):190-1941 [10] c1z1liu,et al1[J]1M aterials Chemistry and Physics,2004,85:340-3461Sum125N o12 化学工程师Chemical Engineer2006年2月子筛。

1960年Sand合成了Z eolon分子筛[4]。

60年代后期至70年代初期,M obil公司积极开发高硅分子筛,合成了beta、ZS M系列高硅分子筛,硅铝比达到20~100,其中ZS M-5型分子筛作为催化剂,以甲醇为原料合成汽油所得科研成果引起国际上高度评价。

1977年Flanigen等在不加铝原料的条件下,合成了全硅型分子筛“Silicalite”。

1978年又通过添加氟离子合成了“Fluocilde-Silicalite”分子筛,具有很强的疏水性。

1979年Bibby用NH4OH和四丁基氢氧化铵合成了晶型结构类似ZS M-11的分子筛“Sil2 icalite-2”。

近10多年来,由于对分子筛无机微孔材料不断提出新的性能和结构要求,在分子筛的研究和开发上取得了不少成果。

1982年UCC(联合碳化公司)的Wils on和Flani2 gen等人首次合成20余种AlPO4和S APO4分子筛,从而打破了沸石分子筛由硅氧四面体和铝氧四面体组成的传统观念,同时尝试在水热条件下制备含Fe、Cr、T i等杂原子的分子筛。

同年在国际沸石分子筛会议上,Flanigen提出制备多元多组分金属磷酸盐分子筛的设想,但还是停留在T iO4四面体晶体结构的基础上。

1983年我国地质学家沈今川在美国发现了黄磷铁矿(Cacoxenite)的单晶结构,其孔道(14~20!)由Fe-O八面体、Al-O三角双锥和P-O四面体单元组成[5]。

1986年吉林大学徐如人等发现在合成的PO4-C n(n=1~12)型分子筛中有T iO4和BO3型结构单元存在。

90年代以来,国内外注重大孔分子筛的人工合成和分子筛孔道结构基本单元的多样化的研究,但没有取得突出的成果[5]。

经过几十年的研究和应用实践,国内外学者总结分子筛的共同特征为:(1)只吸附分子直径小且能通过均匀细孔的物质;(2)优先吸附H2O、H2S、NH3等极性物质,吸湿性好;(3)对不饱和度高的物质,有选择性吸附;(4)当被吸附物质的浓度(分压)很低时,仍显示足够大的吸附能力;(5)通过阳离子交换,可以改善分子筛的性能。

近年来,分子筛已逐渐形成一门独立的学科,但是它的结构、性质、合成及应用的研究,打破了传统的学科界限,它与无机化学、表面和胶体化学、有机化学、催化科学、生物化学和固体物理等领域密切相关。

随应用领域的不断扩大,迫切要求用简单的工艺、较低的成本配合先进的手段研制出高性能多功能的新型分子筛。

2 分子筛的合成到目前为止,分子筛的主要的合成方法有水热合成法和水热转化法两种。

2.1 水热合成法早期的分子筛制备都是通过水热合成法。

水热合成法是将合成分子筛所需的4种高活性物质原料(硅化合物、含铝化合物、碱和水)按一定比例配制成反应混合物,混合均匀后成为白色不透明的凝胶,置于反应器内,在一定温度(100~300℃)下进行晶化反应,再通过过滤、洗涤、离子交换、成型、活化等工序即可制得。

这种方法虽然制得的产品纯度高,但由于需要消耗大量碱、水玻璃及Al(OH)3,对原料的性能要求很高,工艺复杂,生产成本高,并且制得的分子筛,强度、吸附性能和热稳定性较差。

2.2 水热转化法水热转化法是用高纯高岭土、膨润土、硅藻土和火山玻璃为原料,经500~600℃温度焙烧,再用过量NaOH溶液处理,经晶化、成型后制得分子筛。

用水热转化法可以制备A、X、Y型分子筛,但由于工艺本身的限制,不能制备高硅分子筛。

并且受矿物本身纯度的限制,制得的分子筛纯度低,活性和结晶度较差。

由于晶化时间长(3~4d),能耗较大,用水热转化法制备分子筛难以形成生产规模[6]。

2.3 其它方法2.3.1 用无机钛源合成T i-H MS中孔分子筛 近年来,以表面活性剂作模板剂,合成MC M-41、H MS、MS U等中孔分子筛的研究十分活跃,这类新型材料具有较大的、可调变的孔径,较好的热稳定性,高表面积和大吸附容量,使其在吸附、分离和催化转化大分子等方面有着广泛的应用前景。

向纯硅基的中孔材料骨架中引入具有氧化还原能力的过渡金属原子,得到的中孔催化剂能够在较温和的条件下实现对有机大分子底物的选择催化氧化,对于各种精细化学品和有机中间体的合成具有重要的意义。

与以静电作用为主的M41S族中孔分子筛相比,以氢键作用为主形成的H MS中孔分子筛具有以下特点: (1)合成条件温和;(2)表面活性剂和硅源前体间以氢键作用结合,可以通过溶剂萃取的方法直接进行模板剂的脱除,有助于降低分子筛的制备成本和减少环境污染[7]。

2.3.2 新型纳米双孔硅铝分子筛的溶胶凝胶法合成 溶胶、凝胶法是合成纳米材料的有效途径,传统的MC M-41中孔分子筛的合成方法都是沿用Beck82汪慧智:新型分子筛催化剂的研究进展 2006年第2期等人最初采用的“水热法”。

将溶胶凝胶法引入到介孔硅铝分子筛的合成过程中,通过对体系溶胶、凝胶过程的控制,合成出具有双孔分布特征且为纳米尺寸的硅铝分子筛。

通过选择适当的原料配比和对体系溶胶-凝胶过程的有效控制,可以在低温下合成具有双孔分布特征和纳米尺寸的硅铝分子筛,分子筛内的孔道有两种类型:呈有序排列的中孔和无序排列的颗粒间孔。

前者是由表面活性剂胶束通过模板作用在颗粒内部形成的,孔径主要集中在2.4nm 左右,而后者则是在溶胶-凝胶过程中分子筛胶体颗粒之间发生相互聚集而形成的颗粒间孔,孔径主要集中在66nm左右[8]。

2.3.3 微波技术在分子筛领域的应用 微波技术通过微波介电效应把某些固体或液体所具有的电磁能转变成热能,从而加速化学反应。

微波技术应用于分子筛领域的研究起始于20世纪80年代,主要涉及分子筛粉末的合成,支撑分子筛膜的制备,分子筛表面负载活性组份,分子筛的改性等方面。

微波在分子筛粉末合成中的应用微波加热合成分子筛与传统方法相比具有反应速度快,反应条件温和,能耗低,分子筛粒度分布窄,合成液配比区间宽的特点,而且合成的分子筛具有较高的纯度,窄的粒径分布和均一的形态。

相关文档
最新文档