页面置换算法模拟实验报告
实验5页面置换算法模拟实验ok
实验5 页面置换算法模拟实验一.实验目的1.进一步掌握虚拟存储器的实现方法。
2.掌握各种页面置换算法。
3.比较各种页面置换算法的优缺点。
二.实验内容模拟实现页面置换算法,步骤为:①使用产生随机数函数得到一个随机的数列,作为将要载入的页面序列。
②使用先进先出(FIFO)算法、最近最久未使用(LRU)置换算法和最佳(OPT)置换算法,列出所需淘汰的页面号序列。
③列出缺页中断次数。
三.参考源程序如下:#include <stdio.h>#include <stdlib.h>#include <time.h>#define N 10#define B 4/*------------------------------------------------------------------------函数名:IsInBuf(),返回某个数X在不在缓冲Buf[],如在,返回位置,否则返回-1--------------------------------------------------------------------------*/int IsInBuf(int buf[],int x){int i,j=-1;for(i=0;i<B;i++){if(buf[i]==x){ j=i;break; }else if(buf[i]==-1){ buf[i]=x;j=i;break; } }return j;}/*------------------------------------------------------------------------函数名:oldest(),返回最近最久未使用的页面位置--------------------------------------------------------------------------*/int oldest(int f[]){int i,j=0,max=-1;for(i=0;i<B;i++){if(f[i]>max){ max=f[i]; j=i; }f[i]++; }return j;}/*------------------------------------------------------------------------函数名:oldest2(),返回未来最久未使用的页面位置--------------------------------------------------------------------------*/int oldest2(int list[],int buf[],int f[],int start){int i,j;for(i=0;i<B;i++){for(j=start;j<N;j++){ if(buf[i]==list[j]) break; }f[i]=j; }return oldest(f);}int main(void){int list[N];int buf[B],f[B],i,j ;int old=0;int change=0;srand((int)time(NULL)); /*生成一系列随机数并初始化环境*/for(i=0;i<B;i++) {buf[i]=f[i]=-1;}printf("\nThe Random List:\n");for(i=0;i<N;i++){ list[i]=(int)rand()%10; printf("%2d",list[i]); } printf("\nFIFO\n");/*显示FIFO淘汰的页面序列*/change=0;for(i=0;i<N;i++){j=IsInBuf(buf,list[i]);if(j==-1){printf("%2d",buf[old]);buf[old]=list[i];old=(old+1)%(int)B;change++;}else printf(" "); }printf("\n changes %2d\n",change); /*显示有多少个缺页中断*/printf("\nLRU\n");/*显示LRU淘汰的页面序列*/change=0;for(i=0;i<B;i++) {buf[i]=f[i]=-1;}for(i=0;i<N;i++){j=IsInBuf(buf,list[i]);old=oldest(f);if(j==-1){printf("%2d",buf[old]);buf[old]=list[i];f[old]=0;change++;}else{ f[j]=0; printf(" "); } }printf("\n changes %2d\n",change); /*显示有多少个缺页中断*/printf("\nOPT\n");/*显示OPT淘汰的页面序列*/change=0;for(i=0;i<B;i++) {buf[i]=f[i]=-1;}for(i=0;i<N;i++){j=IsInBuf(buf,list[i]);if(j==-1){old=oldest2(list,buf,f,i);printf("%2d",buf[old]);buf[old]=list[i];f[old]=0;change++; }else{ f[j]=0; printf(" "); } }printf("\n changes %2d\n",change); /*显示有多少个缺页中断*/ getch();return 0; }(假设当前随机产生的页面序列为:7 1 0 4 2 5 8 6 9 1)四.填表题(1).在一个请求分页存储管理系统中,一个作业的页面走向为4、3、2、1、4、3、5、4、3、2、1、5,当分配给该作业的物理块数分别为4时,试计算采用先进先出淘汰算法时的缺页率(假设开始执行时主存中没有页面),并将所得结果填表。
实验三2页面置换算法
实现难度:需要 对算法进行详细 设计和编程,需 要具备一定的计 算机科学和编程
知识。
可行性分析:通 过优化页面置换 算法可以提高系 统的性能和效率, 对于实际应用具
有重要意义。
实验三2的页面 置换算法优化建 议:可以考虑采 用更高效的算法 或数据结构,优 化算法的时间复 杂度和空间复杂
度。
实验三2的页面 置换算法优化效 果:通过实验验 证优化后的算法 是否能够提高系 统的性能和效率, 并分析优化效果。
页面置换次数:衡 量页面置换算法性 能的重要指标,指 在一段时间内页面 置换的次数。
算法复杂度:衡量 页面置换算法性能 的重要指标,指算 法的执行时间和空 间复杂度。
实验三2的页面置换算法性能测试结果
测试环境:实验三2的页面置换算法在高性 能计算机上运行,具有足够的内存和计算 能力。
测试数据集:使用大规模数据集进行测试, 包括各种不同类型和大小的页面请求序列。
总结与展望
第五章
总结实验三2的页面置换算法的实现过程和结果
实现过程:详细介绍了实验三2的页面 置换算法的实现过程,包括算法的基本 思想、数据结构的设计、主要功能的实 现等。
实验结果:通过实验验证了实验三2的 页面置换算法的有效性和优越性,包括 算法的时间复杂度、空间复杂度、置换 次数等方面的性能指标。
实验三2页面置换算 法
XX,a click to unlimited possibilities
汇报人:XX
目录
CONTENTS
01 页面置换算法的背景和意义 02 实验三2的页面置换算法实现 03 实验三2的页面置换算法性能分析 04 实验三2的页面置换算法优化建议
05 总结与展望
面置换算法的背景和意义
页面置换算法实验报告_4
页面置换算法实验报告院系:****************学院班级:***********姓名:***学号:************一、实验题目: 页面置换算法二. 实验目的:1.用C语言编写OPT、FIFO、LRU三种置换算法。
2.熟悉内存分页管理策略。
3.了解页面置换的算法。
4.掌握一般常用的调度算法。
5.根据方案使算法得以模拟实现。
6.锻炼知识的运用能力和实践能力。
三. 实验内容及要求:设计一个虚拟存储区和内存工作区, 编程序演示下述算法的具体实现过程, 并计算访问命中率:要求设计主界面以灵活选择某算法, 且以下算法都要实现1) 最佳置换算法(OPT): 将以后永不使用的或许是在最长(未来)时间内不再被访问的页面换出。
2) 先进先出算法(FIFO):淘汰最先进入内存的页面, 即选择在内存中驻留时间最久的页面予以淘汰。
3) 最近最久未使用算法(LRU): 淘汰最近最久未被使用的页面。
四、实验结果初始化结果1, 先进先出(FIFO)算法实验结果:2, 最近最久未使用(LRU)算法实验结果: 3, 最佳使用法(OPT)实验结果:五、实验总结选择置换算法, 先输入所有页面号, 为系统分配物理块, 依次进行置换:OPT基本思想:是用一维数组page[]存储页面号序列, memery[]是存储装入物理块中的页面。
数组next[]记录物理块中对应页面的最后访问时间。
每当发生缺页时, 就从物理块中找出最后访问时间最大的页面, 调出该页, 换入所缺的页面。
若物理块中的页面都不再使用, 则每次都置换物理块中第一个位置的页面。
FIFO基本思想:是用队列存储内存中的页面, 队列的特点是先进先出, 与该算法是一致的, 所以每当发生缺页时, 就从队头删除一页, 而从队尾加入缺页。
或者借助辅助数组time[]记录物理块中对应页面的进入时间, 每次需要置换时换出进入时间最小的页面。
LRU基本思想:是用一维数组page[]存储页面号序列, memery[]是存储装入物理块中的页面。
页面置换算法实验报告
页面置换算法实验报告
一、实验内容
本次实验主要围绕页面置换算法进行,以实验课本的实例介绍,采用FIFO页面置换算法对后面提到的参数进行置换,最终得出页面置换的结果和比较所得结果。
二、实验步骤
(一) 熟悉FIFO算法
首先是要了解FIFO页面置换算法,FIFO全称(First In First Out),按页面进入内存的顺序来替换相应内存页面,先进先出,将先进入内存的页面先替换出去。
(二) 阅读实验课本
在阅读实验课本之前要先熟悉实验书上所介绍的FIFO算法,然后在实验书上找出需要做的实验,并对实验环境和表格进行观察,掌握实验的基本内容。
(三) 开始页面置换
在开始实验之前,熟悉实验环境,根据实验书上的参数,首先模拟进程分配内存,根据FIFO算法去进行计算,根据上表中的参数去比较,最后得出最终结果。
(四) 在本次实验的补充
这次实验中,可以把FIFO的概念应用到实际应用中,也可以模拟不同情况,例如改变页面的大小,观察不同页面置换算法的结果,实验出最合适的结果。
三、实验结论
本次实验是为了了解FIFO页面置换算法,实验出最终的结果,最后得出页面置换的结果及比较结果。
2019年os页面置换算法模拟实现实验报告
实验报告实验2 页面置换算法实现一、实验目的通过页面置换算法的程序实现,加深理解。
二、设计内容(1)概述在进程运行过程中,若其所要访问的页面不在内存所需把他们调入内存,但内存已无空闲时,为了保证进程能够正常运行,系统必须从内存中调入一页程序或数据送磁盘的对换区中。
但应将那个页面调出,须根据一定的算法来确定。
通常,把选择换出页面的算法称为页面置换算法。
置换算法的好坏,将直接影响到系统的性能。
一个好的页面置换算法,应具有较低的页面更换频率。
从理论上将讲,应将那些以后不再访问的页面换出,或把那些较长时间内不再访问的页面调出。
目前存在着不同的算法,他们都试图更接近与理论上的目标。
拥有页面交换机制的操作系统总是把当前进程中急需处理的部分页面换入到内存当中,而把更多暂时不需要处理的页面放置在外存当中。
由于进程需要处理的页面顺序不同,因此必须要在内存与外存之间进行页面交换,页面置换算法也就应运而生。
(2)设计原理1.先进先出(FIFO)算法这是最早出现的置换算法。
该算法总是淘汰最先进入内存的页面,即选择在内存停留时间最久的给予淘汰。
该算法实现简单,只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替代指针,使它总是指向最老的页面。
但该算法与进程实际运行的规律不相适应,因为在incheng 中,有些页面经常被访问,比如,含有全局变量,常用函数,例程等方面,FIFO 算法并不能保证这些页面不被淘汰。
当需要选择一个页面淘汰时,总是选择最先进入内存空间的那一个页面。
只要在系统中建立一个FIFO队列,以反映页面的活动情况。
被选择的页面总是处于队首的页面,而最近调入的页面永远存放在队列的尾部。
2.最近最久未使用(LRU)算法FIFO置换算法的性能之所以较差,是因为它所依据的条件是各个页面调入内存的时间,而页面调入的先后不能反映页面的使用情况。
最近最久未使用(LRU)的页面置换算法,是根据页面调入内存后的使用情况进行决策的。
页面置换算法模拟实验报告
if(block[i].timer >= block[pos].timer)
pos = i;//找到应予置换页面,返回BLOCK中位置
return pos;
}
void PRA::display(void)
{
for(int i=0; i<Bsize; i++)
}
}
int PRA::findSpace(void)
{
for(int i=0; i<Bsize; i++)
if(block[i].content == -1)
return i;//找到空闲内存,返回BLOCK中位置
return -1;
}
int PRA::findExist(int curpage)
{
if(exist != -1)
{
cout<<"不缺页"<<endl;
}
else
{
space = findSpace();
if(space != -1)
{
block[space] = page[i];
display();
}
else
{
for(int k=0; k<Bsize; k++)
for(int j=i; j<Psize; j++)
int findReplace(void); //查找应予置换的页面
void display(void); //显示
void FIFO(void);//FIFO算法
【精品】页面置换算法实验报告
【精品】页面置换算法实验报告一、实验目的了解操作系统中的页面置换算法,并实现FIFO、LRU和Clock算法。
二、实验原理页面置换算法是操作系统中用到的一种算法,其作用是在内存不够用时,选择牺牲已经在内存中的一些页,腾出更多的空间给新的内容。
本次实验主要实现了FIFO、LRU和Clock算法。
1、FIFO算法FIFO算法是最简单的页面置换算法,它采用先进先出的原则,即最先进入内存的页面应该最早被替换出去。
该算法的实现非常简单,只需要维护一个队列即可。
当需要置换页面时,选择队列的第一个页面进行替换即可。
2、LRU算法LRU算法是Least Recently Used的缩写,即最近最少使用算法。
该算法的核心思想是选择最久没有被使用的页面进行替换。
为了实现该算法,需要维护记录页面使用时间的链表、栈或队列等结构。
3、Clock算法Clock算法也叫做二次机会算法,是一种改良的FIFO算法。
它是基于FIFO算法的思想,并且每个页面都设置了一个使用位(use bit),用于记录该页面是否被使用过。
当需要置换一个页面时,检查该页面的使用位,如果该页面的使用位为1,则将该页面的使用位设置为0并移到队列的末尾,表示该页面有“二次机会”继续待在内存中;如果该页面的使用位为0,则选择该页面进行替换。
三、实验过程本次实验采用Python语言实现页面置换算法,并使用样例进行测试。
1、FIFO算法实现FIFO算法的实现非常简单,只需要用一个队列来维护已经在内存中的页面,当需要置换页面时,选择队列的第一个元素即可。
代码如下:```pythonfrom collections import dequeclass FIFO:def __init__(self, frame_num):self.frame_num = frame_numself.frames = deque(maxlen=frame_num)def access(self, page):if page in self.frames:return Falseif len(self.frames) >= self.frame_num:self.frames.popleft()self.frames.append(page)return True```2、LRU算法实现LRU算法的实现需要维护一个记录页面使用时间的链表或队列。
页面置换实验报告
计算机科学系实验报告书课程名:《操作系统》题目:虚拟存储器管理页面置换算法模拟实验班级:学号:姓名:一、实验目的与要求1.目的:请求页式虚存管理是常用的虚拟存储管理方案之一。
通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。
2.要求:本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
二、实验说明1.设计中虚页和实页的表示本设计利用C语言的结构体来描述虚页和实页的结构。
在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn 代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
2.关于缺页次数的统计为计算命中率,需要统计在20次的虚页访问中命中的次数。
为此,程序应设置一个计数器count,来统计虚页命中发生的次数。
每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。
最终命中率=count/20*100%。
3.LRU算法中“最近最久未用”页面的确定为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前countime值,表示该虚页的最后一次被访问时间。
页面置换实习报告
页面置换实习报告在计算机系统中,页面置换是一项至关重要的内存管理技术。
为了更深入地理解和掌握这一技术,我进行了相关的实习。
一、实习目的页面置换的目的在于当内存空间不足时,将一些暂时不使用的页面换出到外存,以腾出空间给当前需要的页面。
通过这次实习,我希望能够:1、深入理解页面置换算法的工作原理和特点。
2、掌握不同算法在实际应用中的性能差异。
3、提高自己的编程能力和问题解决能力。
二、实习环境本次实习使用的编程语言为 Python,开发环境为 PyCharm。
操作系统为 Windows 10。
三、页面置换算法简介1、先进先出(FIFO)算法FIFO 算法是最简单的页面置换算法之一。
它总是淘汰最先进入内存的页面。
这种算法实现简单,但可能会导致一些频繁使用的页面被过早置换出去。
2、最近最久未使用(LRU)算法LRU 算法根据页面最近的使用情况来决定置换。
即淘汰最长时间未被使用的页面。
该算法性能较好,但实现相对复杂,需要记录页面的使用时间。
3、最优置换(OPT)算法OPT 算法是一种理论上的最优算法,它淘汰未来最长时间内不会被使用的页面。
然而,由于在实际中无法准确预测未来的页面使用情况,所以该算法更多地用于理论分析。
四、实习过程1、算法实现首先,我使用 Python 实现了上述三种页面置换算法。
在实现过程中,我使用了数据结构来存储页面的相关信息,并通过模拟页面的调入和调出过程来计算缺页次数。
以 FIFO 算法为例,我使用一个队列来存储页面进入内存的顺序。
当需要置换页面时,将队首的页面淘汰。
2、性能测试为了比较不同算法的性能,我设计了一系列的测试用例。
测试用例包括不同的页面访问序列和不同的内存大小。
通过运行测试用例,我记录了每种算法在不同情况下的缺页次数。
3、结果分析对测试结果进行分析是实习的重要环节。
我发现,在不同的页面访问模式下,不同算法的表现差异较大。
例如,当页面访问序列具有局部性时,LRU 算法的表现通常优于FIFO 算法。
操作系统页面置换算法实验报告
学生实验报告姓名:年级专业班级学号成绩【实验结果或总结】(对实验结果进行相应分析,或总结实验的心得体会,并提出实验的改进意见1.程序的执行结果如下:(1)先进先出页面置换算法(2)最佳页面置换法(3)最近最久未使用置换算法2.以上三个程序通过数组和排序语句实现页面的三种基本调度算法。
(1)先进先出算法事先设定标志k=3,页面每发生一次置换k值增加1。
通过取k对3的余数来确定被置换的内存中的页面,当被访问页面存在于内存时,不置换,而直接输出原内存中的3个页面。
(2)最佳置换算法通过设定c1,c2,c3来记录当前内存中的页面被下一次访问的位置(时间),通过对c1,c2,c3的大小比较确定内存中需要被置换的页面。
三者中值最大的对应的内存页面选择被置换。
即实现了未来最长时间未访问的机制,即最佳置换算法。
(3)最近最久未使用置换算法的原理跟最佳置换算法类似。
初始设定变量c1,c2,c3记录当前内存中的以前的最近一次未被访问的位置(时间),比较三者的大小来确定需要被置换的页面。
三者中至最小的对应的内存页面选择被置换。
即实现了最近最久未使用的机制,即最近最久未使用置换算法。
3.上述三个程序分别能较好的模拟页面的基本调度算法,实现页面的置换,保证进程的正常执行。
但也分别存在一些不足。
(1)当内存中三个页面有部分相同时,程序不能很好的实现调度。
即c1,c2,c3中有部分变量值相等,源程序可能不能准确的找到调度顺序,如图所示。
(LRU算法)改进的方法为在c1,c2,c3间的大小比较判断语句中增加关系语句的默认处理办法,当三者间有部分相同时,默认选择按从前到后的顺序执行。
比如当c2=c3的时候选择页面a[2]进行置换。
当c1=c2=c3时则选择页面a[0]进行置换。
也就相当于无法运用LRU算法调用的时候折衷采取先进先出置换算法,以实现页面的合理调度,提高页面的利用效率。
指导教师签名:20 年月日【备注】。
页面置换算法实验报告
页面置换算法实验报告页面置换算法实验报告一、引言在计算机操作系统中,页面置换算法是一种重要的内存管理策略。
当物理内存不足以容纳所有需要运行的进程时,操作系统需要根据一定的算法将部分页面从内存中换出,以便为新的页面腾出空间。
本实验旨在通过实际操作,对比不同的页面置换算法在不同场景下的性能表现。
二、实验背景在计算机系统中,每个进程都有自己的虚拟内存空间,而物理内存空间是有限的。
当进程需要访问某个页面时,如果该页面不在物理内存中,就会发生缺页中断,操作系统需要根据页面置换算法选择一个页面将其换出,然后将需要访问的页面换入。
常见的页面置换算法有先进先出(FIFO)、最近最久未使用(LRU)、时钟(Clock)等。
三、实验目的本实验旨在通过模拟不同的页面置换算法,比较它们在不同情况下的缺页率和效率。
通过实验结果,评估各个算法在不同场景下的优劣,为实际系统的内存管理提供参考。
四、实验设计与方法本实验选择了三种常见的页面置换算法进行比较:FIFO、LRU和Clock。
我们使用C++编程语言模拟了一个简单的内存管理系统,并通过产生不同的访存序列来模拟不同的场景。
实验中,我们设置了不同的物理内存大小,访存序列长度和页面大小,以模拟不同的系统环境。
五、实验结果与分析在实验中,我们分别测试了FIFO、LRU和Clock算法在不同的系统环境下的表现。
通过统计不同算法的缺页率和运行时间,得出以下结论:1. FIFO算法FIFO算法是最简单的页面置换算法,它按照页面进入内存的顺序进行置换。
实验结果表明,FIFO算法在缺页率方面表现一般,特别是在访存序列具有局部性的情况下,其性能明显下降。
这是因为FIFO算法无法区分不同页面的重要性,可能会将经常使用的页面换出,导致缺页率升高。
2. LRU算法LRU算法是一种基于页面访问时间的置换算法,它认为最近被访问的页面很可能在未来会被再次访问。
实验结果表明,LRU算法在缺页率方面表现较好,特别是在访存序列具有较强的局部性时,其性能明显优于FIFO算法。
页面置换算法实验报告
页面置换算法实验报告一、实验目的本次实验的目的是通过模拟页面置换算法的过程,了解不同算法的优缺点,掌握算法的实现方法,以及对算法的性能进行评估。
二、实验原理页面置换算法是操作系统中的一个重要概念,它是为了解决内存不足的问题而产生的。
当系统中的进程需要使用内存时,如果内存已经被占满,就需要将一些页面从内存中置换出去,以便为新的页面腾出空间。
页面置换算法就是用来决定哪些页面应该被置换出去的算法。
常见的页面置换算法有以下几种:1. 最佳置换算法(OPT)最佳置换算法是一种理论上的最优算法,它总是选择最长时间内不会被访问的页面进行置换。
但是,由于无法预测未来的页面访问情况,因此最佳置换算法无法在实际中使用。
2. 先进先出置换算法(FIFO)先进先出置换算法是一种简单的置换算法,它总是选择最先进入内存的页面进行置换。
但是,这种算法容易出现“抖动”现象,即频繁地将页面置换出去,然后再将其置换回来。
3. 最近最久未使用置换算法(LRU)最近最久未使用置换算法是一种比较常用的置换算法,它总是选择最长时间未被访问的页面进行置换。
这种算法可以避免“抖动”现象,但是实现起来比较复杂。
4. 时钟置换算法(Clock)时钟置换算法是一种改进的FIFO算法,它通过维护一个环形链表来实现页面置换。
当需要置换页面时,算法会从当前位置开始扫描链表,如果找到一个未被访问的页面,则将其置换出去。
如果扫描一圈后都没有找到未被访问的页面,则将当前位置的页面置换出去。
三、实验过程本次实验使用Python语言编写了一个页面置换算法模拟程序,可以模拟上述四种算法的过程,并输出算法的性能指标。
程序的主要流程如下:1. 读取输入文件,获取页面访问序列和内存大小等参数。
2. 根据选择的算法,初始化相应的数据结构。
3. 遍历页面访问序列,模拟页面置换的过程。
4. 输出算法的性能指标,包括缺页率、页面置换次数等。
下面分别介绍四种算法的实现方法。
1. 最佳置换算法(OPT)最佳置换算法需要预测未来的页面访问情况,因此需要遍历整个页面访问序列,找到最长时间内不会被访问的页面。
页面置换算法实验报告实验心得
页面置换算法实验报告实验心得
1. 实验背景
页面置换算法是操作系统中的重要概念,主要用于解决内存不足的问题。
它通过将当前不需要的页面从内存中移出,以腾出空间给即将到来的页面。
本次实验主要是通过模拟不同页面置换算法的过程,来更好地了解和掌握这些算法的实现原理及其优缺点。
2. 实验过程
本次实验中,我们使用了三种页面置换算法,分别是最优页面置换算法(OPT)、先进先出页面置换算法(FIFO)和最近最久未使用页面置换算法(LRU)。
在模拟的过程中,我们需要先给每个页面设置一个访问时间,然后根据不同算法的实现原理来决定哪个页面被置换出去。
通过实验,我们发现不同的算法在不同情况下的效果也会不同。
比如,当页面访问时间相对均匀分布时,FIFO算法的效果会比较好,而当页面访问时间存在一定规律性时,LRU算法的效果则会更好。
而OPT 算法则需要未来时间的信息,一般情况下难以实现,但是在某些特殊情况下,它也可以发挥出比较好的效果。
3. 实验心得
通过本次实验,我更深入地了解了页面置换算法的实现原理,学会了如何根据不同算法的特点来选择合适的算法来解决内存不足的问题。
在实验过程中,我也学会了如何使用Python编程语言来模拟不同算法的过程,提高了我的编程能力。
通过不断地调试和实验,我还学会了如何发现问题和解决问题的方法,这对我今后的学习和工作都大有裨益。
总之,本次实验不仅加深了我对操作系统中重要概念的理解,也提高了我的编程和分析问题的能力,让我对未来的学习和工作充满信心和热情。
分页置换实验报告
一、实验目的1. 理解分页置换算法的基本原理及其在虚拟内存管理中的作用。
2. 掌握几种常见的分页置换算法(如FIFO、LRU等)的模拟实现方法。
3. 分析不同分页置换算法的性能差异,并评估其在实际应用中的适用性。
二、实验原理分页置换算法是虚拟内存管理中的一种关键技术,其主要目的是在有限的物理内存中模拟更大的内存空间,以满足程序对内存的需求。
当物理内存不足时,系统会根据一定的置换算法选择某些页面进行淘汰,以腾出空间给新的页面。
常见的分页置换算法包括:1. FIFO(先进先出)算法:根据页面进入内存的顺序进行淘汰,即先进入内存的页面先被淘汰。
2. LRU(最近最少使用)算法:淘汰最近一段时间内最长时间未被访问的页面。
3. OPT(最佳置换)算法:淘汰未来最长时间内不再被访问的页面。
三、实验内容1. FIFO算法实现:模拟FIFO算法,记录缺页中断次数和缺页率。
2. LRU算法实现:模拟LRU算法,记录缺页中断次数和缺页率。
3. 性能对比分析:对比FIFO和LRU算法的性能差异,分析其适用场景。
四、实验步骤1. 数据准备:生成一系列页面访问序列,用于模拟分页置换过程。
2. FIFO算法模拟:- 初始化一个固定大小的内存缓冲区。
- 遍历页面访问序列,对于每个页面:- 检查是否已在内存缓冲区中。
- 如果不在,则将内存缓冲区中最先进入的页面淘汰,并将当前页面加入内存缓冲区。
- 记录缺页中断次数。
3. LRU算法模拟:- 初始化一个内存缓冲区,并维护一个访问顺序链表。
- 遍历页面访问序列,对于每个页面:- 检查是否已在内存缓冲区中。
- 如果不在,则将内存缓冲区中最少访问的页面淘汰,并将当前页面加入内存缓冲区。
- 更新访问顺序链表。
- 记录缺页中断次数。
4. 性能对比分析:- 对比FIFO和LRU算法的缺页中断次数和缺页率。
- 分析两种算法的性能差异及其适用场景。
五、实验结果与分析1. FIFO算法:FIFO算法简单易实现,但性能较差。
页面置换算法实验报告
页面置换算法实验报告背景页面置换算法是计算机操作系统中的一个重要概念,它用于解决操作系统需要共享有限的物理内存资源给多个进程使用的问题。
在操作系统中,每个进程都有自己的虚拟地址空间,但实际的物理内存资源是有限的。
当物理内存不足时,操作系统需要根据一定的策略将一部分进程暂时从内存中移出,以便为其他进程让出空间,而后再从外存中将其重新加载到内存中。
这个过程就是页面置换。
页面置换算法有很多种,比如最优页面置换算法(Optimal)、先进先出页面置换算法(FIFO)、最近最久未使用页面置换算法(LRU)等等。
不同的算法对于系统性能、响应时间等指标有着不同的影响,因此在实际应用中需要选择合适的算法来平衡各种需求。
本实验旨在通过模拟页面置换算法,并对不同算法进行性能分析,以便了解各种算法的优缺点,为实际系统的选择提供依据。
分析在实验中,我们选择了三种常用的页面置换算法,分别是FIFO、LRU和Optimal。
下面对这三种算法进行详细的分析和说明。
先进先出页面置换算法(FIFO)FIFO算法是最简单和最直观的页面置换算法。
它按照页面进入内存的顺序来选择被淘汰的页面。
当内存不足时,选择最早进入内存的页面进行置换,即将其从内存中移出。
FIFO算法不需要进行进一步的页面访问计算,只需要维护一个页面进入内存的队列即可,因此实现起来比较简单。
然而,由于FIFO算法没有考虑页面的访问频率和重要性,所以可能会导致被频繁访问的页面被淘汰出内存,从而影响系统的性能。
最近最久未使用页面置换算法(LRU)LRU算法是一种基于”最近使用原则”的页面置换算法。
它根据页面最近被访问的时间来选择被淘汰的页面。
当内存不足时,选择最长时间未被访问的页面进行置换,即将其从内存中移出。
LRU算法需要维护一个页面访问时间的记录,以便在需要置换时能够快速找到最近最久未使用的页面。
相比于FIFO算法,LRU算法更加合理地利用了页面的访问情况,但实现起来相对复杂一些。
页面置换算法的模拟【实验报告】
实验三页面置换算法的模拟专业:信息管理与信息系统学号:2014******姓名:陈*实验日期:2016年12月23日一、实验目的通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。
二、实验要求基于一个虚拟存储区和内存工作区,设计下述算法并计算访问命中率。
1、先进先出的算法(FIFO)2、最近最久未使用算法(LRU)命中率=1-页面失效次数/页地址流(序列)长度三、实验方法内容1.算法设计思路(流程图)2.算法中用到的数据结构(1)int serial[],保存要执行的序列(2)int block[],分配给该进程的物理块(3)int order[],各页面进入内存的次序3.主要模块(函数名)(4)void print(int n,int numBlock),输出已在内存的页面,numBlock为物理块的个数(5)int isHave(int page,int numBlock),查找block数组,看内存中是否已存在page对应的页面(6)void FIFO(int numBlock),FIFO算法,numBlock为物理块的个数(7)void replace(int num,int n),用于LRU算法,当num页面已经在内存里面,则将其在order数组的位置换到最后(8)void LRU(int numBlock),LRU算法,numBlock为物理块的个数(9)int main(),主函数三、实验结果1.执行结果(1)在有三个物理块的内存中执行FIFO算法的结果(2)在有三个物理块的内存中执行LRU算法的结果(3)在有四个物理块的内存中执行FIFO算法的结果(4)在有四个物理块的内存中执行LRU算法的结果2.结果分析(1)所获结果正确;(2)LRU算法的命中率高于FIFO算法,但实现比较难;五、实验总结(1)通过《页面置换算法的模拟》这个实验,加深了对页面置换和命中率、缺页率的理解;(2)更加了解了FIFO算法和LRU算法。
页面置换算法实践报告
页面置换算法实践报告页面置换算法(Page Replacement Algorithm)是操作系统中用于管理虚拟内存的重要算法之一。
其目的是在有限的物理内存空间中,将进程所需的页面加载到内存中,并根据一定的策略替换掉不再被使用的页面,以提高内存利用率和系统性能。
在本次实践报告中,我将重点介绍三种常见的页面置换算法:先进先出(FIFO)、最近最久未使用(LRU)和最不经常使用(LFU)。
先进先出(FIFO)算法是最简单的页面置换算法之一。
它根据页面进入内存的先后顺序进行页面置换。
当一个页面需要被替换时,选择最早进入内存的页面进行替换。
虽然FIFO算法的实现简单,但它无法很好地反映页面的使用频率和重要性,容易发生“缺页率抖动”的问题。
缺页率抖动指的是在某些场景下,缺页率会频繁地快速上升,然后又快速下降。
最近最久未使用(LRU)算法是一种基于页面历史访问记录的页面置换算法。
它认为最近被访问过的页面是最有可能在未来被访问的,因此选择最近最久未使用的页面进行替换。
LRU算法可以较为准确地反映页面的使用频率,避免了FIFO算法的缺点。
但由于需要记录页面的访问历史,因此实现相对复杂,需要额外的开销。
最不经常使用(LFU)算法是一种基于页面使用频率的页面置换算法。
它认为使用频率最低的页面是最不重要的,因此选择最不经常使用的页面进行替换。
LFU算法可以较好地反映页面的使用频率,对于一些热点页面和冷门页面的处理较为准确。
但由于需要记录页面的使用次数,因此实现相对复杂,需要额外的开销。
根据实际情况选择合适的页面置换算法对于系统的性能影响非常重要。
一般来说,FIFO算法比较适用于缺页率较低的情况,而LRU算法则适用于需要较高精确度的场景,而LFU算法则适用于需要特别关注页面使用频率的场景。
在实践中,我们可以使用模拟算法来进行页面置换算法的实验。
通过构造不同的页面访问序列,我们可以测试不同算法的效果并进行比较。
在实验过程中,我们可以观察不同算法的缺页率、替换次数、访问延迟等指标,以评估算法的性能。
页面置换算法实验报告实验心得
页面置换算法实验报告实验心得
一、实验背景
页面置换算法是操作系统中的一个重要概念,是内存管理机制的核心内容之一。
页面置换算法是为了解决内存有限的问题,通过将不常用的页面换出,腾出空间给新的页面使用。
页面置换算法有多种,如LRU、FIFO、Clock等。
本次实验主要研究这几种置换算法的实现原理并通过编程实现。
二、实验过程
本次实验首先通过查阅相关资料了解了LRU、FIFO、Clock等页面置换算法的实现原理。
在了解了原理之后,我们通过使用Python语言编写程序来模拟这些算法的实现。
实验中,我们首先编写了一段程序来生成一个不同大小的访问页面序列,并将生成的页面序列分别输入到LRU、FIFO、Clock算法的模拟程序中,观察算法的置换效果,并通过比较不同算法的置换效果来评估各个算法的优劣。
三、实验结果
通过实验,我们观察到在不同的访问页面序列下,各个算法的置换效果都有所不同。
在某些情况下,FIFO算法的置换效果最好,而在
其他情况下,LRU算法的置换效果最佳。
同时,在一些场景下,Clock算法的置换效果也不错。
这说明不同的页面置换算法对于不同的内存使用情况有着不同的适用性。
四、实验心得
通过本次实验,我们深入了解了页面置换算法的实现原理,并通过编程实现了这些算法。
通过实验,我们发现在不同的场景下,不同的页面置换算法的效果会有所不同。
因此,在实际应用中,我们需要考虑内存使用情况,选择最适合的页面置换算法来提高内存利用率和程序性能。
同时,通过这次实验,我们也了解了Python编程的基本语法和常用库的使用方法,对我们的编程能力有了一定的提高。
操作系统—页面置换算法实验报告
操作系统—页面置换算法实验报告本报告旨在介绍操作系统中的页面置换算法,包括实验的目的和背景以及页面置换算法的概念和作用。
本实验旨在描述实验环境以及所使用的页面置换算法,包括FIFO、LRU、OPT等。
同时,还会详细介绍实验步骤和设置的参数。
实验环境操作系统:Windows 10编程语言:C++开发环境:Visual。
2019页面置换算法FIFO(First-In-First-Out)算法:按照先进先出的原则置换页面,最早进入内存的页面会被置换出去。
LRU(Least Recently Used)算法:根据页面的使用情况,置换最长时间没有被访问过的页面。
OPT(Optimal)算法:理论上最优的页面置换算法,根据未来一段时间内页面的访问情况,选择最少使用的页面进行置换。
实验步骤创建一个模拟操作系统的C++程序。
设定内存大小、页面大小和页面数等参数。
实现FIFO算法,将其应用于模拟操作系统中的页面置换过程。
实现LRU算法,将其应用于页面置换过程。
实现OPT算法,将其应用于页面置换过程。
运行模拟程序,观察不同页面置换算法的效果。
分析比较不同算法的页面置换结果,评估其优缺点。
参数设置内存大小:512MB页面大小:4KB页面数:128以上是本次实验的实验设计,将通过创建模拟操作系统程序,实现FIFO、LRU和OPT等页面置换算法,并对其结果进行比较和评估。
本实验展示了页面置换算法的不同性能,并分析了各种算法的优缺点。
实验结果表明,不同的页面置换算法对系统性能有显著影响。
以下是对各种算法的性能分析:先进先出(FIFO)算法:该算法将最早进入内存的页面置换出去。
优点是简单易实现,缺点是无法适应程序的访问模式变化,容易产生"Belady异常"。
先进先出(FIFO)算法:该算法将最早进入内存的页面置换出去。
优点是简单易实现,缺点是无法适应程序的访问模式变化,容易产生"Belady异常"。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验编号4名称页面置换算法模拟实验目的通过请求页式存储管理中页面置换算法模拟设计,以便:1、了解虚拟存储技术的特点2、掌握请求页式存储管理中页面置换算法实验内容与步骤设计一个虚拟存储区和内存工作区,并使用FIFO和LRU算法计算访问命中率。
<程序设计>先用srand()函数和rand()函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算相应的命中率。
<程序1>#include <windows.h> //Windows版,随机函数需要,GetCurrentProcessId()需要//#include <stdlib.h>//Linux版,随机函数srand和rand需要#include <stdio.h> //printf()需要#define TRUE 1#define FALSE 0#define INVALID -1#define NULL 0#define total_instruction 320 //共320条指令#define total_vp 32 //虚存页共32页#define clear_period 50 //访问次数清零周期typedef struct{//定义页表结构类型(页面映射表PMT)int pn, pfn, counter, time;//页号、页框号(块号)、一个周期内访问该页面的次数、访问时间}PMT;PMT pmt[32];typedef struct pfc_struct{//页面控制结构int pn, pfn;struct pfc_struct *next;}pfc_type;pfc_type pfc[32];pfc_type *freepf_head,*busypf_head,*busypf_tail;//空闲页头指针,忙页头指针,忙页尾指针int NoPageCount; //缺页次数int a[total_instruction];//指令流数组int page[total_instruction], offset[total_instruction];//每条指令的页和页内偏移void initialize( int );void FIFO( int );//先进先出void LRU( int );//最近最久未使用void NRU( int );//最近最不经常使用/****************************************************************************main()*****************************************************************************/void main(){int i,s;//srand(10*getpid());//用进程号作为初始化随机数队列的种子//Linux版srand(10*GetCurrentProcessId());//用进程号作为初始化随机数的种子//Windows 版s=rand()%320;//在[0,319]的指令地址之间随机选取一起点mfor(i=0;i<total_instruction;i+=4){//产生指令队列if(s<0||s>319){printf("when i==%d,error,s==%d\n",i,s);exit(0);}a[i]=s;//任意选一指令访问点m。
(将随机数作为指令地址m)a[i+1]=a[i]+1;//顺序执行下一条指令a[i+2]=rand()%(s+2);//在[0,m+1]的前地址之间随机选取一地址,记为m'a[i+3]=a[i+2]+1;//顺序执行一条指令s = a[i+2] + (int)rand()%(320-a[i+2]);//在[m',319]的指令地址之间随机选取一起点mif((a[i+2]>318)||(s>319)) printf("a[%d+2,a number which is:%d and s=%d\n",i,a[i+2],s);}for(i=0;i<total_instruction;i++){//将指令序列变成页地址流page[i]=a[i]/10;offset[i]=a[i]%10;}for(i=4;i<=32;i++){//内存块分别为4块、5块、...32块时的命中率printf("%2d page frames",i);FIFO(i);//计算用FIFO置换时,有i个内存块时的命中率LRU(i);//最近最久未使用NRU(i);//最近最不经常使用printf("\n");}}/***************************************************************************initialize()形参:内存块数功能:初始化*****************************************************************************/void initialize(int total_pf)//初始化相关数据结构,形参total_pf是用户进程的内存页面数{int i;NoPageCount=0;//缺页次数,初始化为0for(i=0;i<total_vp;i++){pmt[i].pn=i;//填逻辑页号pmt[i].pfn=INVALID;//物理页面号为-1pmt[i].counter=0;//置页面控制结构中的访问次数为0pmt[i].time=-1; //置页面控制结构中的时间为-1}for(i=0;i<total_pf-1;i++){//建立pfc[i-1]和pfc[i]之间的连接pfc[i].next=&pfc[i+1];pfc[i].pfn=i;}pfc[total_pf-1].next=NULL;pfc[total_pf-1].pfn=total_pf-1;freepf_head=&pfc[0];//页面队列的头指针为pfc[0]}/*****************************************************************************FIFO算法形参:内存块数输出:命中率*****************************************************************************/ void FIFO(int total_pf)//形参total_pf是用户进程的内存页面数{int i;pfc_type *p;initialize(total_pf);//初始化相关数据结构busypf_head=busypf_tail=NULL;for(i=0;i<total_instruction;i++){//访问每条指令if(pmt[page[i]].pfn==INVALID){//缺页NoPageCount+=1;//失效(缺页)次数增1if(freepf_head==NULL){//无空闲页面p=busypf_head->next;pmt[busypf_head->pn].pfn=INVALID;freepf_head=busypf_head;//释放忙页面队列的第一个页面freepf_head->next=NULL;busypf_head=p;}p=freepf_head->next;//按FIFO方式调新页面入内存freepf_head->next=NULL;freepf_head->pn=page[i];pmt[page[i]].pfn=freepf_head->pfn;if(busypf_tail==NULL) busypf_head=busypf_tail=freepf_head;else{busypf_tail->next=freepf_head;//free页面减少一个busypf_tail=freepf_head;}freepf_head=p;}}printf(" FIFO: %6.4f",1-(float)NoPageCount/320);}/****************************************************************************LRU算法(最近最久未使用)形参:内存块数输出:命中率*****************************************************************************/ void LRU(int total_pf)//形参total_pf是给用户进程的内存块数{int min,minj,i,j,present_time;initialize(total_pf);present_time=0;for(i=0;i<total_instruction;i++){if(pmt[page[i]].pfn==INVALID){//页面失效NoPageCount++;if(freepf_head==NULL){//无空闲页面min=32767;for(j=0;j<total_vp;j++)//找出time的最小值if(min>pmt[j].time&&pmt[j].pfn!=INVALID){min=pmt[j].time;minj=j;}freepf_head=&pfc[pmt[minj].pfn];//腾出一个单元pmt[minj].pfn=INVALID;pmt[minj].time=-1;freepf_head->next=NULL;}pmt[page[i]].pfn=freepf_head->pfn;//有空闲页面,改为有效pmt[page[i]].time=present_time;freepf_head=freepf_head->next;//减少一个free页面}else pmt[page[i]].time=present_time;//更新该页面的访问时间(并非真的时间,而是循环次数,每执行一条指令,时间加1)present_time++;//当前时间加1}printf(" LRU: %6.4f",1-(float)NoPageCount/320);}/****************************************************************************NRU算法(最近最不经常使用)形参:内存块数输出:命中率*****************************************************************************/void NRU(int total_pf){int i,j,dp,cont_flag,old_dp;initialize(total_pf);dp=0;for(i=0;i<total_instruction;i++){if(pmt[page[i]].pfn==INVALID){//缺页NoPageCount++;if(freepf_head==NULL){ //无空闲页面cont_flag=TRUE;old_dp=dp;while(cont_flag)if(pmt[dp].counter==0&&pmt[dp].pfn!=INVALID)cont_flag=FALSE;else{dp++;if(dp==total_vp)dp=0;if(dp==old_dp)for(j=0;j<total_vp;j++)pmt[j].counter=0;}freepf_head=&pfc[pmt[dp].pfn];pmt[dp].pfn=INVALID;freepf_head->next=NULL;}pmt[page[i]].pfn=freepf_head->pfn;freepf_head=freepf_head->next;}elsepmt[page[i]].counter=1;if(i%clear_period==0)for(j=0;j<total_vp;j++)pmt[j].counter=0;}printf(" NUR: %6.4f",1-(float)NoPageCount/320); }实验结果(写出结果,截图也可)总结(收获,未实现的步骤)这次操作系统课程设计,让我们对操作系统有了更深的认识,首先操作系统是一管理电脑硬件与软件资源的程序,同时也是计算机系统内核与基石。