数据仓库基础知识培训教材.pptx

合集下载

数据仓库培训课件

数据仓库培训课件
聚类分析
将相似的数据聚集成不同的群体, 如客户分群、市场细分等。
数据展现技术
报表
通过报表展示数据的汇总和分析 结果,如销售报表、财务报告等

图表
通过图表展示数据的趋势和关系 ,如折线图、柱状图、饼图等。
可视化大屏
通过可视化大屏展示数据的实时 动态和全局信息,如监控大屏、
指挥中心等。
03
CATALOGUE
案例二:亚马逊的数据仓库实践
背景介绍:亚马逊作为全球最大的在线零售商之一,需要处理海量的销售数据和客户评价数据,为了更好地进行数据分析和 决策,亚马逊建立了自己的数据仓库。
亚马逊的数据仓库实践采用了分布式计算平台,基于Hadoop平台进行构建,处理海量的销售数据和客户评价数据,同时采 用了ETL工具进行数据清洗和整合,建立了自己的数据仓库模型,并进行了数据分析和挖掘,为公司的决策提供了有力的支持 。此外,亚马逊还利用数据仓库进行了客户行为分析,为个性化推荐和精准营销提供了支持。
采用星型模型设计数据仓库,将数据分为事实表和维度表,适用 于快速查询和报表生成。
雪花模型设计
采用雪花模型设计数据仓库,将数据按照层级进行划分,适用于需 要高度扩展和稳定性的系统。
ETL工具的使用
采用ETL工具进行数据抽取、转换和加载,提高数据处理效率和准 确性。
04
CATALOGUE
数据仓库实施
实施步骤
案例四:银行的数据仓库设计
背景介绍:银行作为金融行业的重要机构之 一,需要处理大量的金融交易数据和客户信 息数据,为了更好地进行风险管理和业务决 策,银行进行了数据仓库设计。
银行的数据仓库设计采用了分布式计算平台 ,基于Hadoop平台进行构建,处理大量的 金融交易数据和客户信息数据,同时采用了 ETL工具进行数据清洗和整合,建立了自己 的数据仓库模型,并进行了数据分析和挖掘 ,为风险管理和业务决策提供了有力的支持 。此外,银行还利用数据仓库进行了客户行 为分析,为个性化服务和精准营销提供了支

第一讲数据仓库基础共67页

第一讲数据仓库基础共67页
数据转换通常包括如下内容:
• 删除对决策分析没有意义的数据。 • 转换到统一的数据名称和定义。 • 计算统计和衍生数据。 • 填补缺失数据。 • 统一不同的数据定义方式。
1.3.3 OLAP服务器
OLAP服务器是用于存储多“维”数据的, 存储结构类似与立方体的结构,提供给用 户快速的数据分析支持。
——数据仓库之父[William H.Inmon]
1.1.1 数据仓库特点(面向主题的)
操作型数据库
生产系统
数据仓库
销售系统
客户
财务系统
操作型数据库是面向特殊处理 任务,各个系统之间各自分离
数据仓库是按照一定的主题域
进行组织。一个主题通常与多 个操作型信息系统相关
1.1.2 数据仓库特点(集成的)
2.1 什么是OLAP
OLAP(Online Analysis Process)是针 对特定问题的联机数据访问和分析。通过 对信息(维数据)的多种可能的观察形式进 行快速、稳定一致和交互性的存取,允许 管理决策人员对数据进行深入观察。
对OLAP的理解
• OLAP的目标是满足决策支持或多维环境特
数据仓库
1.3.8 信息发布系统
信息发布系统是把数据仓库中的数据, 或其他相关的数据发送给不同的地点或 用户。
基于Web的信息发布系统是当前比较流 行的多用户访问的最有效方法。
数据仓库
问题
什么是数据仓库?
为什么要建数据仓库?
• 数据集成问题 • 数据动态集成问题 • 历史数据问题
• 数据的综合问题
1.3.1 数据仓库数据库
数据仓库数据库是整个数据仓库的核心, 是数据信息存放的地方,对数据提供存取 和检索支持。相对于传统数据库来说,其 突出的特点是对海量数据的支持和快速的 检索技术。

数据仓库与数据挖掘培训课件.pptx

数据仓库与数据挖掘培训课件.pptx
OLAP软件,以它先进地分析功能和以多维形式提供 数据的能力,正作为一种支持企业关键商业决策的解 决方案而迅速崛起。
OLAP的基本思想是决策者从多方面和多角度以多维 的形式来观察企业的状态和了解企业的变化。
3.OLTP与OLAP的对比
OLTP 细节性数据 当前数据 经常更新 一次性处理的数据量小 对响应时间要求高 面向应用,事务驱动
关系数据库是二维数据(平面),多维数据库是空间 立体数据。 新的挑战:如何不被淹没在信息的海洋里
OLAP专门用于支持复杂的决策分析操作,侧重对分 析人员和高层管理人员的决策支持,
OLAP可以应分析人员的要求快速、灵活地进行大数 据量的复杂处理,并且以一种直观易懂地形式将查询 结果提供给决策制定人。
1993年,国家自然科学基金首次资助复旦大 学对该领域的研究项目。
Why?数据挖掘的社会需求
数据库越来越大
数据挖掘
可怕的数据
有价值的知识
所有企业面临的一个共同问题是:企业数 据量非常大,而其中真正有价值的信息却很少, 因此需要从大量的数据中经过深层分析,获得 有利于商业运作、提高竞争力的信息,就像从 矿石中淘金一样,数据挖掘也由此而得名。
矿山(数 据)
挖掘工具(算 法)
二十世纪末以来,全球信息量以惊人的速度 急剧增长—据估计,每二十个月将增加一倍。许 多组织机构的IT系统中都收集了大量的数据(信 息)。目前的数据库系统虽然可以高效地实现数 据的录入、查询、统计等功能,但无法发现数据 中存在的关系和规则,无法根据现有的数据预测 未来的发展趋势。为了充分利用现有信息资源, 从海量数据中找出隐藏的知识,数据挖掘技术应 运而生并显示出强大的生命力。
商业角度的定义
数据挖掘是一种新的商业信息处理技术,其 主要特点是对商业数据库中的大量业务数据进行 抽取、转换、分析和其他模型化处理,从中提取 辅助商业决策的关键性信息。

数据仓库基础PPT课件

数据仓库基础PPT课件
主题
• 商业智能技术 • 数据仓库与多维模型 • 设计数据仓库 • 设计多维模型
第1页/共40页
商业智能的体系
数据仓库技术
在线分析处理技术
数据挖掘技术
( Data Warehousing)An(alyOtiLcAaPl P:rOocnelisnseing (Data Mining)
数据整合
) 更加全面数、据深分入析的分析
• 父子维 父子维是基于两个维表列的维度,由维表中的两列来共同定义各个成员的隶属关系。一列称 为成员键列,标识每个成员;另一列称为父键列,标识每个成员的父代。
第23页/共40页
数据仓库设计(二) ——维表
• 普通维
普通维中的层次是根据维表的列而定义的,所以维表中列的定义会直接影响到维度中层次的定义。 设计普通维度的维表必须充分考虑维度的扩展性。
• 单元级别权限: 单元级别的安全权限,可以限定多维数据集中特定单元访问。
• 其它级别权限: 不同OLAP引擎所提供的特属功能的权限。例如,钻取权限等
Jms
包含免数/退库数的列
……
……
第21页/共40页
数据仓库设计(一) ——事实表
• 设计事实表应注意的问题
• 事实表中一般不应包含描述性信息,也不应包含除事实表与维表中间对应的关联字段之外的 任何数据。
• 事实表中的数据应该是经过适当聚合的数据 • 事实表中数据的粒度应该是一致的 • 事实表的设计应该考虑增量数据更新的需要,例如是否需要增加时间戳字段等。
知识发现
集 数 题成据的商各,企业系建业统立数智的面据能历向中技史主心术形体成知系识(灵的查库活多B询指I、维—、导动分—即决态 析B席策、、u报s、快随in表再速机es分s析Int通隐e律ll过藏ig,数的e以n学、c辅e模潜助)型在决发的策现规

《数据仓库基础培训》课件

《数据仓库基础培训》课件

数据仓库的安全性和保密性
1 权限管理
数据仓库中的数据应根据用户角色和权限进行精确的管理,保证敏感数据的安全性。
2 数据加密
对敏感数据进行加密处理,防止未授权的访问和数据泄露。
3 备份与恢复
定期备份数据仓库,以确保数据的可靠性和可恢复性。
数据仓库的性能优化
索引优化
通过合理的索引设计和优化, 提高数据仓库的查询性能。
易用性
数据仓库的设计应简化用户的操作和查询过程, 使其能够轻松获取所需的信息。
数据仓库的建设流程与方法
1
需求分析
根据业务需求和数据源确定数据仓库的
数据建模
2
规模、范围和功能。
设计数据仓库的逻辑模型,包括维度模
型和事实表的建立。
3
ETL开发
进行数据抽取、转换和加载的开和完整。
数据仓库建设的经验与案例分享
成功案例
分享一些数据仓库建设的成功案例,探讨其经验和 最佳实践。
挑战与解决方案
讨论数据仓库建设过程中可能遇到的挑战,以及如 何解决和应对。
数据仓库的未来发展与挑战
1 大数据时代
随着大数据技术的不断发展,数据仓库将面临更大的数据规模和复杂性。
2 实时数据分析
实时数据分析需求的增加,将对数据仓库的实时性和性能提出更高要求。
分区与分片
将数据仓库的数据进行分区和 分片,以提高查询和加载的效 率。
缓存管理
使用缓存技术,预先加载常用 的数据,减少查询时间。
数据仓库的容错机制
数据复制
通过数据复制技术,将数据仓库的副本存储在不同 的地点,提高系统的容错能力。
灾难恢复
制定灾难恢复计划,确保在系统故障或灾难情况下 能够及时恢复数据仓库。

数据仓库培训[1]

数据仓库培训[1]

需要更新的情况 进行新的决策时需要抽取和更新新的数据
通过删除丢弃一些过时的数据
PPT文档演模板
数据仓库培训[1]
数据仓库与数据中心概述
• 特征四 随时间不断变化
数据仓库中的信息并不只是关于企业当时或某一时点的信息,而是 系统记录了企业从过去某一时点到目前的各个阶段的信息,通过这 些信息可以对企业的发展历程和未来趋势作出定量分析和预测。
PPT文档演模板
数据仓库培训[1]
• 原因四、历史数据问题
OLTP与OLAP
OLTP 一般只需要当前数据,在数据库中一般也只存储短期数据 (3-6个月),且不同数据的保存期限也不一样
OLAP更看重历史数据 (5-10年),可以通过对大量历史数据的详细 分析来把握企业的发展趋势
历史数据对于事务处理作用不大,但对于决策分析而言,如果没 有历史数据的支撑,就变成了“无源之水”、“无本之木”。
OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧 重决策支持,并且提供直观易懂的查询结果
PPT文档演模板
数据仓库培训[1]
OLTP与OLAP
• OLTP 环境不适宜 OLAP 应用的原因
在OLTP中直接构建OLAP应用是不合适的,要提高分析处理和决策 支持的效率和有效性,必须将OLAP及其所需的综合性数据从传统 的OLTP和细节性数据中分离出来,按照DSS的需要重新进行组织, 建立单独的分析处理环境。
PPT文档演模板
数据仓库培训[1]
OLTP与OLAP
• 原因五、数据的综合问题 OLTP 需要的是当前的细节性操作数据, OLAP 需要的往往是大量 的总结性分析型数据,而非数据库中的细节性操作型数据
OLTP 系统中积累的是大量的细节数据,而 OLAP 并不对这些 细节数据进行分析,其原因是

数据仓库基础.ppt

数据仓库基础.ppt

• 特殊要求
根据所选的OLAP引擎特殊需要,确保数据诸如完整性等的特殊要求。
• 增量更新
必须考虑数据增量和更新的策略,以保证多维数据集中有所需的数据。
数据仓库基本元素(一)
• 关系型数据库
关系数据库是建立数据仓库的基础引擎平台,它为数据仓库提供临时存 储、清理和转换传入的数据,容纳和管理数据仓库中的大量数据,并支 持数据仓库的功能。
税务 机关 维表
时间 维表
行业 维表
事 实 表
经济 性质 维表
税种 维表
数据仓库组织形式(二)
• 雪花型模型
雪花型架构比星型模型增加了次要维表,有一个或多个维表是联接到其 它维表上,而非事实数据表上。
机构 维表
时间 维表
事 实 表
行业 维表
地区维
地市 维表 省份 维表
数据仓库设计(一)——事实表
数据仓库定义

• 数据仓库的概念
什么是数据仓库?
数据仓库就是面向主题的、集成的、不同时间的、稳定的数据集 合,用以支持经营管理中的决策制定过程。
数据仓库的特点
• 面向主题
• 集成性—企业数据框架
• 历史性、稳定性
数据仓库与业务数据库的比较
什么是联机分析处理(OLAP)?
• OLAP的定义
OLAP是使分析人员、管理人员能够从多种角度对从原始数据中转
数据仓库设计原则(一)
• 模型构架
尽量使用星型架构,使用雪花架构的目的是使事实表第一级的维表数量 达到最小。
• 设计方法
将常识规范化方法应用于维度表设计。例如,不相关的数据不应组合到 单一维度表中,而且在多个维度表中数据不应重复。
• 维表设计
设计维表应包含需要分析的有关事实的有意义信息,例如产品的颜色和 大小。

数据仓库入门PPT课件

数据仓库入门PPT课件
旋转(pivot) – 旋转是变换维的方向,即在表格中重新安排维的放置 (例如行列互换)
21
OLAP的分析方法(一)切片、切块
22
OLAP的分析方法(二)钻取
按 时 间 维 向 下 钻
23 取




60




OLAP的分析方法(三)旋转
24
OLAP分类
OLAP
按照存储方式
按照处理地点
ROLAP MOLAP HOLAP
BOSS+增值业务+财务
集成数据
– 建立关联
事件关联(业务之间是相互关联)
客户数据统一
– 历史数据
大量历史数据的保存问题
– 中国建设银行一个中等规模的省产生每天的交 易详细记录大约200M
7
– 通常在业务系统中只保存当日数据
数据仓库数据处理流程
业务系统数据/外部数据
数据格式检查
源数据清洁、抽取、转换
12
ETL应用过程
数据加载入库
数据加载主要是将经过转换和清洗的数据加载到数据仓 库里面,即入库,可以通过数据文件直接装载或直连数 据库的方式来进行数据装载,可以充分体现高效性 ETL调度 ETL的调度控制方式有两种:
自动方式
由系统每天定时或准实时启动后台程序,自动完成数据 仓库ETL处理流程。 手动方式 用户可以通过前台监控平台,对单个目标或批量目标进 行手工调度。
(4)信息性:不论数据量有多大,也不管数据存储在何处,OLAP 系统应能及时获得信息,并且管理大容量信息。
20
OLAP表现方式
钻取 – 改变维的层次,变换分析的粒度 – 向上钻取(roll up)和向下钻取(drill down)

数据仓库基础知识培训

数据仓库基础知识培训

1.2 数据仓库的体系结构

1.2.1 数据仓库的概念结构 从数据仓库的概念结构看,应该包含:数据源、数据 准备区、数据仓库数据库、数据集市/知识挖掘库以及 各种管理工具和应用工具。
业务系 统
数据源
外部数 据源
数 据 准 备 区
数 据 仓 库 数 据 库
数据 集市/ 知识 挖掘 库 数据 集市/ 知识 挖掘 库
数据仓库 查询管理 服务器
1.2.5 分布式数据仓库结构 在企业各个分公司具有相当大的独立性时,企业总部设置一个全局 数据仓库,各个分公司设置各自的局部数据仓库。局部数据仓库主 要存储各自的未经转换的细节数据,全局数据仓库中主要存储经过 转换的综合数据
站点A
局部数 据仓库 全局数 总部 据仓库 局部数 据仓库
名词解释
名词解释及缩略语

缩略语
名词解释及缩略语

缩略语
内部交流
谢谢!
我们公司数据中心架构

分析型系统架构 目标系统架构说明 存储区域比较分析 ETL过程分析
我们公司数据中心架构

分析型系统架构
我们公司数据中心架构
Байду номын сангаас目标系统架构说明
我们公司数据中心架构
存储区域比较分析
我们公司数据中心架构

ETL过程分析
指标、维度与报表OLAP分析主题关系
名词解释及缩略语
元数据抽取、 预定义的查询、 刷新与 登录、归档、 创建、存储和 报表和索引管 复制管 恢复与净化 更新管理 理 理 管理
数据仓库、数 据集市和词汇 表管理
1.3.4 数据仓库的环境支持层
数据传输和传送 网络 客户/服务器代 理和中间件 复制系统 安全和保障系统

数据仓库基础知识培训教材(PPT38页)

数据仓库基础知识培训教材(PPT38页)

数据仓库基础知识培训教材(PPT38页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
面向主题性
• 面向主题性表示了数据仓库中数据组织的基本 原则,数据仓库中的所有数据都是围绕着某一 主题组织的。
• 确定主题以后,需要确定主题应该包含的数据。
• 不同的主题之间可能会出现相互重叠的信息。
1.1从传统数据库到数据仓库(续)
• 传统的事务处理环境不适宜于决策支持应 用
• 事务处理和分析处理的性能特性不同 • 数据集成问题 • 数据动态集成问题 • 历史数据问题 • 数据的综合问题
• 操作型环境和分析型环境的分离:数据抽取
现实生活中面临的问题
人们在日常生活中经常会遇到这样的情况: • 超市的经营者希望将经常被同时购买的商
• 随着市场竞争的加剧,信息系统的用户已经不 满足于仅仅用计算机去处理每天所发生的事务 数据,而是需要信息——能够支持决策的信息, 去帮助管理决策。这就需要一种能够将日常业 务处理中所收集到的各种数据转变为具有商业 价值信息的技术,传统数据库系统无法承担这 一责任。因为传统数据库的处理方式和决策分 析中的数据需求不相称。这些不相称性主要表 现在决策处理中的系统响应问题、决策数据需 求的问题和决策数据操作的问题。
品放在一起,以增加销售; • 保险公司想知道购买保险的客户一般具有
哪些特征; • 医学研究人员希望从已有的成千上万份病
历中找出患某种疾病的病人的共同特征, 从而为治愈这种疾病提供一些帮助; • ……
企业面临的问题
• 经过多年的计算机应用和市场积累,许多 企业保存了大量原始数据和各种业务数据, 它是企业生产经营活动的真实记录
数据集成性
• 根据决策分析的要求,将分散于各处的源数据进行 抽取、筛选、清理、综合等工作,最终集成到数据 仓库中。

数据仓库和数据挖掘PPT课件

数据仓库和数据挖掘PPT课件

客户细分
通过对客户的行为、偏好、资产等数据的分析,可以将客 户划分为不同的细分市场,为精准营销和服务提供支持。
投资决策
通过对历史数据的挖掘和分析,可以发现市场趋势和预测 未来走势,为投资者提供科学的投资决策依据。
电商行业的数据仓库和数据挖掘应用
总结词
电商行业是数据仓库和数据挖掘应用的另一个重 要领域,通过对用户行为、商品销售、市场趋势 等数据的分析和挖掘,可以优化营销策略、提高 用户体验和销售额。
03
数据挖掘基础
数据挖掘定义
总结词
数据挖掘是从大量数据中提取出有用 的信息和知识的过程。
详细描述
数据挖掘是一种从大量数据中通过算 法搜索隐藏在其中的信息、模式和关 联性的过程。这些信息可以用于决策 支持、预测趋势和行为等。
数据挖掘过程
总结词
数据挖掘过程包括数据预处理、数据探索、模型建立 和评估等步骤。
02
数据仓库基础
数据仓库定义
总结词
数据仓库是一个大型、集中式的存储系统,用于存储和管理企业的结构化数据。
详细描述
数据仓库是一个面向主题的、集成的、非易失的数据存储环境,用于支持管理 决策和业务操作。它通常包含历史数据,并支持对数据的分析和查询。
数据仓库架构
总结词
数据仓库架构包括数据源、ETL过程、数据 存储和数据访问等组成部分。
05
数据仓库和数据挖掘的实 际应用案例
金融行业的数据仓库和数据挖掘应用
总结词
金融行业是数据仓库和数据挖掘应用的重要领域,通过对 大量数据的分析和挖掘,可以提供风险控制、客户细分、 投资决策等方面的支持。
风险控制
金融机构可以利用数据仓库和数据挖掘技术,对海量的交 易数据进行实时监控和异常检测,及时发现和预防潜在的 金融风险。

《数据仓库技术》课件

《数据仓库技术》课件

数据质量参差不齐
数据来源多样,数据质 量难以保证,需要进行
数据清洗和校验。
数据分析需求多变
不同部门和业务场景对 数据分析的需求各不相 同,需要灵活地调整数 据仓库架构和查询方式

应对策略
采用分布式存储和计算 技术,提高数据存储和 处理能力;建立数据质 量管理体系,确保数据 质量;提供灵活的数据 仓库架构和查询方式, 满足多变的分析需求。
大数据时代的挑战与机遇
挑战
随着大数据时代的来临,数据量呈爆 炸式增长,如何高效地存储、处理和 分析这些数据成为数据仓库面临的挑 战。
机遇
大数据时代为数据仓库技术的发展提 供了广阔的空间,通过技术创新和优 化,数据仓库能够更好地应对大数据 的挑战,为企业提供更有价值的数据 分析服务。
数据仓库技术的未来发展
云端部署
AI与数据仓库的结合
随着云计算技术的成熟,数据仓库将 逐渐向云端迁移,以提高可扩展性和 灵活性。
人工智能技术的不断发展将为数据仓 库带来更多智能化功能,如自动分类 、预测等。
实时分析
随着对数据实时性的需求增加,数据 仓库将加强实时分析功能,提高数据 处理速度。
数据仓库与其他技术的结合
数据仓库与大数据技术的结合
OLAP技术
多维数据分析
OLAP支持多维数据分析,这意味着用户 可以从多个角度和维度(如时间、地点、
产品类别等)来分析数据。
A OLAP技术概述
OLAP是一种用于分析大量数据的工 具和技术,它允许用户通过多维数 据分析来深入了解数据的不同方面 。
B
C
D
可视化工具
OLAP系统通常提供各种可视化工具,如 仪表盘、报表、图表等,以帮助用户更好 地理解数据和分析结果。

数据仓库体系培训课件.pptx

数据仓库体系培训课件.pptx
数据存储·数据质量·元数据·安全
7
文思信息 版权所有,内部保密材料
BI环境内的数据架构
IT人员
高级分析人员 业务分析人员 决策用户
集市层
应用集市层 •面向应用的个性化定制。
指标库:规模指标、客户指标、盈利指标、风险指标等
汇总层
机构汇总 账户汇总
预连接/预处理 产品汇总
交易统计汇总
渠道汇总 客户汇总
管控平台
前端软件
前端软件
前端软件
前端软件
DM
信用卡 集市
DM
信贷集 市
DM
风险管 理集市
DM 。。。
ETL软件
ETL软件
ETL软件
ETL软件
SASB
YHT
CMS
PMS
。。。
4
文思信息 版权所有,内部保密材料
数据仓库典型体系架构(集中型-EDW)
前端软件(BIEE、Congnus、BO、Microstrategy)
4
应用用户、决策用户会访问特定应 用
……
业务人员通过设定业务检查规则来 3 明确模型可用性
业务部门人员多数需要常规报表供 日常呈报
…… 业务人员参考整合规则来验证业务 2 正确性
POWER USER通常需要访问第二层对 数据进行深入分析
……
1 审计/风险管理等需要未经加工的 业务原始数据
源数据质量检查规则、常规报告
EDW: •全部源系统的原始细节数据,不接 入派生和汇总数据。
ODS: •状态类数据保存当前最新数据 •日志类数据保存3个月 • 针对及其特殊的需要可以考虑 对数据保留一定时间段的历史
EDW: •一般最长在线保存7年。 •事件类数据在线保留时间会短 一些,13个月左右。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 如何在堆积如山的企业交易数据中发现具 有商业价值的闪光点?
• 如何使您的企业或组织在激烈的市场竞争 中保持对客户的吸引力?
• 如何预先发现和避免企业运作过程中不易 察觉的商业风险?
数据仓库应运而生
• 数据仓库的出现和发展是数据库和OLTP技 术发展、数据库应用深化的产物;
• 目的是把数据库中的大量数据转化为有用 信息,为企业更好地进行决策服务。
数据仓库之父--Bill Inmon
1.2数据仓库基本特性
面向主题性 数据集成性 数据的时变性 数据的非易失性
面向主题性
• 面向主题性表示了数据仓库中数据组织的基本 原则,数据仓库中的所有数据都是围绕着某一 主题组织的。
• 确定主题以后,需要确定主题应该包含的数据。 • 不同的主题之间可能会出现相互重叠的信息。 • 主题在数据仓库中可以用多维数据库方式进行
1.2.1数据仓库定义
数据仓库(Data Warehouse)是一个 • 面向主题的(Subject Oriented) • 集成的(Integrate) • 相对稳定的(Non-Volatile) • 反映历史变化(Time Variant)
的数据集合,用于支持管理决策。
1.2数据仓库定义
• 数据仓库是在企业管理和决策中面向主题的、 集成的、与时间相关的、不可修改的数据集合。
讨论话题一
• 数据仓库产生的源动力是什么?数据仓库 系统是数据驱动还是需求驱动的?
市场需求是技术发展的源动力
“我们花了20多年的时间将数据放入数据 库,如今是该将它们拿出来的时候了。”
----著名的数据仓库专家Ralph Kimball
1.2数据仓库定义及基本特性
• 1.2.1数据仓库定义 • 1.2.2数据仓库基本特性
存储。 • 主题的划分中,必须保证每一个主题的独立性。
数据集成性
• 根据决策分析的要求,将分散于各处的源数据进行 抽取、筛选、清理、综合等工作,最终集成到数据 仓库中。
业务数据库1 业务数据库2
…… 业务数据库n
抽取转换清洗加载
数据仓库
数据的时变性
• 数据应该随着时间的推移而发生变化,不断地 生成主题的新快照。
品放在一起,以增加销售; • 保险公司想知道购买保险的客户一般具有
哪些特征; • 医学研究人员希望从已有的成千上万份病
历中找出患某种疾病的病人的共同特征, 从而为治愈这种疾病提供一些帮助; • ……
企业面临的问题
• 经过多年的计算机应用和市场积累,许多 企业保存了大量原始数据和各种业务数据, 它是企业生产经营活动的真实记录
• 基于数据仓库的决策支持系统
DSS的先天不足
DSS的先天不足
– 决策所需信息不足,难以满足决策支持系统的 需要。
– 模型库提供的分析能力有限 – 人机接口部件占整个DSS开发工作量的一半 ,
成为DSS实施中的一个瓶颈。
基于数据仓库的DSS
基于数据仓库的DSS
– 数据仓库为DSS的发展开辟了新途径 – 目前DSS的开发模式(BI解决方案)
T1时点主题数据 ……
Tn时点增量数据
Tn时点主题数据
时间戳锁定数据
讨论话题二
• 数据库和数据仓库有什么不同?
数据库与数据仓库的对比
对比内容 数据内容
数据库 当前值
数据目标 数据特性
面向业务操作程序、重 复处理
动态变化、按字段更新
数据结构
使用频率 数据访问量
对响应时间的 要求
高度结构化、复杂、适 合操作计算

每个事务只访问少量记 录
以秒为单位计量
数据仓库 历史的、存档的、归纳的、计 算的数据 面向主题域、管理决策分析应 用 静态、不能直接更新、只定时 添加 简单、适合分析
中到低 有的事务可能要访问大量记录
以秒、分钟、甚至小时为计量 单位
1.3数据仓库与决策支持系统
• 决策支持系统的发展阶段
– 初始阶段(DSS阶段) – 与专家系统结合阶段(IDSS阶段) – 基于数据仓库技术阶段(BI阶段)
数据仓库基础知识
数据仓库基本概念
• 1.1从传统数据库到数据仓库 • 1.2数据仓库定义及基本特性 • 1.3数据仓库与决策支持系统 • 1.4数据仓库体系结构 • 1.5数据仓库相关概念
1.1从传统数据库到数据仓库
• 随着市场竞争的加剧,信息系统的用户已经不 满足于仅仅用计算机去处理每天所发生的事务 数据,而是需要信息——能够支持决策的信息, 去帮助管理决策。这就需要一种能够将日常业 务处理中所收集到的各种数据转变为具有商业 价值信息的技术,传统数据库系统无法承担这 一责任。因为传统数据库的处理方式和决策分 析中的数据需求不相称。这些不相称性主要表 现在决策处理中的系统响应问题、决策数据需 求的问题和决策数据操作的问题。
存量数据 T1时点增量数据
…… Tn时点增量数据
抽取转换清洗加载
数据仓库
初始主题数据 T1时点主题数据
…… Tn时点主题数据
数据的非易失性
• 数据的相对稳定性。 • 数据仓库中的数据只进行刷新,从不进行更新处理。 • 反映历史变化。
存量数据
初始主题数据
抽取转换清洗加载
T1时点增量数据 ……
数据仓库
1.1从传统数据库到数据仓库(续)
• 传统的事务处理环境不适宜于决策支持应 用
– 事务处理和分析处理的性能特性不同 – 数据集成问题 – 数据动态集成问题 – 历史数据问题 – 数据的综合问题
• 操作型环境和分析型环境的分离:数据抽取
现实生活中面临的问题
人们在日常生活中经常会遇到这样的情况: • 超市的经营者希望将经常被同时购买的商
• 以数据仓库技术为基础 • 以联机分析、数据挖掘工具为手段
数据源
外部数据 业务数据系统 市场调查信息 专家经验数据

1.4数据仓库体系结构
数据仓库管理环境


细节级数据
数据集市1
数据集市2 …
数据集市n
ETL逻辑
数据仓库组织与管理 元数据(MetaData)
数据利用
数据集市x


主题数据 ∑

主题数据
• 由于缺乏集中存储和管理,这些数据不能 为本企业加以利用, 不能进行有效的统计、 分析及评估,无法将这些数据转换成企业 有用的信息
数据爆炸问题
– 自动的数据收集工具和成熟的数据库技术导致 巨大的数据存储在文件系统、数据库和其它的 信息库中 。
– 我们会淹死在数据中, 但却为信息、知识所饿!
面临的挑战
相关文档
最新文档