中兴SDH传输设备误码问题分析总结
简述SDH误码故障的分析与处理
简述SDH误码故障的分析与处理摘要本文介绍了SDH误码的一些基本概念、监测原理及产生原因分析,并根据日常维护经验总结出了一些误码故障的分析处理方法。
关键词误码误码率误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生误码。
在传输系统中误码是常见的故障,如何及时定位并处理误码故障,是保障传输系统稳定运行的基础。
一、SDH误码基本概念SDH误码是指在SDH传输过程中发生接受码元产生了误差,而对SDH光传输设备来说,指的是经光接收机的接收和判决再生后,码流中的某些比特发生了差错。
网管对于对于误码的性能监视事件包括:BBE、SES、UAS、FEBBE、FEES。
传统上常用平均误码率BER来衡量系统的误码性能。
BER即:在某一规定的观测时间内(如24小时)发生差错的比特数和传输比特总数之比,如1ⅹ10-10。
但是平均误码率是长期效应,它只给出一个平均累积结果。
实际上误码的出现往往呈突发性质,且具有极大的随机性。
因此除了平均误码率之外还应有一些短期度量误码的参数,及误码秒和严重误码秒。
当某1秒钟时间内出现1个或1个以上的误码块时,就叫做一个误码秒。
SDH通道开销中的BIP-X属于单个监视块,其中X中的每个比特与监视的信息比特构成监视码组,只要X个分离的奇偶校验组中的任意一个不符合校验要求就认为整个块是误码块EB。
通过BBE事件,可以判断是本端接收侧检测到了误码,是远端发和本端收之间的通道存在问题;通过FEBBE事件,可以判断是远端接收侧检测到了误码,是本端发和远端收之间的通道存在问题。
与MSFEBBE、HPFEBBE、LPFEBBE三个误码远端性能事件对应的还有三个误码远端告警事件,分别是复用段远端误码指示MS-REI、高阶通道远端误码误码指示HP-REI、低阶通道远端误码指示LP-REI。
通过这些远端告警事件的观察,也可以判断远端是否检测到了误码。
当误码较大,突破预设的性能门限时,将上报告警事件。
SDH传输系统误码的分析与定位
SDH传输系统误码的分析与定位摘要误码是SDH传输系统维护中常见的故障现象,不及时处理很有可能会发展成导致业务中断的大事故,同时误码分析定位也是传输故障处理中非常重要的环节。
误码处理要理清思路,全盘考虑,不放过每一个细节。
本文从分析误码监测原理入手,根据日常维护经验提出了一些误码故障的分析定位方法。
关键词误码;分析;定位1 误码故障定位的重要性和难度误码是传输系统中常见的故障,针对误码的处理则是传输维护工作中非常重要的内容,及时定位并处理误码故障,是保障传输系统稳定运行的基础。
误码故障处理一般包含4个环节。
误码监测:判断是否存在误码;故障定位:判断导致误码的原因和所在位置;业务恢复:采用其他路由迂回、纤芯调度等恢复业务;故障修复:修复或更换发生故障的光纤、器件或者单板。
SDH网络出现故障时,为有效的利用备用资源,应先定位发生故障的段落或具体的位置,然后再调度资源恢复业务。
因此,故障定位往往是恢复业务的前提,是故障管理的一个关键环节。
日常维护中,故障定位会受到以下几个因素的影响:1)传输网结构复杂,出现误码时,较难定位是网络中哪个部分或节点的故障;2)单一故障也会引发网络中多个节点出现误码,有些告警会混淆我们的判断,不利于故障定位;3)由于光传输设备中的光监控器件灵敏度和响应速度不够或设备本身存在缺陷,在系统性能下降时,网管可能出线多个告警甚至会上报假告警,影响故障的定位。
2 误码性能监测的原理在SDH传输系统中,对信号的监控管理是由开销监控完成的。
开销监控分段层监控和通道监控,段层监控又分再生段层和复用段层监控,通道层监控又分高阶通道层和低阶通道层监控。
在SDH帧结构中,B1、B2、M1、B3、G1、V5是用于误码监测的字节,分别用于监视再生段、复用段、高阶通道和低阶通道的误码。
误码监测采用比特间插奇偶校验方式的偶校验,通过校验码保证发送内容中“1”的个数为偶数,发送端通过对前一帧的监视内容进行偶校验并将计算结果填入帧中发送,接收端通过比较自身对前一帧的计算结果和接收的字节,判断是否发生误码。
中兴SDH传输设备误码问题
科
中兴 S H传 输设 备误 码 问题 D
茹 永宏
ห้องสมุดไป่ตู้
( 东联 通茂 名分公 司传输室, 东 茂名 5 5 0 ) 广 广 20 0
摘 要 : 问题是传输设备维护 中经常碰到 的问题 。 误码 虽然有时 小误码 问题 并不会对传送业务造成 明显影响 , 如语音等业务 , - 但' 3出现误码 时, - 说 明传输 系统 中局部已经出现性能劣化 , 需要尽 快处理 , 否则有可能发展成为业务 中断重大事故 。下 面我就 结合平 时维护 中遇到 的问题 , 对误码作 简单的分析, 以期 可以抛砖 引玉, 得以更好的学习。
一
关 键 词 : 码 ; ; 2 B ;5 误 BI B ; 3 V
V 5字节 b b 12也是用 来对 低 阶通道 的误 码监测 , 传送 比特间插奇偶 校验码 BP 2 其 中 I一 。 光 同步传输设备 中按分 段分层 的思想 对 第 一个 比特 的设 置应使 上一个 V 一 2复帧 内 C1 误码进行 全面系统的检测 。具 体有 B 再 生段 1 所 有字节的全部奇数 比特的奇偶校验为偶 数。 误码 、2 B 复用段误码 、3 阶通道误码 、 5低 B高 V 第二 比特 的设置应使全部偶数 比特的奇偶校验 阶通道误码 。 它们之间的关系可 以用图 1表示 。 为偶数 。 若 收端 通过 BP 2 I一 检测到误 码块 , 在本端 L T P H T P MS T R T S R T S bS lT HP T L T P 性 能事 件 由 L — B 低 阶通道背景误码块 ) P B E( 中 显 示由 BP 2检测出的误块数 ,同时由 V I一 5的 b 3回送 给发端 L — E 低 阶通道远端误块 指 P R I( 示 )这 时可在发端的性 能事 件 L — E 中显示 , PR I 1一 B ,r 相应 的误块数。 1 Vb r 由此可 以看出 , 1B 、 3 V B 、2 B 、 5都是在发端 产生 , 在处理端终结。 如果 B 、 3 v 在某个站 2B 、5 图 1 误码 检 测 关 系及 检 测 位 置 点 V 4穿通 ,那么这个站点就不对 B 、 3 v C 2B 、 5 表 1误码越限告警及性能 事件检测位置与作用 进行计算 , 也就是没有终结 , 那么它就会穿通 到 下个终 结 B 、3、 2 B V5字节的站 点才上报误 码 , 使用相应的回传字节报告本端有背景误码块 。 由于误码 出现有 一定 的关 联性 ,一般来 说, 有高阶误码则会有低阶误码。例如, 如果有 B l误码 , 一般就会有 B 、 3和 v 2B 5误码 ; 反之 , 有低阶误码则不一定有高 阶误码 。如有 V5误 码, 在不一定会有 B 、2和 Bl 3B 误码。 由于高阶误 码会 导致低 阶误码 , 因此我们 在处理误码问题 时 , 应按照先高 阶后低 阶的顺 序来进行处理 。 图 l中 R T、 T、 T、P S MS HP L T分 别 表 示 再 BP 2 校验 , 结果与下一 S M 1 I一 4 其 T 一 帧解 扰后 1 误码上报信息 - 3 生段终端、 复用段终端 、 高阶通道终端 和低 阶通 的 B 2字节相异或 ,根 据异或后 出现 1的个 数 光同步传输系统本端检测到误码 时, 除本 道终端 。 l B 、3以及 V 误码分别在这些终 来判 断该 S M 1 S M N帧中的传输过 程中 端上报误码 性能或告警事件外 , B 、2 B 5 T 一在 T — 本端还将 误码 端问进行监测 。 出现了多少个误码块 。可检测出的最大误 码块 检测情况通 过开销字节通知对端。根据本端和 1 . 码 检 测 机 理 2误 个数是 2 4个 。注 : 在发端写完 B 2字节后 , 相应 对端上报 的这些性能和告警事件 ,可以方便地 B 字节 的工 作机 理是 : 1 发送端对本 帧( 第 的 N个 S M 1 T 一 帧按字节问插复用成 S M N信 定 位是哪一段通道或哪一个方向出现误码 。表 T — N帧 ) 加扰后 的所有字节进行 BP 8 I一 偶校验 , 将 号( 3 有 N个 B )在收端先将 S M N信号分 间 1 2, T — 给出了与误码相关的性能和告警事件列表。 结果 放在下一个待扰码帧 ( N I ) 第 + 帧 中的 B 插成 N T 一 信号 , 1 %S M 1 再校验这 N组 B 字节。 2 2误码定位分析 字节 ; 收端将 当前待解 扰帧( N 1帧 ) 接 第 一 的所 21 码 的 常见 原 因 .误 收端 B 2检测出误块 ,在本端的性能事件 有 比特进行 BP 8校验 ,所得 的结果与下一帧 MS B E 复用段 背景误 码块 ) I一 —B ( 显示 B 2检 测 出 211 .. 外部原因 ( N帧 ) 第 解扰后 的 B 字节 的值相异或 比较 , 的误块数 , l 同时在 发端的性能事件 M — E ( S R I复 a光纤性能劣化 、 . 损耗过高。b光纤接头不 . 若这两个值不一致则异或有 1出现 ,根据出现 用段远端误块指示 ) 中显示相应 的误块数 ( — 清洁或连接不正确。 . MS c 设备接地不好。 . d 设备附 多少个 1 ,则可监测 出第 N帧在传 输中出现了 R I M1字节 传 送 ) E 由 。 近有强烈干扰源。 . e 设备散热不良、 工作温度过 多少个误码块 。 通道 BP 8码 B I一 3字 节负 责监 测 V 4在 高 。传输距离过短 、 C f 未加衰减器 , 导致接受光功 收端 B 检测 出误码块 ,在本端 的性 能事 S M— 帧 中 传 输 的 误 码 性 能 ,也 就 监 测 率过载。 l T N 件 R — B 再生段 背景误码块 ) S B E( 显示 Bl 测 10 is 检 4 Mbt 的信号在 S M— / T N帧 中传输 的误 码性 212 ..设备原 因 的 误块 数 。 能。 监测机理与 B 、 2 1B 相类似 , 只不过 B 是对 3 a ' 板接收侧信 号衰减过 大 、 线路 对端发送 B 2的工作机 理与 B 类 似 , 1 只不过它检测 V 4帧进行 BP 8 C I一 校验 。 电路故障 、 本端接 收电路故障 。 . b 时钟同步性能 的是复用段 层的误码情 况 。B 字节是 对整个 1 收端 B 3监测 出误码块 ,本端 的性能监 测 不好 交叉板与线路板 、 支路板配合不好。 . d 支 S M— T N帧 信 号进 行 传 输 误码 检 测 的 ,一 个 事件一 P B E( H — B 高阶通道 背景误 码块 ) 示相 路板 故障。e 显 . 风扇故障, 导致设备散热不 良。 S M N帧中只有一个 B 字节 ( T — l 为什 么? 稍后讲 应的误块数 , 同时在发端相应的 V 4 C 通道 的性 2 . 2误码定位分析 SM 1 T 一 复用成 S M— T N时段开 销的复用间插情 能监测事件一 P R I 阶通道远端误块指示 ) H — E( 高 下 面我们 就 以一个 简单 的单 向业务 组网 况时你就会 知道 了) ,而 B 2字节是对 S M— 显示 出收端收到的误块数。B 、 2字节也与此 模 型来分析 出现误码的几种 情况 。 T N lB 帧中的每一个 S M 1 的传输 误码情 况进行 类似 , T 一 帧 注 : 了便 于 阐述 , 为 这里都 简化 为单 向有 通过这种方式你可实时监测 S M N信号 T — 监测 ,T N帧中有 N%3个 B S M— 2字节 ,每三个 传输 的误码性能。 误码 , 而反方向没有误码 , 并且 只是某一站点出
中兴SDH传输设备误码问题总结分析
中兴SDH传输设备误码问题分析总结作者姓名(单位名称)摘要: 误码问题是传输设备维护中经常碰到的问题。
虽然有时小误码问题并不会对传送业务造成明显影响,如语音等业务,但当出现误码时,说明传输系统中局部已经出现性能劣化,需要尽快处理,否则有可能发展成为业务中断等重大事故。
本文将结合平时维护中遇到的问题,对误码作一简单的分析,以期可以抛砖引玉,共同提高。
关键词:误码、B1、B2、B3、V5目录1.误码知识 (3)1.1 误码分段 (3)1.2误码上报信息 (3)2.误码定位分析 (4)2.1误码的常见原因 (4)2.2误码定位分析 (5)3.典型案例 (7)3.1 光板故障导致误码 (7)3.2 风扇故障导致设备散热不良产生误码 (8)3.3 时钟板故障引起误码 (9)3.4 外时钟不稳定导致光路出现误码 (10)4 结束语 (11)1.误码知识1.1 误码分段光同步传输设备中按分段分层的原理对误码进行检测。
具体有B1再生段误码、B2 复用段误码、B3 高阶通道误码、V5 低阶通道误码。
它们之间的关系可以用图1表示。
图1:误码检测关系及检测位置图1中RST、MST、HPT、LPT 分别表示再生段终端、复用段终端、高阶通道终端和低阶通道终端。
B1、B2、B3 以及V5 误码分别在这些终端间进行监测。
1.2误码上报信息光同步传输系统本端检测到误码时,除本端上报误码性能或告警事件外,本端还将误码检测情况通过开销字节通知对端。
根据本端和对端上报的这些性能和告警事件,可以方便地定位是哪一段通道或哪一个方向出现误码。
表1给出了与误码相关的性能和告警事件列表。
表1:误码越限告警及性能事件检测位置与作用2.误码定位分析2.1误码的常见原因外部原因:1)光纤性能劣化、损耗过高。
2)光纤接头不清洁或连接不正确。
3)设备接地不好。
4)设备附近有强烈干扰源。
5)环境温度过高,导致设备散热不良。
6)传输距离过短、未加衰减器,导致接收光功率过载。
传输通道误码问题处理
传输通道误码问题处理【摘要】本文首先对同步传输系统(SDH)中误码的度量、误码检测机理以及误码对传输设备所承载业务的影响进行了阐述。
然后对误码产生的原因进行了详细解析,并详细介绍了实际工作中传输设备误码问题处理的一般方法和步骤。
【关键字】误码;误码率;性能事件引言随着通信网络的不断发展,作为各种通信网络的承载网的传输系统容量在不断提高,传输设备也在不断的更新,但影响传输网络传送质量的误码问题,一直是传输设备维护工作中的一个重要问题。
所以,在日常工作中遇到设备误码时,能迅速判断并处理显得尤为重要。
1 误码的度量在数字通信中,发送和接收的数字序列中的任何不一致都叫差错(Error)即误码,用仪表测试时一般用误码率(BER)来衡量信息传输质量[2]。
目前,SDH系统误码性能度量参数主要有“误码秒ES”、“严重误码秒SES”、“背景块差错BBE”、“不可用时间UAS”等,都是以“块”为基础定义的。
对应有3个SDH通道误码性能参数:ESR(误码秒比),SESR(严重误码秒比),BBER (背景块差错比)。
在传输网管上数据采集粒度可以是15分钟和24小时两种,而且保存有历史记录,通过对历史记录的分析对比,可以确定误码在时间上的分布情况,然后再进一步分析误码产生原因。
在实际应用中,应当结合具体情况,综合这两种方法来判断误码。
2 误码产生机理引起误码的主要内部原因:各种内部噪声源、色散、定位抖动产生的误码。
对SDH传输系统来说,设备原因造成的误码可归为内部原因:1)线路板接收灵敏度不够、对端发送电路的故障、本端接收电路的故障。
2)时钟同步性能不良。
3)交叉板与线路板、支路板配合得不好。
4)支路板的故障。
5)风扇故障,导致设备散热不良,设备温度升高[2]。
引起误码的外部原因:主要是由突发性的外部脉冲干扰源所引起,诸如外部的静电放电、电磁干扰、设备故障、电源瞬间干扰和人为活动等。
这些脉冲干扰有可能超过系统固有的高信噪比门限而造成突发误码,实际应用中有下列情况:1)光纤性能劣化、造成光信号衰耗超出预定值。
SDH光纤传输中的误码问题
水利电力 !"#!$%&$'(') *+&,-./&$01$21(3$&)%$4()$3%
QDO 光 纤 传 输 中 的 误 码 问 题
郑莉莉5 石5娟
国网河南省电力公司信阳供电公司%河南信阳%#&#$$$
摘5要本文对于 7!f光纤传输过程中的误码问题进行了详细的分析#对于引起误码问题的具体因素进行了详细的探讨#提 出了解决光纤传输误码问题的有效策略#为提高误码问题处理的效率和质量提供相关的参考建议*
一-GF光纤传输过程中误码问题分析 误码的具体涵义主要是指#经接收判决后再生成数字码流 中某些比特出现了问题和差错#从而导致传输过程中信息的质 量遭到了一定程度上的损坏* 再光纤系统传输过程中#误码问 题所带来的危害程度和损失程度是不容小觑的* 根据误码问 题的严重程度不同带来的危害程度也是不相同的* 程度较轻 的#可能仅仅只是对于系统传输的稳定性和可靠性带来系统存在着出现衰变的概率#这将会对信号的电 压造成一定的影响#从而导致信号在传输过程中可能会出现误 码的问题* 但是#由于光纤存在着一定的区别#所以导致信号 误码的原因也存在着较大的差异性* 同时#光纤设备系统是一 个非常复杂.庞大的系统#包括各种型号的仪表.光电元件以及 光纤等#各个元件之间并不是独立存在着#而是相互关联的统 一整体* 任何一个部位出现差错#均会导致光纤传输过程中出 现故障* 因此#针对光纤传输过程中存在的不同误码问题#必 须仔细分析引起误码的原因#采取有效的措施加以纠正和解 决#促进 7!f光纤传输的质量的有效提升*
的问题* 例如对于尾纤的的捆绑过紧.传输散热器的性能达不 到标准以及周围环境干扰因素过强等一系列问题#均会导致光 纤传输系统出现误码的可能性*
SDH传输设备误码故障的处理
SDH传输设备误码故障的处理AutomationSDH传输设备误码故障的处理曹斌,江苏省启东市供电公司电力通信作为电网的三大支柱之一,支撑了公司管理网元光口故障还是对端网元光口故障。
自环必须保证收口信息化、电网控制自动化,更是“数字电网”、“数字电光功率在该类光线路板的接收光范围(过载点和灵敏度之力”的重要基础设施,信息化、自动化方面的每一项全网间)内。
性的新技术应用都离不开电力通信网络在全网的支撑。
同如果自环本光线路板后,没有再上报B1/B2性能,说时,随着电网控制自动化程度的不断提高,安自、保护数明本光线路板无障碍。
同样如果自环对端光线路板后,对字化通道的广泛应用,电力通信已成为电力安全生产中的端光线路板也没有再上报B1/B2性能,说明对端光线路板重要环节。
无障碍。
启东市供电公司采用的是某公司的SDH设备,根据 1.2 网管上没有B1/B2,只有B3的性能说明高阶通道不“十一五”规划,到2010年底将形成一个主环,五个支环好,问题可能在交叉时钟板或支路板的结构。
电力通信网传输中一个最令人注意的问题就是误上,可以通过网管的相应操作来倒换交叉时钟定位故障码问题,误码率高则会导致业务传输质量下降,影响设备板。
以及电网的正常运行,本文就这类故障的处理作一些简单 1.3 网管上只有V5的性能表示低阶通道不好,说明支路的分析和探讨。
板故障。
可以改配时隙到临近网元下支路或对AU进行环回来定位是本端支路板还是对端支路板故障。
1 故障点定位发生传输故障,首先通过网管分析进行故障分类如图 2 误码故障的常见原因1所示。
外部原因:光纤接头不清洁或连接不正确;光纤性能劣化、损耗过高;设备接地不好;设备附近有干扰;设备散热不好,工作温度高。
设备原因:交叉时钟板与线路板、支路板配合不好,时钟同步性能不好,单板失效或性能不好。
3 典型故障及分析3.1 现象:网管上报B1/B2/B3误码在现有启东供电公司的SDH拓扑结构中,启东局、民乐变两个站点对点连接。
误码对SDH设备的影响及应对策略
误码对SDH设备的影响及应对策略摘要:在SDH光传输设备中最常出现的告警就是误码。
误码严重时会对传输质量产生较大负面影响,因此对于误码应立足于早发现、早消除。
本文介绍了误码原理、检测及处理。
关键词:SDH 误码故障处理1 概述SDH设备的光接收机接收的码流中某些比特发生差错性变化,我们称之为误码。
一般用平均误码率表征误码的严重程度,即24小时内错误比特和传输总比特之比。
2 误码检测的原理SDH帧中定义有专门用于误码监测的字节,分别为B1、B2、M1、B3、G1、V5。
具体分工为:B1用于监测再生段误码,B2用于监测复用段误码、M1用于监测复用段远端误码、B3用于监测高阶通道误码、G1用于监测高阶通道远端误码、V5的1和2比特用于监测低阶通道误码、V5的3比特用于监测低阶通道远端误码。
误码监视采用BIP(比特间插奇偶校验方式),即通过校验码保证内容中“1”的个数为偶数个。
SDH以分层分段的方式对误码进行检测,由低到高分别为再生段终端、复用段终端、高阶通道终端和低阶通道终端。
由B1、B2、B3以及V5分别在这些终端间进行检测。
如果只是低阶通道有误码,则高阶通道、复用段和再生段将检测不到该误码;如果再生段有误码,则将导致复用段、高阶通道、低阶通道出现误码。
3 产生误码的现网环境1.设备本身支路板故障或出现外界干扰会引起支路上的V5误码,如支路板故障、支路板和交叉板配合不当、设备工作温度过高、设备受到强大干扰源的干扰、接地不好等等都是支路误码产生的现实原因。
2.机房环境不好或光板及时钟板故障会在线路上引起B2、B3误码。
所以当出现B2、B3误码误码时应及时检查机房的温湿度、电源电压、接地情况等等,若机房环境达标就应该重点检查设备光路板、时钟板等。
3.光板故障、光纤出问题、光功率出问题都可能导致线路出现B1误码。
所以出现B1误码时应及时检查光板元器件是否正常;光缆、尾纤、光纤头是否清洁或连接器是否正确;接收光功率是否过高或过低,有无色散过大。
SDH光纤通信继电保护信号误码率分析
SDH 光纤通信继电保护信号误码率分析一、引言随着SDH(同步数字体系)光纤通信技术的不断发展,继电保护信号的传输也越来越依赖于SDH 光纤通信。
由于继电保护信号的重要性和传输安全性的要求,误码率的分析成为继电保护工程中一个关键的研究领域。
对SDH 技术的误码率分析研究可以对提高SDH 通信继电保护系统的可靠性和安全性起到重要的作用。
二、SDH 技术概述同步数字体系(SDH,Synchronous Digital Hierarchy)是一种高速数字传输技术,用于在高速电信交换网络中传输数字信号。
SDH 能够通过光纤和微波电波等传输介质传输数据。
它提供了高可靠性和高带宽速度的数字传输,能够满足电信交换系统的需求。
SDH 采用了一种分层的网络结构。
它将数据按照不同的速率层次进行分类和传输。
SDH 的传输速率位于155Mbit/s 至10Gbit/s 之间,大大提高了传输效率。
SDH 技术采用了多种传输方式来提高数据传输效率,包括STM-1、STM-4、STM-16 和STM-64 等不同传输速率的传输方式。
三、继电保护信号误码率分析SDH 技术提供了高可靠性和高带宽速度的数字传输,能够满足电信交换系统的需求。
然而,由于各种不同的噪声和失真因素,SDH 中的继电保护信号可能会出现误码。
因此,对继电保护信号误码率进行分析和研究是非常重要的。
(一)继电保护信号误码率影响因素分析1.传输距离:传输距离越长,信号中的噪声和失真就越多,误码率也就越高。
2.光纤损耗:光纤的损耗会导致信号衰减、失真、延迟等问题,进而导致误码率的增加。
3.发射和接收光功率及时钟偏差:发射和接收光功率不平衡会导致信号失真,时钟偏差也会影响数据传输的精度,从而增加误码率。
4.外界干扰:外界干扰如电磁干扰、电气干扰等会导致信号失真和丢失,进而增加误码率。
(二)误码率计算在SDH 技术中,误码率通常用bit-error rate(BER)来表示。
SDH误码故障分析与处理方法
SDH误码故障分析与处理方法作者:张定邦来源:《科学与财富》2011年第06期[摘要] 传输系统的性能对整个通信网的通信质量起着至关重要的作用。
误码是影响SDH 传输网传输性能的重要原因之一。
本文针对SDH的特点,主要讲述了SDH误码产生的原因及故障处理方法,结合案例,对故障的发现、定位处理进行逐步说明。
[关键词] SDH 开销字节性能门限误码一、背景知识误码是指经接收、判决、再生后,数字码流中的某些比特发生了差错,使传输的信息质量产生损伤。
误码是传输系统的一大危害,轻则使系统稳定性下降,重则导致传输中断(10-3以上)。
1.1误码分段光同步传输设备中按分段分层的思想对误码进行全面系统的检测。
具体有B1再生段误码、B2复用段误码、B3高阶通道误码、V5低阶通道误码。
它们之间的关系可以用图1表示。
图1误码检测关系及检测位置图中RST、MST、HPT、LPT分别表示再生段终端、复用段终端、高阶通道终端和低阶通道终端。
B1、B2、B3以及V5误码分别在这些终端间进行检测。
如果只是低阶通道有误码,则高阶通道、复用段和再生段将检测不到该误码;如果再生段有误码,则将导致复用段、高阶通道、低阶通道出现误码。
一般来说,有高阶误码则会有低阶误码。
例如:如果有B1误码,一般就会有B2、B3和V5误码;反之,有低阶误码则不一定有高阶误码。
如有V5误码,则不一定会有B3、B2和B1误码。
由于高阶误码会导致低阶误码,因此我们在处理误码问题时,应按照先高阶后低阶的顺序来进行处理。
同时线路误码在线路板终结,一般限于两块光板之间,不会穿通到本站的其他线路板(请注意,HPBBE有所不同,当通道为穿通模式时,HPBBE会随着业务向下游站光板传递。
)。
但支路误码跟着业务走,这是因为线路板和支路板对开销的处理特点决定的。
1.2误码性能事件光同步传输系统本端检测到误码时,除本端上报误码性能或告警事件外,还将误码检测情况通过开销字节通知对端。
SDH误码测试分析
SDH误码测试一、误码特性1、基本概念:差错(Error误码):在数字通信中,发送和接收序列的任何不一致都叫差错,在我国习惯上把差错称为误码。
比特差错(Bit Error):发送和接收序列中对应的单个数字不一致就是比特差错,G.821建议中所用的术语“误码”就是指比特差错。
块差错(Block Error):将一组码看成是一个整体,在其中有一个或多个比特差错,则称块差错。
G.826建议中所用的术语“误块”就是指块差错。
误码秒(ES):在一秒时间周期有一个或多个比特差错,称为误码秒。
误块秒(ES):在一秒时间周期有一个或多个误块,称为误块秒。
差错秒(ES):误码秒和误块秒的统称。
严重误码秒、严重误块秒或严重差错秒(SES):在误码秒、误块秒或差错秒中,有一部分差错量特别多,定义为SES。
2、误码机理:(1)造成误码的主要内部机理有:*各种内部噪声源*色散引起的码间干扰*定位抖动产生的误码(2)外部机理:主要是由一些具有突发性质的外部脉冲干扰源所引起,诸如外部电磁干扰、静电放电、设备故障、电源瞬态干扰和人为活动等。
这些脉冲干扰有可能超过系统固有的高信噪比门限造成突发误码。
二、误码性能指标:1、低于基群速率的数字连接的误码性能ITU-T G.821建议规范了用于语音业务或用作数据型业务载体信道的N´64kbit/s电路交换数字连接(1£N£24或32)的误码性能事件、参数和指标。
G.821定义以下事件:*误码秒(ES):在一秒时间周期有1个或更多差错比特。
*严重误码秒(SES):在一秒时间周期的差错比特比³ 10-3。
G.821定义的误码性能参数有:*误码秒比(ESR):在一个固定测试时间间隔上的可用时间内,ES与总秒数之比。
*严重误码秒比(SESR):在一个固定测试时间间隔上的可用时间内,SES与总秒数之比。
G.821对64kbit/s全程27500km假设参考通道(HRP)端到端连接的性能指标见表1。
SDH光传输设备误码分析
11 产 生机 理 .
1 误码的产生机理和检测机理
阶通道和低阶通道 的校验矩阵进行奇偶校验。 的关 系:一般 来 说 , 高阶 误码一 般会 有低 阶误码 。 之 , 有 反 B1 字节用于再生段层误码监测, 使用偶校验的比特间 有 低 阶误码 则 不一 定有 高阶误 码 。 由于高 阶误码 会 导致 低 插奇偶校验码 。B 字节的工作机理:发送端对本帧 ( N 1 第 阶误码 ,因此 我们在 处 理误码 问题 时 ,应 按照 先高 阶后 低
一
一
测 的 ,而 B 2字 节 是对 S M. 帧 中 的每 一个 S M. 帧 的 的 出现 。 T N T 1 传 输误 码情 况进 行监 测 ,S M- 帧 中有 N 3 B 字 节 。 T N *个 2 22 误码 问题 处理 常用 方法 .
检测机理是发端 B 字节对前一个待扰的 S M. 帧中除了 2 T 1 误码 问题 处理 应 该遵 循 “ 外部 ,后 内部 ,先线 路 , 先 R O 的全 部 比特 进 行 B P2 计算 ,结果放 于本 帧 待扰 后支 路 ,先高 阶 ,后 低阶 ”的原则 。 SH I.4 S M一 帧的 B 字节位置。收端对当前解扰后 S M 的除 T 1 2 T 1 221 利 用 网管准确 定位 误码 . . 了 R O 的全 部 比特 进 行 B P2 校 验 ,其 结 果与 下 一 SH I.4 误码 的定 位 需要有 网络 长期 运行 的性 能 数据 ,我 们要 S M. 帧解 扰后 的 B T 1 2字 节相 异或 ,根据 异 或后 出现 1的 牢记 先 高阶 、后低 阶 的原 则 ,通 过 分析 告警 性 能或者 通过 个数来判断该 S M. 在 S M. T 1 T N帧中的传输过程中出现 了 逐段 环 回 ,找到最 高 阶误 码 的源 头 。对 于持 续性 的误 码 ,
SDH传输设备误码问题分析
光恢复到 一 6 b 1dm的正常值, 误码消失, 信令信号恢 复, 业务恢复。本次故障因为 2 M信号测试正常 , 很 容易被误认为是交换侧 出现问题 , 与传输无关 。但
网元 现象 相 同 。查 看 B网元 的 当前 时钟 状 态 , 捕 为 捉状态 。改变线 路抽 时钟 的方 向, 仍为捕捉状态。 通 常 情况 下 , 码 不会 引起 指 针调 整 , 误 而大 量 的指 针 调 整则 会 引起 误码 。因此 , 处理 指针 调整 的 问题 , 先
交换侧设备商咨询 , 得知交换侧信令对误码 比较敏 感 , 码 门限值 为 e一1 。判 断故 障原 因 为 收 光 过 误 0
3 故障处理 : ) 测试 主用业务 收光 光功 率为 一 3 dm, 2 b 查询该光板有复用段误码 , 但并未越限。向
图4 组网示惹
2 原因分析 : ) 查询 B网元设备光板 的性 能值 , 有 比较大的指针调整。然后查询其 E 1 T 板性能值 , 有较大的指针调整 及少量 的误码性 能值。查 询 E
4 支路板故障; )
5 风扇故障 , ) 导致设备散热不 良。
2 2 误 码定 位分 析 .
做过终结, 则问题可能是 D站 H T与 M T之间或 E P S
站 MS T与 H 之 间 。
2 2 4 E站 出现 低 阶 通 道 误 码 ..
以一个单 向业 务组 网模 型来 分 析 出现误 码 的几
低 阶信 号 复 用 传 输 过 程 经 过 P I—L A—L T P P P
—
SDH传输设备信号传输过程中误码问题的分析
SDH传输设备信号传输过程中误码问题的分析作者:徐峰来源:《西部论丛》2018年第12期误码问题一直是影响SDH设备信号传输质量的重要因素,本文从误码问题产生的原因和解决方案两个角度出发,力求减少SDH设备信号传输过程中误码问题的产生。
SDH信号传输;误码;分析所谓SDH是一种基于光纤通信系统的数字通信体系。
在SDH的信号传输过程中,会因为一些特殊的情况导致误码的出现。
误码信号流会导致传输数据的丢包,影响传输数据的完整性和准确性。
当网关对收到的数据包执行CRC校验时,将确定其是否发生了错误,从而决定是否将此数据包丢掉。
如果一个包中某个比特出现错误,那么接收终端接收的数据也会缺失此数据包所有数据,进而影响信号传输的质量。
所以对误码问题进行研究,能够有效地提升SDH 信号的传输质量。
误码是指信号在传输过程中,由于线路或环境的原因导致信息、传输信号和原始信号的位数发生了变化,即信息被破坏。
传输时应避免出现误码,否则会对传输系统造成一定的影响,降低网络传输的稳定性,甚至中断传输网络。
在SDH信号传输的过程中,以下几个因素会导致误码的产生:1.光器件性能降低光学设备性能的下降是产生误码问题的重要原因。
交叉板或时钟板的问题通常会导致许多线路板的高阶通道出现误码。
线路板问题可能会导致再生段或者复用段误码;支路板的问题会导致低阶通道的误码;光波长转换单元(OTU)处理芯片和电路性能、发端激光器波长不稳定、功率放大器和光模块故障也是产生误码的主要原因。
2.光纤线路由于传输的距离比较长,传输过程中所使用的光纤存在大量的尾纤跳接、可调衰耗连接以及法兰盘连接。
其中,如果存在尾纤连接的头没有连接完好、光缆线路出现中断、外界环境的干扰因素较多以及人为的不恰当操作等现象,都可能导致光纤和尾纤上的光功率出现极大地衰减、线路接收的光功率太高或者太低、光纤性能降低以及损耗太高等结果。
而光纤的接头没有得到及时彻底地清洁或者是连接出错等,也会导致再生段误码或者其他的低阶误码。
SDH误码问题分析
SDH误码问题分析---中国电信嘉兴分公司–叶茂华误码问题是传输设备维护中经常碰到的问题。
虽然有时小误码问题不会对业务造成明显影响,但当误码出现时,说明传输系统中局部已经出现了性能劣化,需要及时处理否则会发展成为业务中断等重大故障。
下面先讲解一下误码的基本概念和产生的基本原理,再结合本人日常的维护经验阐述误码问题的处理思路和方法。
一、误码的定义:误码是指在传输过程中码元发生了错误,而对SDH光传输设备来说,指的是经光接收机的接收与判决再生之后,码流中的某些比特发生了差错。
二、常用概念网管对于误码的性能监视事件包括:BBE:背景块误码 SES:严重误块秒 UAS:不可用秒 FEBBE:远端背景块误码 FEES:远端误块秒下面就性能事件的定义作简要说明1、通用参数:BER(平均误码率)传统上常用平均误码率BER来衡量系统的误码性能。
BER即:在某一规定的观测时间内(如24小时)发生差错的比特数和传输比特总数之比。
如1×10E-10。
但平均误码率是一个长期效应,它只给出一个平均累积结果。
而实际上误码的出现往往呈突发性质,且具有极大的随机性。
因此除了平均误码率之外还应该有一些短期度量误码的参数,即误码秒与严重误码秒。
2、G.821规定的64k bps数字连接的误码性能参数ES(误码秒)和SES(严重误码秒)误码秒ES的含义是:当某1秒钟时间内出现1个或1个以上的误码块时,就叫做一个误码秒。
严重误码秒SES的含义是:误码率大于10E-3的秒。
注意:无论是ES还是SES,皆针对系统的可用时间。
CCITT规定,不可用时间是在出现10个连续SES事件的开始时刻算起;而连续出现10个非SES事件时算作不可用时间的结束,此刻算作可用时间的开始(包括这10秒钟时间)。
3、G.826规定的高比特率通道误码性能参数,以“块”为基础。
EB(误码块):SDH通道开销中的BIP-X属于单个监视块,其中X中的每个比特与监视的信息比特构成监视码组,只要X个分离的奇偶校验组中的任意一个不符合校验要求就认为整个块是误码块EB。
SDH传输网络的误码性能分析与探讨
SDH传输网络的误码性能分析与探讨摘要:随着互联网和专用局域网业务的不断发展,网络通信系统面临着越来越多的数据传输压力。
为了满足不断增长的业务需求,通信系统性能和传输带宽都需要进行相应的技术升级。
随着技术的发展,采用SDH同步数字体系(Synchronous Digital Hierarchy)的传输网体制,凭借各方面的优越性,成为网络通信的骨干网络主要传输技术之一。
SDH网络的广泛使用也对运维管理提出了越来越高的要求,在SDH网络的故障中,误码是常见的一种故障现象,对于运维人员来说,掌握误码的原理和常见故障排查方法是十分重要的一项工作。
本文将主要就误码的概念、SDH网络误码检测的原理和常见的误码产生原因及解决方法进行探讨,希望通过对SDH网络误码的分析探讨,能够对误码故障的排查提供一些建议,提高设备的运维效率。
关键字:SDH网络误码排查1.误码的概念在正常的数据传输过程中,信号由发送方通过各种传输设备和介质发送给接收方,接收方对接收到的数据进行解码处理,即完成了数据的传输。
但在数据传输过程中,经常由于受到外界干扰或传输质量不佳而使信号发生畸变,导致发送方和接收方的数据不一致,如发送方发送“0001”数据,而接收方却接收到“0000”数据,即产生了误码。
误码产生的原因有很多,常见的原因有电磁干扰、传输介质性能劣化、传输设备处理故障、信号衰减等。
当传输系统出现误码时,由于接收方接收到的数据错误,会导致数据无法处理或处理出错,进而影响业务的正常运行,导致严重的后果,对于SDH网络的数据传输更是如此。
因此理清SDH网络误码检测原理和误码产生原因,对于故障排查是十分重要的。
1.SDH网络误码检测原理SDH网络具有一套标准化的信息等级结构和统一的网络接口,因此具有广泛的适应性。
在SDH帧结构中,具有丰富的用于管理维护的开销字节,具备完善的网络管理功能,用于网络的运行、管理和维护(OAM)。
在SDH帧结构的开销字段中,就有各级信息等级结构的误码检测字段,用于对传输的数据进行误码性能监测。
SDH传输设备误码问题与处理方法
SDH传输设备误码问题与处理方法【摘要】随着通信技术的发展,各专业网络设备均要依赖传输而组成网络,现有业务层面对于承载网络的运行质量提出了更高一步的要求,因此,将一些尚未引起用户感知或将要导致业务中断的误码问题消除在萌芽状态,对于传输专业维护人员提出了更高的专业要求,本文重点分析了影响SDH光纤传输误码的因素,阐述SDH光传输设备误码问题处理方法和思路,并结合焦作本地传输网因误码产生故障的处理方法作以简单的介绍,以提高SDH光纤传输误码维护方面的效率和质量。
【关键词】光纤传输设备;误码问题;原因;处理方法光纤传输设备误码问题比较常见,是我们日常维护工作中经常碰到的问题。
随着时间的积累,微小的误码个数会不断增加积累增加,反映在整段传输通道中某一局部出现性能劣化,轻则使系统稳定性下降,重则导致传输中断(误码率达1ⅹ10-3以上)。
甚至在环网中,由于备用路由存在误码而使环网在主用路由中断时出现倒换不成功的现象也屡有发生,造成的后果自然也不堪设想。
因此要加强对误码问题的处理才能保障数据传输通道的畅通,结合光纤传输设备中误码问题概念的解析,分析光纤传输设备出现误码问题的原因,提出解决误码问题的有效对策。
1.误码的定义误码是指在传输过程中码元发生了错误。
确切地讲,误码是接收与发送数字信号之间单个数字的差错。
SDH系统在帧结构中安排了丰富的开销字节用于误码监测,它们是B1再生段误码、B2复用段误码、B3高阶通道误码、V5低阶通道误码。
下表表一总结了指示各种误码开销字节:一般来说,如有高阶误码,则一般会有低阶误码;若有低阶误码,则不一定会出现高阶误码。
例如,有B1误码,则一般会有V5误码;反之,如有V5误码,不会有B3、B2和B1误码。
即高阶误码会引起低阶误码。
因此,我们在进行误码分析的时候,也要遵循“先线路后支路,先高阶后低阶”的故障定位原则。
2.各类误码处理思路对误码的处理要个个击破,不要被太多的通道误码干扰,同时一定要找到有误码业务的共性,通过告警性能事件的相关性分析,进行判断,进而从中跟踪一个2M,逐步准确定位故障的范围。
传输设备误码问题处理
论文编号:专业技术资格评审高级工程师论文题目传输设备误码问题处理申报专业传输二〇一一年九月目录论文摘要(中文) (3)一、误码的定义和影响 (3)二、误码检测机理 (4)三、引起误码的常见原因 (7)1.外部原因 (7)2.设备原因 (7)四、误码性能的规范 (8)五、误码问题的处理思路 (9)1.告警性能分析法 (9)2.逐段环回法 (9)3.替换法 (9)六、误码问题的处理步骤 (10)1.找到误码的源头 (10)2.排除线路误码,排除外部原因 (10)3.分析支路误码性能事件,排除支路误码 (10)七、DWDM系统中的误码问题 (12)1.波分系统产生误码的原因 (12)2.DWDM系统误码处理方法 (14)八、常见误码故障的典型案例 (17)1.时钟板故障导致的误码问题 (17)2.交叉板故障导致突发大误码 (18)参考文献 (19)传输设备误码问题处理摘要:本文阐述了传输设备中误码产生的原因,检测机理以及误码处理的一般步骤和方法,对SDH系统和DWDM系统误码分别进行了讨论,最后通过典型案例的分析进一步说明误码类故障的定位和处理过程。
关键字:误码性能事件告警一、误码的定义和影响误码就是经接收判决再生后,数字流的某些比特发生了差错,使传输信息的质量发生了损伤。
一般用误码率来衡量信息传输质量(BER),即特定观测时间内错误比特数与传输比特数的之比当作误码率。
使用这一参数有一定的局限性,并不能区分连续零星误码和突发性大误码,事实上,这两种误码对具体业务的影响是不同的。
语音通信中,连续的零星误码通常不会造成断话影响,可能造成电话有杂音,音质下降,一般可以容忍,但对于突发性大误码,则很有可能造成断话,这是不能容忍的。
数据通信中信息几乎没有冗余度,数据块中错一个比特和多个比特效果相同,都不能使用,故对于数据通信,可以容忍突发性大误码,而不能容忍连续零星误码。
目前误码的度量是以ITU-T的G。
826/G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中兴SDH传输设备误码问题分析总结
作者
(单位名称)
摘要: 误码问题是传输设备维护中经常碰到的问题。
虽然有时小误码问题并不会对传送业务造成明显影响,如语音等业务,但当出现误码时,说明传输系统中局部已经出现性能劣化,需要尽快处理,否则有可能发展成为业务中断等重大事故。
本文将结合平时维护中遇到的问题,对误码作一简单的分析,以期可以抛砖引玉,共同提高。
关键词:误码、B1、B2、B3、V5
目录
1.误码知识 (3)
1.1 误码分段 (3)
1.2误码上报信息 (3)
2.误码定位分析 (4)
2.1误码的常见原因 (4)
2.2误码定位分析 (5)
3.典型案例 (7)
3.1 光板故障导致误码 (7)
3.2 风扇故障导致设备散热不良产生误码 (8)
3.3 时钟板故障引起误码 (9)
3.4 外时钟不稳定导致光路出现误码 (10)
4 结束语 (11)
1.误码知识
1.1 误码分段
光同步传输设备中按分段分层的原理对误码进行检测。
具体有B1再生段误码、B2 复用段误码、B3 高阶通道误码、V5 低阶通道误码。
它们之间的关系可以用图1表示。
图1:误码检测关系及检测位置
图1中RST、MST、HPT、LPT 分别表示再生段终端、复用段终端、高阶通道终端和低阶通道终端。
B1、B2、B3 以及V5 误码分别在这些终端间进行监测。
1.2误码上报信息
光同步传输系统本端检测到误码时,除本端上报误码性能或告警事件外,本端还将误码检测情况通过开销字节通知对端。
根据本端和对端上报的这些性能和告警事件,可以方便地定位是哪一段通道或哪一个方向出现误码。
表1给出了与误码相关的性能和告警事件列表。
表1:误码越限告警及性能事件检测位置与作用
2.误码定位分析
2.1误码的常见原因
外部原因:
1)光纤性能劣化、损耗过高。
2)光纤接头不清洁或连接不正确。
3)设备接地不好。
4)设备附近有强烈干扰源。
5)环境温度过高,导致设备散热不良。
6)传输距离过短、未加衰减器,导致接收光功率过载。
设备原因:
1)线路板接收侧信号衰减过大、对端发送电路故障、本端接收电路故障。
2)时钟同步性能不好。
3)交叉板与线路板、支路板配合不好。
4)支路板故障。
5)风扇故障,导致设备散热不良。
2.2误码定位分析
下面我们就以一个简单的单向业务组网模型来分析出现误码的几种情况。
注:为了便于阐述,这里都简化为单向有误码,而反方向没有误码,并且只是某一站点出现某一类型的误码的理想情况,当然实际中要比这复杂得多。
组网模型如图2所示:
图2单向业务组网模型
(1)C或D站出现再生段误码
每个站点都对B1字节处理,所以可以考虑出现误码站点和上游站点两RST之间(接口板、光纤通路)。
常用的有以下几种定位方法:1)采用测量法测量光功率,可以直接有效地发现线路是否正常。
首先测试对端发送光功率是否合乎设备指标,再测试本端接收光功率,如果接收光功率过小,可以逐段测试找出故障点,如果接收光功率过大,导致光模块饱和,此时要适当地加衰减。
2)光口环回法可以进一步测试是否本端光板有问题,但要注意将光板自环时需要加衰减,以防止光功率过强损坏光模块。
3)采用收发尾纤替换法将本端和对端的收发尾纤同时对调,看误码是否跟着尾纤走,这样可以快速判断光缆线路的好坏。
与环回法结合快速定位故障位置。
(2)D或E站出现复用段误码
对于D站误码来说,由于C站是REG站点,它不对B2字节进行处理,所以很有可能是B站MST出来的信号带过来的,
也可能是D站RST与MST之间有故障。
此时可以采用光纤自环定位是否D站、B站光接口板有问题。
对于E站误码来说,由于D站是ADM站点,它对B2字节进行处理,所以很有可能是D站MST出来的信号带过来的,也可能是E站RST与MST之间有故障。
建议用光纤自环的方法定位是否D、E站相连的光接口板有问题。
(3)E站出现高阶通道误码
这时要分两种情况进行讨论。
如果D站对相应业务做VC4穿通,则说明它没有对B3字节做过处理,也就是说没有终结过通道开销。
则问题可能出在B站(B站对之做过终结)。
也可能是E站MST与HPT之间。
如果D站对相应业务VC4 开销做过终结,则问题可能是D站HPT与MST之间或E站MST与HPT之间。
(4)E站出现低阶通道误码
低阶信号复用传输过程经过PPI—LPA—LPT—HPA—交叉板—HPT—MSA—MST—RST,所经路由都可能引入误码,所以误码产生也最为复杂和广泛。
如果有高阶误码,我们先处理高阶误码;如果没有高阶误码,我们可以把围缩小到“PPI—LPA—LPT—HPA—交叉板”这个部分来分析。
分析的关键是要找到处理过此低阶通道的最近站点,然后可以采用软
件环回的办法判断问题出在本端或者对端。
最常用的办法还是逐段环回法,这样可以把问题定位到某一段。
如果能定位到设备,可以采取更换单板(支路板、交叉板)的方式来处理。
3.典型案例
3.1 光板故障导致误码
(1)故障现象
下图为ZXMP S385设备组成的2.5G通道环。
某天日常维护中查询D网元1-1-5槽位光板性能值,发现有B1误码,E网元1-1-11槽位光板上报B1-RD1。
(2)故障排除
当日深夜维护人员到达D站点与E站点。
到达D站点后测量1-1-5槽位光板RX口收光功率,正常,与E站点人员联系将两站点的在用光纤对调,再次测试收光功率正常。
排除光缆损耗大的问题。
加损耗器将1―1-5光板自环,无效。
故障定位在该光板故障。
更换同型号光板,跟踪测试24小时性能值,没有发现误码。
(3)结论
主干环网元的日常维护尤显重要,要加强这方面的工作,性能值的查询,模拟性能的跟踪等等。
3.2 风扇故障导致设备散热不良产生误码
(1)故障现象
由ZXMP S385设备组成两纤单向通道环,如下图所示。
某日发现D站点11#LP16上报少量的B2、B3误码。
(2)故障排除
为了不影响客户的正常使用,维护人员于次日凌晨到达现场,先测试收光功率,结果正常。
随后维护人员仔细检查了设备运行情况,发现设备机壳温度过高,经检查发现设备风扇防尘网堵塞严重,抽出风扇防尘网,误码消失。
至此,可以确认故障是由于风扇防尘网堵塞致使设备散热不良所至。
将其清洗晾干后插入设备,运行正常。
(3)结论和建议
在机房的防尘效果不好时,风扇防尘网容易堵塞,这时就需要定期清洗防尘网,否则风扇不能正常散热,导致设备温度过高,会产生大量误码。
建议每月清洗防尘网两次。
3.3 时钟板故障引起误码
(1)故障现象
组网下图所示。
图中A、B、C、D、E网元均为ZXMP S330设备,A、B、C、D网元组成一个155M通道环。
网元E是挂在网元B上的支链。
网元B及E的ET1板有时会出现少量误码性能值。
没有影响业务。
(2)故障排除
查询B网元设备光板的性能值,有比较大的指针调整。
然后查询其ET1板性能值,有较大的指针调整及少量的误码性能值。
查询E网元现象相同。
查看B网元的当前时钟状态,为捕捉状态。
改变线路抽时钟的方向,仍为捕捉状态。
通常情况下,误码不会引起指针调整,而大量的指针调整则会引起误码。
因此处理指针调整的问题,指针调整则可能是由于上游站或本站光板提供的参考时钟源有问题,也可能是本站的时钟板有问题,而改变抽取方向后,故障仍没有消除则说明是本站的时钟板的问题。
维护人员到达现场后,发现该设备时钟板RUN 灯一直快闪,ALARM灯有时闪亮。
说明该板不能正常工作。
将其硬复位,无变化。
更换单板,自检完成后,误码消失。
在网管上进行24小时误码测试,无误码,故障排除。
(3)结论
时钟板故障,无法锁定时钟,大量的指针调整导致误码。
3.4 外时钟不稳定导致光路出现误码
(1)故障现象
组网如下图所示。
由ZXMP S385设备组成两纤单向通道环。
A网元接E网元的输出时钟。
在D站点挂表测试一条A站到D站155M光路业务的24小时误码发现每隔几分钟就会报一次误码,业务没有中断。
(2)故障排除
首先检查仪表的各项设置,正常。
从网管上查询性能发现从A站开始各站OL16板对应的高阶通道15分钟性能有较
大的AU指针调整,查询A站各板各项性能值均正常,排除单板故障。
最后将焦点集中在外时钟源上。
将A站时钟改为时钟,故障现象消失。
于是直接接入BITS设备,测试正常。
(3)结论
外时钟源不稳引起较大的指针调整从而引发小误码。
.
4 结束语
误码问题在平时的维护工作中,经常遇到。
由于其告警点的不确定,所以在处理的过程中,必须全盘考虑,不放过每一个可能引发误码的细节,扎扎实实的处理才可以使问题顺利解决。
.。