第2章 数字逻辑基础(2)PPT课件
合集下载
《数字逻辑基础》课件

公式化简法
使用逻辑代数公式对逻辑函数进行化简,通过消去多余的项和简化 表达式来得到最简结果。
卡诺图化简法
使用卡诺图对逻辑函数进行化简,通过填1、圈1、划圈和填0的方 法来得到最简结果。
03
组合逻辑电路
组合逻辑电路的分析
组合逻辑电路的输入和输出
分析组合逻辑电路的输入和输出信号,了解它们之间的关系。
交通信号灯控制系统的设计与实现
交通信号灯简介
交通信号灯是一种用于控制交通流量的电子设备,通常设置在路口或 交叉口处。
设计原理
交通信号灯控制系统的设计基于数字逻辑电路和计算机技术,通过检 测交通流量和车流方向来实现信号灯的自动控制。
实现步骤
首先确定系统架构和功能需求,然后选择合适的元件和芯片,接着进 行电路设计和搭建,最后进行测试和调整。
真值表
通过列出输入和输出信号的所有可能组合,构建组合逻辑电路的真值表,以确定输出信 号与输入信号的逻辑关系。
逻辑表达式
根据真值表,推导出组合逻辑电路的逻辑表达式,表示输入和输出信号之间的逻辑关系 。
组合逻辑电路的设计
确定逻辑功能
根据实际需求,确定所需的逻辑功能,如与、或、非等。
设计逻辑表达式
根据确定的逻辑功能,设计相应的逻辑表达式,用于描述输入和 输出信号之间的逻辑关系。
实现电路
根据逻辑表达式,选择合适的门电路实现组合逻辑电路,并完成 电路的物理设计。
常用组合逻辑电路
01
02
03
04
编码器
将输入信号转换为二进制码的 电路,用于信息处理和控制系
统。
译码器
将二进制码转换为输出信号的 电路,用于数据分配和显示系
统。
多路选择器
使用逻辑代数公式对逻辑函数进行化简,通过消去多余的项和简化 表达式来得到最简结果。
卡诺图化简法
使用卡诺图对逻辑函数进行化简,通过填1、圈1、划圈和填0的方 法来得到最简结果。
03
组合逻辑电路
组合逻辑电路的分析
组合逻辑电路的输入和输出
分析组合逻辑电路的输入和输出信号,了解它们之间的关系。
交通信号灯控制系统的设计与实现
交通信号灯简介
交通信号灯是一种用于控制交通流量的电子设备,通常设置在路口或 交叉口处。
设计原理
交通信号灯控制系统的设计基于数字逻辑电路和计算机技术,通过检 测交通流量和车流方向来实现信号灯的自动控制。
实现步骤
首先确定系统架构和功能需求,然后选择合适的元件和芯片,接着进 行电路设计和搭建,最后进行测试和调整。
真值表
通过列出输入和输出信号的所有可能组合,构建组合逻辑电路的真值表,以确定输出信 号与输入信号的逻辑关系。
逻辑表达式
根据真值表,推导出组合逻辑电路的逻辑表达式,表示输入和输出信号之间的逻辑关系 。
组合逻辑电路的设计
确定逻辑功能
根据实际需求,确定所需的逻辑功能,如与、或、非等。
设计逻辑表达式
根据确定的逻辑功能,设计相应的逻辑表达式,用于描述输入和 输出信号之间的逻辑关系。
实现电路
根据逻辑表达式,选择合适的门电路实现组合逻辑电路,并完成 电路的物理设计。
常用组合逻辑电路
01
02
03
04
编码器
将输入信号转换为二进制码的 电路,用于信息处理和控制系
统。
译码器
将二进制码转换为输出信号的 电路,用于数据分配和显示系
统。
多路选择器
数字逻辑电路 PPT课件

TTL电路具有较快的开关速度,较强的抗 干扰能力以及足够大的输出摆幅,所以是目前 在各个领域包括医学电子设备中使用最广泛的 逻辑电路系统。实际的集成门电路比这里的要 复杂些,在输出端还有放大器和跟随器,用来 保证逻辑电平符合要求,增加负载能力。
在一个实际的数字系统中,往往需要能实现多种
多样逻辑功能的门电路,只有一种与非门作为基本单 元使用起来显然是不方便的。在TTL门电路的系列产 品中,常用的还有或非门、与或非门、与门、或门等 等。虽然门电路的种类很多,但它们或者是由与非门 稍加改动得到的,或者是由与非门中的若干部分组合 成的,有的就是与非门的一部分。如,与非门只有一 个输入端时成了非门;在与非门后再连一个非门成了 与门;在与非门前面对于每个输入端各接一个非门成 了或门。可以说与非门可以完成一切逻辑运算。因此, 只要掌握与非门典型电路的工作原理和分析方法,就 不难对其它形式的门电路进行分析了。
2. 或门电路 上图为简单的具有两个输入端的二极管或门电路、常用
逻辑符号、逻辑表达式及真值表。 其中A、B分别为两个输入端,F为输出端。这种电路之
所以能实现或运算,是因为输出端的电平被最高电平的输入 端钳位,只要输入端有一个高电平时,输出就是高电平。也 就是说输入有一个为1时,输出即为1。输入端全为0时,输 出才为0。
阐述逻辑控制、脉冲计数和数字显示的基本原 理,介绍常用的计数器和A/D、D/A转换器。
主要内容
第一节 基本逻辑电路 第二节 双稳态触发器 第三节 脉冲的计数和显示 第四节 数模和模数转换
第一节 基本逻辑电路
所谓逻辑是指“条件”与“结果”的 关系。逻辑电路(logic circuit)是用电路的 输入信号反映“条件”,用电路的输出信 号反映“结果”。电路的输出与输入之间 构成一定的逻辑关系。
在一个实际的数字系统中,往往需要能实现多种
多样逻辑功能的门电路,只有一种与非门作为基本单 元使用起来显然是不方便的。在TTL门电路的系列产 品中,常用的还有或非门、与或非门、与门、或门等 等。虽然门电路的种类很多,但它们或者是由与非门 稍加改动得到的,或者是由与非门中的若干部分组合 成的,有的就是与非门的一部分。如,与非门只有一 个输入端时成了非门;在与非门后再连一个非门成了 与门;在与非门前面对于每个输入端各接一个非门成 了或门。可以说与非门可以完成一切逻辑运算。因此, 只要掌握与非门典型电路的工作原理和分析方法,就 不难对其它形式的门电路进行分析了。
2. 或门电路 上图为简单的具有两个输入端的二极管或门电路、常用
逻辑符号、逻辑表达式及真值表。 其中A、B分别为两个输入端,F为输出端。这种电路之
所以能实现或运算,是因为输出端的电平被最高电平的输入 端钳位,只要输入端有一个高电平时,输出就是高电平。也 就是说输入有一个为1时,输出即为1。输入端全为0时,输 出才为0。
阐述逻辑控制、脉冲计数和数字显示的基本原 理,介绍常用的计数器和A/D、D/A转换器。
主要内容
第一节 基本逻辑电路 第二节 双稳态触发器 第三节 脉冲的计数和显示 第四节 数模和模数转换
第一节 基本逻辑电路
所谓逻辑是指“条件”与“结果”的 关系。逻辑电路(logic circuit)是用电路的 输入信号反映“条件”,用电路的输出信 号反映“结果”。电路的输出与输入之间 构成一定的逻辑关系。
《数字逻辑基础》-第02章(2)

险象的分类 按险象脉冲的极性分: 若险象脉冲为负极性脉冲,则称为“0”型险象; 若险象脉冲为正极性脉冲,则称为“1”型险象。 按输入变化前后,“正常的输出”是否应该变化分: 若输出本应静止不变,但险象使输出发生了不应有的短暂变化,则 称为静态险象; 在输出应该变化的情况下出现了险象,则称为动态险象。 四种组合险象示意:
静态“0”型险象 输出波形 静态“1”型险象 动态“0”型险象 动态“1”型险象 输入信号变化的时刻
2.5.2
险象的判断与消除
1. 用代数法判断及消除险象 继续考察函数 F AB A C 令B=1、C=1保持不变,令A变化,有:
F A 1 A 1 A A
再看,对F 作变换:
0101 0011 1 1001 „„ X „„ Y „„ C-1 „„ S
S≤ 9
结果 Z = S, W = 0
1 (2) 设 C1 , X 5 Y 9 , ,则 S X Y C1。因S >9,故S不是所求的Z, 15 须对S进行加6修正,而W应为1。
0101 1001 1 1111 „„ X „„ Y „„ C-1 „„ S 1 1 1 1 „„ S 的低4位 0 1 1 0 „„ 6 Z = 0101 结果 W = 1 1 0 1 0 1 „„ Z 丢弃
F A A A A
?
因 A 多经过非门,比 A 的变化有延时,故出现险象。
?
上式中出现
或 形式的项,这样的项会产生险象。
险象判断法: 对于逻辑表达式 F ( xn , xi , x1 ) ,考察 xi (i n 1) 变化、其他量不 变时是否产生险象,则将其他量的固定值代入式中。若得到的表达式 含有形如i xi 或i xi 形式的项,则该逻辑表达式可能产生险象。 x x
数字逻辑基础教学课件PPT

4. 各种表示方法间的相互转换
(1)逻辑函数式→真值表 举例:例1-6(P9) (2)逻辑函数式→逻辑图 举例:例1-7(P10) (3)逻辑图→逻辑函数式 方法:从输入到输出逐级求取。
举例:例1-8(P10)
(4)真值表→函数式
方法:将真值表中Y为 1 的输入变量相与,取 值为 1 用原变量表示,0 用反变量表示, 将这 些与项相加,就得到逻辑表达式。这样得到的 逻辑函数表达式是标准与-或逻辑式。
断开为0;灯为Y,灯亮为1,灭为0。
真值表
AB Y 00 0 01 1 10 1 11 1
由“或”运算的真值表可知
“或”运算法则为:
有1出
0+0 = 0 1+0 = 1
1
0+1 = 1 1+1 = 1
全0为
0
⒊ 表达式
逻辑代数中“或”逻辑关系用“或”运算 描述。“或”运算又称逻辑加,其运算符为 “+”或“ ”。两变量的“或”运算可表示
0
卡诺图是一 种用图形描 述逻辑函数
的方法。
00 0 01 0 11 0
10 1
例:函数 F=AB + AC
ABC F
000 0
1 001 1 010 0
1 011 1
1 100 1
0
101 1 110 0
1 111 0
1.逻辑函数式
特点:
例:函数 F=AB + AC
(1)便于运算; (2)便于用逻辑图实现; (3)缺乏直观。
真值表
K
Y
0
1
1
0
由“非”运算的真值表可知 “非”运算法则为:
0 =1 1 =0
⒊ 表达式
“非”逻辑用“非”运算描述。“非”运 算又称求反运算,运算符为“-”或“¬”, “非”运算可表示为:
(1)逻辑函数式→真值表 举例:例1-6(P9) (2)逻辑函数式→逻辑图 举例:例1-7(P10) (3)逻辑图→逻辑函数式 方法:从输入到输出逐级求取。
举例:例1-8(P10)
(4)真值表→函数式
方法:将真值表中Y为 1 的输入变量相与,取 值为 1 用原变量表示,0 用反变量表示, 将这 些与项相加,就得到逻辑表达式。这样得到的 逻辑函数表达式是标准与-或逻辑式。
断开为0;灯为Y,灯亮为1,灭为0。
真值表
AB Y 00 0 01 1 10 1 11 1
由“或”运算的真值表可知
“或”运算法则为:
有1出
0+0 = 0 1+0 = 1
1
0+1 = 1 1+1 = 1
全0为
0
⒊ 表达式
逻辑代数中“或”逻辑关系用“或”运算 描述。“或”运算又称逻辑加,其运算符为 “+”或“ ”。两变量的“或”运算可表示
0
卡诺图是一 种用图形描 述逻辑函数
的方法。
00 0 01 0 11 0
10 1
例:函数 F=AB + AC
ABC F
000 0
1 001 1 010 0
1 011 1
1 100 1
0
101 1 110 0
1 111 0
1.逻辑函数式
特点:
例:函数 F=AB + AC
(1)便于运算; (2)便于用逻辑图实现; (3)缺乏直观。
真值表
K
Y
0
1
1
0
由“非”运算的真值表可知 “非”运算法则为:
0 =1 1 =0
⒊ 表达式
“非”逻辑用“非”运算描述。“非”运 算又称求反运算,运算符为“-”或“¬”, “非”运算可表示为:
数字逻辑第2章-逻辑代数

果将表达式中的所有“ · ”换成“+”, “+”换成“ · ”,“ 0”换成“ 1”,“ 1” 换成“0”,而变量保持不变,则可得到的 一个新的函数表达式Y‘,Y’称为函Y的对偶 函数。
例如:
Y AB CDE
Y A B C D E
Y AB C
Y ( A B )(C D E)
(B A) B
证明:由于(A B ) (A B) (A B A) B
A (B B)
A 1
1
而且(A B ) (A B) A B A A B B
00
0 所以,根据公理 5的唯一性可得到:
A B A B
A A
定理6:反演律
A B A B
A B A B
定理7:还原律
A B A B A ( A B ) ( A B ) A
定理8:冗余律
AB A C BC AB A C
( A B)(A C)(B C) ( A B)(A C)
A B B A 交换律: A B B A
公理2
( A B) C A ( B C ) 结合律: ( A B) C A ( B C )
公理3
公理4
A (B C) A B A C 分配律: A B C ( A B) ( A C )*
判断两个逻辑函数是否相等,通常有两种方法。
①列出输入变量所有可能的取值组合,并按逻 辑运算法则计算出各种输入取值下两个逻辑 函数的相应值,然后进行比较。
②用逻辑代数的公理、定律和规则进行证明。
2.2 逻辑代数的基本定理和重要规则
例如:
Y AB CDE
Y A B C D E
Y AB C
Y ( A B )(C D E)
(B A) B
证明:由于(A B ) (A B) (A B A) B
A (B B)
A 1
1
而且(A B ) (A B) A B A A B B
00
0 所以,根据公理 5的唯一性可得到:
A B A B
A A
定理6:反演律
A B A B
A B A B
定理7:还原律
A B A B A ( A B ) ( A B ) A
定理8:冗余律
AB A C BC AB A C
( A B)(A C)(B C) ( A B)(A C)
A B B A 交换律: A B B A
公理2
( A B) C A ( B C ) 结合律: ( A B) C A ( B C )
公理3
公理4
A (B C) A B A C 分配律: A B C ( A B) ( A C )*
判断两个逻辑函数是否相等,通常有两种方法。
①列出输入变量所有可能的取值组合,并按逻 辑运算法则计算出各种输入取值下两个逻辑 函数的相应值,然后进行比较。
②用逻辑代数的公理、定律和规则进行证明。
2.2 逻辑代数的基本定理和重要规则
数字逻辑基础ppt课件

数字电子技术基础
数字电路研究的对象是输入与输出的逻辑关系, 即电路的逻辑功能。
(2) 数字电路研究方法 数字电路研究的主要方法是逻辑分析和逻辑
设计的方法。
计算机软件:硬件描述语言,例如ABEL 语言、VHD语言。
上页 下页 返回
数字电子技术基础
(3) 数字电路的测试技术 数字电路在正确设计和安装后,必须经过
( N ) R a n 1 a n 2 .a . 2 a 1 . a 0 .a 1 a 2 .a . m .
上页 下页 返回
数字电子技术基础
(2) 数位的权值 某个数位上数码为1时所表征的数值,称为该
数位的权值,简称“权”。
各个数位的权值均可表示成Ri的形式。
其中R是进位基数,i 表示相对小数点的位置。 i的确定方法: 以小数点为起点,自右向左依次为0,1, 2,…,n-1,自左向右依次为-1,-2, …,-m。n是整 数部分的位数,m是小数部分的位数。
上页 下页 返回
数字电子技术基础
在一个数位上,规定使用的数码符号的总数, 叫该进位计数制的进位基数,简称为“基” 。
进位基数又称为进位模数,记作R。 例如十进制,每个数位规定使用的数码符号为0, 1, 2, …, 9,共10个, 故其进位基数R=10。
若某个数位上的数码为ai,n为整数位,m为小
数位,则进位计数制表示的式子为
上页 下页 返回
数字电子技术基础
(4) 保密性好,对于数字信号可以采用各种算法进行 加密处理,故对信息资源的保密性好。 (5) 有可能通过编程改变芯片的逻辑功能。 (6) 可完成数字运算和逻辑运算。 (7) 容易采用计算机辅助设计。 3. 数字电路研究的对象、方法与测试技术 (1) 研究的对象
数字逻辑第二章

☆ 或运算 ☆ 与运算 ☆ 非运算
第二章 逻辑代数基础
或运算(或门)
☆ 真值表
假定开关断开用0 表示,开关闭合用
A
B
F
1表示;灯灭用0表
示,灯亮用1表示
A 0 0 1 1
B 0 1 0 1
F 0 1 1 1
☆ 逻辑表达式 F=A+B
☆ 逻辑运算 0+0=0 0+1=1 1+0=1 1+1=1
逻辑或的 记忆规律: 见“1”为“1” 全“0”则“0”
1.最小项 (1)定义:如果一个具有n个变量的函数的“与项”包 含全部 n 个变量,每个变量都以原变量或反变量形式出现一 次,且仅出现一次,则该“与项”被称为最小项。 (2)最小项的数目:n个变量可以构成2n个最小项。 例如,3个变量A、 B、 C可以构成 、 、…、 A B C共8个最小项。 (3)简写:用mi表示最小项。 下标i的取值规则是:按照变量顺序将最小项中的原变 量用1表示,反变量用0表示,由此得到一个二进制数,与 该二进制数对应的十进制数即下标i的值。
学习目标
1、 熟练掌握8个定理,3个规则 2、 掌握复合逻辑运算
第二章 逻辑代数基础
一、逻辑代数的基本定理
常量运算:定理1 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1 ; 0 · 0 = 0 0 · 1 = 0 A · A = A 1 · 0 = 0 1 · 1 = 1
数字逻辑
授课课时:40课时(理论32课时) 授课班级:计算机1151,1152
主讲教师:刘春燕
第二章 逻辑代数基础
2.1 2.2 2.3
逻辑代数的基本概念 逻辑代数的基本定理和规则 逻辑函数表达式的形式与变换
数字逻辑与数字系统 逻辑代数基础

与门被禁止 与门被使能
4. 逻辑门的使能和禁止特性
14
逻 辑 门 的 使 能 和 禁 止 特 性
4. 逻辑门的使能和禁止特性
1)与门
与门被禁止
与门被使能
与门的使能与禁止运算真值表 A 0 B 0 Y=AB 0
0
1 1
1
0 1
0
0 1
Y=0 禁止 Y=B 使能
15
逻 辑 门 的 使 能 和 禁 止 特 性
异或、同或运算真值表(异或与同或互为取非运算) A
0
B
0
F=AB
0
F=AB +A B
0
F=A ⊙ B
1
F=A B +AB
1
0
1 1
1
0 1
1
1 0
1
1 0
0
0 1
0
0 1
IEEE/ANSI符号
异或门 XOR 同或门 XNOR
A B A B =1 F
国际符号
F
惯用符号
A B
A B F
A B
A B
A B
A B
=1 F
=
F
F
=
F
⊙
F
12
正 逻 辑 和 负 逻 辑
正逻辑和负逻辑
通常规定:
高电平代表1,低电平代表0,是正逻辑(高电平有效) 高电平代表0,低电平代表1,是负逻辑(低电平有效) 本书中如无特殊声明,均指正逻辑。 对同一个逻辑电路,从正逻辑和负逻辑的角度分析,其表达的逻辑 关系是不一样的。 例如一个逻辑电路在正逻辑分析时是一个与门电路,而使用负 逻辑分析时则成为一个或门电路。 负逻辑门的逻辑符号和正逻辑门的逻辑符号画法一样,但要在输入 端和输出端分别加上一个小圆圈,以便区别于正逻辑门。
4. 逻辑门的使能和禁止特性
14
逻 辑 门 的 使 能 和 禁 止 特 性
4. 逻辑门的使能和禁止特性
1)与门
与门被禁止
与门被使能
与门的使能与禁止运算真值表 A 0 B 0 Y=AB 0
0
1 1
1
0 1
0
0 1
Y=0 禁止 Y=B 使能
15
逻 辑 门 的 使 能 和 禁 止 特 性
异或、同或运算真值表(异或与同或互为取非运算) A
0
B
0
F=AB
0
F=AB +A B
0
F=A ⊙ B
1
F=A B +AB
1
0
1 1
1
0 1
1
1 0
1
1 0
0
0 1
0
0 1
IEEE/ANSI符号
异或门 XOR 同或门 XNOR
A B A B =1 F
国际符号
F
惯用符号
A B
A B F
A B
A B
A B
A B
=1 F
=
F
F
=
F
⊙
F
12
正 逻 辑 和 负 逻 辑
正逻辑和负逻辑
通常规定:
高电平代表1,低电平代表0,是正逻辑(高电平有效) 高电平代表0,低电平代表1,是负逻辑(低电平有效) 本书中如无特殊声明,均指正逻辑。 对同一个逻辑电路,从正逻辑和负逻辑的角度分析,其表达的逻辑 关系是不一样的。 例如一个逻辑电路在正逻辑分析时是一个与门电路,而使用负 逻辑分析时则成为一个或门电路。 负逻辑门的逻辑符号和正逻辑门的逻辑符号画法一样,但要在输入 端和输出端分别加上一个小圆圈,以便区别于正逻辑门。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1V 0.78mA 2.5mA
T2管处于饱和工作状态;
A B
T4D3管处于截止工作状态3;.4V
(40μA)
D1
T5管处于饱和工作状态;
T1 1.4V T2 2.6mA
D2
0.7mA
0.7V
R3
1kΩ
D3
F
0.1V
T5
F输出为“0”。
综合上面两种情况,该电路实现与非功能。F=AB
8
9
2.3.2 TTL与非门的电压传输特性
5
D1、D2 为钳位二极管,起保护T1管的作用。
② 中间级: R2、T2、R3
Vcc(5V)
分相、放大作用
③ 输出级: R4、T4、T5、D3 输出级特点:
A
静态功耗低,开关速 B
R1
4kΩ
R2
1.6kΩ
R4
130Ω
T4
T1
T2
D3
F
度快,这种电路结构 称为推拉式电路。
T5
D1
D2
R3
1kΩ
(2) 工作原理
拉电流 情况
I0(mA)
5 10 15
15
1) 灌电流工作情况
驱动门输出为低电平(T5管饱和,T4管截止),负载
门电流流入驱动门,流入驱动门的电流值IL取决于和驱动
门相连接的负载门个数,即IL=NIIL(IIL为负载门低电平输
入电流,约为1mA左右)
Vo(V)
由曲线可见,对所分析的电路, 当灌电流不超过16mA时,VO不 超过VOLmax=0.4V。称带灌电流 负载能力IOLmax=16mA
VI(V)
10
(2)阈值电压VTH:转折区中间点对应的输入电压,约为 1.4V。
(3) 输入端噪声容限 VNH、VNL
1
VO
1
VI
VO 1输出 VOHmin
VNH VIHmin
0输出
VILmax VNL
VOLmax
VI
1输入 1输入
11
2.3.3 TTL与非门的静态输入与输出特性
1. 输入特性
II(mA)
(2) IIH (输入高电平电流) IIH约在40μA以下。(作为前级门的拉电流负载.) 2.输入端负载特性
13
在门输入端和地之间接电阻Ri,当电阻从0Ω逐步增加
时,由于电阻内部有电流流过,会使电阻两端电压Vi逐步
增加。
VCC
当T1管饱和导通时: Vi R1R iRi(VCC VB1E)
R1
4kΩ
T1
Roff≈0.9kΩ, Ron≈3kΩ。
Vi
Ri
14
当Ri小于R0ff时,输入为低 电平;当Ri高于Ron时,输入 为高电平。
3.输出特性
拉 灌电流
拉灌电流 负载
A
& 01
&
B
Vo 1
驱动门
负载门
Vi(V)
2 1
0
1
2 Ri(kΩ)
Vo(V)
灌电流 3.0 情况 2.0
1.0
-15 -10 -5 0
输入极 中间极 输出极
6
设输入信号高低电平分别为 PN结正向导通电压为0.7V; 三极管电流放大倍数β=20。
ViH=3.4V; ViL=0.2V
R1
1mA 4kΩ
R2
1.6kΩ
Vcc(5V)
R4
130Ω
(一) 输入中有低电平
T1管发射结导通,T1管饱和。 A 由于T2基极电压仅为0.3V , B 故T2、 T5均截止。 T4、D3导通,输出约为3.6V(5-
电压传输特性是指输出电压VO随输入电压VI的变化规律。
VO=f(VI)
1. 特性曲线分析
V0(V)
VOH
2. 主要参数
3
(1)输出高电平VOH, 2
低电平VOL。
1
VOL 0
截止区,T5管截止.
线性区,T5管截止,T4管 处于放大区 (射极跟随输出).
VTH 0.5 1 1.5
转折区,T2、T5由放大 进入饱和,T4进入截止. 饱和区,T5管饱和.
2.3 TTL 三极管—三极管逻辑门电路(TTL),是指输入端和输出
端都用三极管的电路,简称TTL电路,是数字集成电路。
TTL电路分类: 中速TTL、TTL(HTTL)、肖特基TTL(STTL)、低功耗
TTL(LTTL) 、低功耗肖特基TTL(LSTTL) 、先进低功耗肖 特基TTL(ALSTTL)等。
拉电流 情况
由驱动门提供,流出驱动门的电
1.0
流值IH取决于和驱动门相连接的 -15 -10 -5 0 5 10 15 I0(mA)
灌电流 3.0 情况 2.0
1.0
-15 -10 -5 0
拉电流 情况
I0(mA)
5 10 15
16
一个门在低电平时能驱动同类门的最大个数为: NOL=IOLmax/IIS=16/1.1≈14 (这里的IIS为输入短路电流)
2) 拉电流工作情况
Vo(V)
驱动门输出为高电平
灌电流 3.0
(T5管截止),负载门输入电流 情况 2.0
uCE= VCC
很大, 相当开关断开
放大 0< iB< IBS 发射结正偏 集电结反偏 uBE> 0, uBC< 0 iC= β iB uCE= VCC-
iC R c
可变
饱和
iB> IBS 发射结正偏 集电结正偏 uBE> 0, uBC> 0
iC= ICS uCE = U CE S=
0.3V 很小, 相 当 开 关3 闭 合
2.3.1 TTL与非门典型电路及其工作原理 (1) 电路组成 电路分三个部分: 输入级、中间级、输出级。
4
① 输入级:R1、T1、D1、D2 T1为多发射极晶体管
R1
4kΩ
R2
1.6kΩ
Vcc(5V)
R4
130Ω
b
Ae
c
B
b
A e1
B e2
T4
A
T1
T2
D3
B
F
D1
D2
T5
R3
1kΩ
c
输入级 中间级 输出级
高电平输入
1)输入伏安特性( II=f(Vi) ) 定义:电流流入T1的发射极
方向为正方向。
0.5 1.0 1.5 0
VI(V)
-0.5
40μA
-1.0
-1.5
低电平输入
2))
IILV CC V R B 11E V IL1m(A 作负为载前.)级门的灌电流
5V
0.9V
0.2V
T1 0mA T2
0.3V
D1
D2
R3
1kΩ
T4
D3
F
3.6V
T5
0.7-0.7=3.6). 输出高电平1。
7
(二) 输入均为高电平 T1管处于倒置工作状态
R1
0.7mA 4kΩ
R2
1.6kΩ
Vcc(5V)
R4
130Ω
(be结反偏,bc结正偏.); 3.4V (40μA)
1V
T4
1
整体 概述
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
NPN 型三极管截止、放大、饱和 3 种工作状态的特点
工作状态 条件
偏置情况
工
作 集电极电流
特
点
ce 间 电 压
ce 间 等 效 电 阻
截止 iB= 0 发射结反偏 集电结反偏 uBE< 0, uBC< 0 iC= 0