气敏传感器实验
气敏传感器实验
气敏传感器实验
一、实验目的:了解气敏传感器原理及特性;
二、基本原理:气敏传感器是指能将被测气体浓度转换为与其成一定关系的电量输出的装置或器件;它一般可分为:半导体式、接触燃烧式、红外吸收式、热导率变化式等等;本实验采用的是TP-3集成半导体气敏传感器,该传感器的敏感元件由纳米级SnO2氧化锡及适当掺杂混合剂烧结而成,具微珠式结构,是对酒精敏感的电阻型气敏元件;当受到酒精气体作用时,它的电阻值变化经相应电路转换成电压输出信号,输出信号的大小与酒精浓度对应;传感器对酒精浓度的响应特性曲线、实物及原理如下图所示;
aTP-3酒精浓度—输出曲线 b传感器实物、原理图
1酒精传感器响应特性曲线、实物及原理图
三、需用器件与单元:主机箱电压表、+5V直流稳压电源;气敏传感器、酒精棉球自备;
四、实验步骤:
1、按下图示意接线,注意传感器的引线号码;
气敏酒精传感器实验接线示意图
2、将电压表量程切换到20V档;检查接线无误后合上主机箱电源开关,传感器通电较长时间至少5分钟以上,因传感器长时间不通电的情况下,内阻会很小,上电后Vo输出很大,不能即时进入工作状态后才能工作;
3、等待传感器输出Vo较小小于1.5V时,用自备的酒精小棉球靠近传感器端面并吹2次气,使酒精挥发进入传感网内,观察电压表读数变化对照响应特性曲线得到酒精浓度;
实验完毕,关闭电源;。
气敏传感器实验装置改革探讨与实践
输入 端电 压和 5个LED亮 灭之 间的 关系 。改 进后 的气 敏传 感器 实验 装
置突出了“应用型实验”、实操性强、相关知识联系紧密、实验效栗形
式丰富等特点,体现了高职高专职业教育的特点,更能贴近实际。 改革后 的实验装置虽 然还存在一些 不完善的地 方,但是相对 原有
实验装置却有着很大的收获,丰富了学生相关的专业知识,增强了学生
1现有 传感 器实 验装 置分 析 在离职高专院校中,学生的知识基础和本科院校的学生不尽相同, 因此,传感器课程本身不应仅仅停留在让学生了解传感器结构和工作原 理的层面,更重要的是让他们有更多的实际动手操作机会,在实操过程 中来学习并掌握解决实际问题的方法,为传感器应用技术的持续学习和 创新 做好铺垫 。 就本院 目前传感器实 验室的情况 而言,大部分 的实验设备都 是着 重进行验证性的实验,且限于学时的限制,学生既不能了解实验设备的 设计与实现,也不能深入了解传感器技术的实际应用。总而言之,传感 器实验教学中普遍存在的主要问题是:1) 验证性实验多于应用性实验: 2)学生 处于消极被 动的实验过 程,只求看 到结果,主 观能动性得 不到 发挥。而这些问题出现的主要原因是高等院校的实验装置平台多为实验 箱,学生只需进行简单连线即可完成实验。 以本院现 有的气敏传感器 实验装置为例, 实验内容主要为 用自备 的酒精小棉球靠近传感器吹气并观察电压表度数变化。实验设备为主机 箱、气敏传感器、自备酒精棉球。实验过程只需要连接三根线,分别为 两根电源线连接到主机箱电源的正、负极,另一根线则为电压输出连接 到主机箱的电压 表上,实验接线图如图1所示。由此可见 ,实验步骤及 内容都极为简单,学生只需很短的时间即可完成相关实验,而且学生根 本看不 到实际的电 路构成,更 谈不上如何 去设计气敏 传感器的应 用电 路, 实验 效果 不甚 理想 。
气敏和湿敏传感器
实验五气敏传感器实验实验目的:了解气敏传感器的原理与应用。
所需单元:直流稳压电源、差动放大器、电桥、F/V表、MQ3气敏传感器、主、副电源。
旋钮初始位置:直流稳压电源±4V档、F/V表置2V档、差动放大器增益置最小、电桥单元中的W1逆时针旋到底、主、副电源关闭。
实验步骤:1.仔细阅读后面附上的“使用说明”,差动放大器的输入端(+)、(-) 与地短接,开启主、副电源,将差动放大器输出调零。
2.关闭主、副电源,按图4接线。
图 43.开启主、副电源,预热约5分钟,用浸有酒精的棉球靠近传感器,并轻轻吹气使酒精挥发并进入传感器金属网内,同时观察电压表的数值变化,此时电压读数。
它反映了传感器AB两端间的电阻随着发生了变化。
说明MQ3检测到了酒精气体的存在与否,如果电压表变化不够明显,可适当调大“差动放大器”增益。
思考题:如果需做成一个酒精气体报警器,你认为还需采取哪些手段?提示:1.需进行浓度标定;2.在电路上还需增加……。
附:MQ系列气敏元件使用说明一、特点1.具有很高的灵敏度和良好的选择性。
2.具有长期的使用寿命和可靠的稳定性。
二、结构、外形、元件符合1.MQ系列气敏元件的结构和外形如图4A所示,由微型AL203陶瓷管、SN02敏感层、测量电极和加热器构成的敏感元件固定在塑料或不锈钢网的腔体内,加热器为气敏元件的工作提供了必要的工作条件。
2.好的气敏元件有6只针状管脚,其中4个脚用于信号取出,2个脚用于提供加热电流。
图4A三、性能1.标准回路:如图4B所示,MQ气敏元件的标准测试问路由两部分组成。
其一为加热回路。
其二为信号输出回路,它可以准确反映传感器表面电阻的变化。
图4B2.传感器的表面电阻Rs的变化,是通过与其串联的负载电阻RL上的有效电压信号Vrl输出而获得的。
二者之间的关系表述为RS/RL=(VC-VRL)/VRL3。
3.标准工作条件:4.环境条件5.灵敏度特性气敏传感器实验实物连接图接线方法:1. 直流稳压电源旋钮调到±4V;2. V+插孔与f①和A③串联;3. f②与电桥平衡中②及差动放大器正输入孔②串联,并与黑色接地孔接通;4. B④与电桥平衡中④及差动放大器负输入空④相连接;5. 差动放大器输出端⑤与F/V表的Vi孔连接。
《基于氮化镓材料的气体传感器制备及其气敏性能研究》范文
《基于氮化镓材料的气体传感器制备及其气敏性能研究》篇一一、引言随着工业化的快速发展,环境监测与污染控制日益受到人们的关注。
气体传感器作为环境监测的核心设备,其性能的优劣直接关系到环境保护的成效。
近年来,氮化镓(GaN)材料因其独特的物理和化学性质,在气体传感器领域展现出巨大的应用潜力。
本文旨在探讨基于氮化镓材料的气体传感器的制备工艺及其气敏性能的研究。
二、氮化镓材料概述氮化镓(GaN)是一种宽禁带半导体材料,具有优良的化学稳定性、高电子迁移率和较强的抗辐射能力。
由于其独特的电学和光学性质,GaN在光电器件、高频功率器件以及气体传感器等领域具有广泛的应用。
在气体传感器领域,GaN材料对多种气体具有敏感响应,是制备高性能气体传感器的理想材料。
三、基于氮化镓材料的气体传感器制备制备基于氮化镓材料的气体传感器,主要包括以下几个步骤:1. 材料选择与准备:选择高质量的GaN材料,并进行表面处理,以提高其与基底的附着力。
2. 传感器结构设计:根据气体传感器的应用需求,设计合理的传感器结构,包括电极、敏感层等。
3. 薄膜制备:采用物理气相沉积、化学气相沉积等方法,在基底上制备GaN薄膜。
4. 器件制备:在GaN薄膜上制备电极、敏感层等结构,完成气体传感器的制备。
四、气敏性能研究气敏性能是评价气体传感器性能的重要指标。
本文通过实验研究了基于氮化镓材料的气体传感器的气敏性能,包括响应速度、灵敏度、选择性以及稳定性等方面。
1. 响应速度:通过向传感器中通入不同浓度的目标气体,观察传感器的响应速度。
实验结果表明,基于GaN材料的气体传感器具有较快的响应速度。
2. 灵敏度:通过测量传感器在不同浓度目标气体下的电阻变化,评价传感器的灵敏度。
实验结果表明,GaN材料对多种气体具有较高的灵敏度。
3. 选择性:为了评估传感器对不同气体的识别能力,我们进行了交叉敏感性实验。
实验结果表明,基于GaN材料的气体传感器对特定气体具有较好的选择性。
传感器实验实验报告
传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。
它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。
本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。
实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。
我们选择了一款热敏电阻温度传感器进行测试。
实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。
通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。
这表明该传感器具有良好的灵敏度和稳定性。
实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。
我们选择了一款光敏电阻光照传感器进行测试。
实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。
结果显示,传感器输出电阻随光照强度的增加而减小。
这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。
实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。
我们选择了一款电容式湿度传感器进行测试。
实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。
通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。
结果显示,传感器的输出电容随湿度的增加而增加。
这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。
实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。
我们选择了一款气敏电阻气体传感器进行测试。
实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。
结果显示,传感器的输出电阻随气体浓度的增加而减小。
这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。
结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。
温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。
实验四十五酒精传感器测量实验
实验四十五酒精传感器测量实验
一、实验目的
了解酒精传感器的原理与应用。
二、实验内容
通过对酒精敏感的气敏传感器的实验来验证气敏传感器的特性。
三、实验仪器
传感器检测技术综合实验台、气敏传感器实验模块、酒精少许、导线。
四、实验原理
气敏传感器的核心器件是半导体气敏元件,不同的气敏元件对不同的气体敏感度不同,当传感器暴露于使其敏感的气体之中时,电导率会发生变化,当加上激励电压且负载条件确定时,负载电压就会发生相应的变化,由此可测得被测气体浓度的变化。
A
图45-1 酒精传感器内部结构图Array图45-2 酒精传感器单元测量电路原理图
五、实验注意事项
1、实验操作中不要带电插拔导线,应该在熟悉原理后,按照电路图连接,检查无误后,
方可打开电源进行实验。
2、严禁将任何电源对地短路。
六、实验步骤
1、用导线将+5V电源引入到气敏传感器实验模块电源单元。
2、用导线将电源单元的VCC和酒精传感器单元的VCC插孔相连。
3、打开主台体电源开关和气敏传感器实验模块电源开关。
4、用棉球蘸上少量酒精,放在酒精传感器的上方,用电压表观察J4输出的电压变化,并观察其变化趋势。
5、实验完毕后,关闭所有电源,拆除导线并放置好。
七、思考题
如果增大酒精棉花的湿度,电压表的读数会增大还是减少?为什么?。
气敏传感器实训报告心得
一、引言气敏传感器作为一种重要的检测元件,在环境保护、工业生产、医疗健康等领域发挥着重要作用。
为了深入了解气敏传感器的原理、应用及其在实际工作中的应用,我们参加了为期两周的气敏传感器实训。
通过本次实训,我对气敏传感器有了更深刻的认识,现将实训心得体会如下。
二、实训内容1. 气敏传感器原理及分类实训中,我们首先学习了气敏传感器的原理和分类。
气敏传感器是一种能够将气体浓度转化为电信号的传感器,主要分为半导体型、金属氧化物型和催化燃烧型三种。
半导体型气敏传感器具有体积小、响应速度快、成本低等优点,广泛应用于工业、环保等领域。
2. 气敏传感器制作工艺实训过程中,我们亲手制作了一个简单的气敏传感器。
首先,我们了解了气敏传感器的制作工艺,包括传感器元件的选取、电路设计、封装等环节。
然后,我们按照指导老师的指导,完成了传感器的制作。
3. 气敏传感器性能测试在完成传感器制作后,我们对其性能进行了测试。
测试内容包括灵敏度、响应时间、恢复时间等。
通过对比实验数据,我们分析了传感器性能的影响因素,并提出了优化方案。
4. 气敏传感器应用案例分析实训过程中,我们还学习了气敏传感器在环保、工业、医疗等领域的应用案例。
通过这些案例,我们了解到气敏传感器在实际工作中的应用价值,以及如何针对不同应用场景选择合适的传感器。
三、实训心得体会1. 提高动手能力本次实训让我深刻体会到动手能力的重要性。
在制作气敏传感器过程中,我学会了如何使用各种工具和仪器,掌握了传感器的制作工艺。
这些技能将在今后的学习和工作中发挥重要作用。
2. 培养团队合作精神实训过程中,我们小组共同完成了传感器的制作和测试。
在这个过程中,我们相互协作,共同解决问题。
通过这次实训,我深刻体会到团队合作精神的重要性,以及如何在团队中发挥自己的优势。
3. 深化专业知识通过实训,我对气敏传感器的原理、分类、制作工艺、性能测试等方面的知识有了更加深入的了解。
这些知识将为我今后的学习和工作奠定坚实的基础。
实验三-基于气敏传感器的驾驶员酒精浓度测试仪
实验三——基于气敏传感器的驾驶员酒精浓度测试仪一.设计要求(1)测试浓度:安全浓度≤0.25mg/L,0.4mg/L<酒驾浓度>0.25mg/L,醉驾浓度≥0.4mg/L(2)显示方式:LCD显示(3)供电电压:3VDC(4)控制方式:单片机控制二.电路设计方框图:三.电路设计图四.程序流程图五.电路设计原理1.各单元电路原理(1)模数转换电路模数转换电路的作用是将传感器电路输出的模拟量信号转换为适合单片机处理的数字信号,并输入给单片机。
本课题采用的是ADC0809 A/D转换芯片。
ADC0809是8路8位逐次比较式A/D转换器,它能分时地对8路模拟量信号进行A/D转换,结果为8位2进制数据。
其由+5V电源供电,片内有带锁存功能的8路选1的模拟开关,由A,B,C的编码来决定选择通道。
0809完成一次转换需要1001xS左右。
输出具有TTI三态锁存缓冲器,可以直接连到MCS一5l单片机数据总线上。
ADC0809可对0-5V的模拟信号进行转换。
(2)键盘电路8279对键盘部分提供一种扫描工作方式,能对64个按键键盘阵列不断扫描,自动消抖,自动识别出闭合的键并得到键号,能对双键或N键同时按下进行处理。
显示部分为显示器提供了按扫描方式工作的显示接口,可以显示多达16位的字符或数字。
传感器输出的信号经ADC0809和单片机采集、处理后输出的信号为BCD码形式,它经过8279及显示电路处理后送入LCD显示。
(3)显示电路LJDl28X64液晶显示模块是128X64点阵的汉字图形型液晶显示模块,可显示汉字及图形,内置8192个中文汉字(16X16点阵)、128个字符(8X16点阵)及64X256点阵显示RAM(GDRAM)。
可与CPU直接接口,提供两种界面来连接微处理机:8一位并行及串行两种连接方式。
(4)声光报警电路报警电路分为蜂鸣器报警电路和LED发光报警电路组成。
当输入端P1.0为低电平时,有电流通过蜂鸣器,蜂鸣器发出声音报警。
气敏实验报告
一、实验目的1. 了解气敏传感器的工作原理和特性。
2. 掌握气敏传感器的检测方法。
3. 熟悉气敏传感器的应用领域。
二、实验原理气敏传感器是一种将气体浓度转化为电信号的传感器。
其工作原理基于气敏元件对特定气体敏感的特性。
当气敏元件接触到待测气体时,气敏元件的电阻值会发生变化,通过测量电阻值的变化,即可得知气体浓度的变化。
三、实验器材1. 气敏传感器(如MQ-2)2. 数据采集器3. 信号发生器4. 电源5. 气体发生器(如丙酮)6. 实验电路板7. 连接线8. 实验记录表四、实验步骤1. 搭建实验电路,将气敏传感器、数据采集器、信号发生器、电源等连接到实验电路板上。
2. 将气敏传感器放置在实验台面上,确保传感器稳定。
3. 启动数据采集器和信号发生器,调节信号发生器输出信号频率和幅度。
4. 在气敏传感器附近喷洒丙酮气体,观察数据采集器显示的电阻值变化。
5. 记录不同浓度丙酮气体下气敏传感器的电阻值变化。
6. 分析实验数据,绘制气敏传感器电阻值与气体浓度的关系曲线。
五、实验结果与分析1. 实验结果根据实验数据,绘制气敏传感器电阻值与气体浓度的关系曲线,如下所示:图中横坐标表示气体浓度(mg/m³),纵坐标表示气敏传感器电阻值(Ω)。
2. 分析从实验结果可以看出,气敏传感器电阻值与气体浓度呈线性关系。
当气体浓度增加时,气敏传感器电阻值减小;当气体浓度减少时,气敏传感器电阻值增大。
这说明气敏传感器可以有效地检测气体浓度,并且具有较好的线性特性。
六、实验结论1. 气敏传感器可以将气体浓度转化为电信号,具有较好的线性特性。
2. 实验结果表明,气敏传感器在检测气体浓度方面具有较好的应用前景。
3. 在实际应用中,可根据气敏传感器的特性和要求,选择合适的气敏传感器和检测方法。
七、实验注意事项1. 实验过程中,注意安全,避免触电、火灾等事故。
2. 实验时,确保气敏传感器稳定放置,避免振动、倾斜等影响实验结果。
气敏传感器实训报告册
一、实训目的通过本次气敏传感器实训,旨在让学生掌握气敏传感器的原理、结构、工作特性及检测方法,提高学生对气敏传感器在实际应用中的认识,培养学生的动手能力和创新意识。
二、实训环境实训地点:实验室实训器材:气敏传感器、实验台、电源、信号发生器、数据采集器、电脑等。
三、实训原理气敏传感器是一种将气体浓度转化为电信号的传感器,其基本原理是通过检测气体与传感器内部活性物质发生化学反应,从而改变传感器的电学特性。
常见的气敏传感器有半导体气敏传感器、金属氧化物气敏传感器等。
四、实训内容1. 气敏传感器基本原理及结构认识通过观察实物,了解气敏传感器的结构组成,包括传感器主体、加热丝、电极、保护电路等。
2. 气敏传感器性能测试(1)气敏传感器灵敏度测试使用标准气体对气敏传感器进行灵敏度测试,观察传感器在不同气体浓度下的输出信号变化。
(2)气敏传感器响应时间测试通过改变气体浓度,测试气敏传感器在不同浓度下的响应时间。
(3)气敏传感器恢复时间测试测试气敏传感器在气体浓度变化后,恢复到稳定状态所需的时间。
3. 气敏传感器应用实验(1)酒精浓度检测利用气敏传感器检测酒精浓度,通过数据采集器将信号传输至电脑,分析酒精浓度与输出信号的关系。
(2)烟雾检测利用气敏传感器检测烟雾浓度,通过数据采集器将信号传输至电脑,分析烟雾浓度与输出信号的关系。
五、实训过程1. 气敏传感器基本原理及结构认识(1)观察实物,了解气敏传感器的结构组成。
(2)查阅资料,了解气敏传感器的工作原理。
2. 气敏传感器性能测试(1)将气敏传感器连接到实验台上,调试电路。
(2)使用标准气体对气敏传感器进行灵敏度、响应时间、恢复时间测试。
3. 气敏传感器应用实验(1)搭建酒精浓度检测实验装置,连接气敏传感器、数据采集器、电脑等。
(2)进行酒精浓度检测实验,记录数据。
(3)搭建烟雾检测实验装置,连接气敏传感器、数据采集器、电脑等。
(4)进行烟雾检测实验,记录数据。
传感器与检测技术实训三气敏、湿敏传感器
第2章 电阻式传感器
好好休息
第2章 电阻式传感器 3、化学实验室有害气体鉴别
下图所示为有害气体鉴别器的电路。MQS2B是烟雾、 有害气体传感器,平时阻值较高(10kΩ左右)。当有 烟雾或有害气体进入时,阻值急剧下降。
第2章 电阻式传感器
MQS2B的A、B两端电压下降时,+12V电压经 MQS2B的压降减少,使得B的电压升高,经电阻R1和 RP分压、R2限流加到开关集成电路TWH8778的⑤端。 当⑤端电压达到预定值时,①、②两端导通。
高分子式 光纤湿敏传感器 界限电流式湿敏传感器 二极管式、石英振子、SAW式、微波式、热导式等
湿敏传感器的分类
第2章 电阻式传感器
电阻式湿敏传感器
电阻式湿敏传感器是利用器件电阻值随湿度 变化的基本原理来进行工作的,其感湿特征量 为电阻值。
根据使用感湿材料的不同,电阻式湿敏传感 器可分为: 电解质式(氯化锂) 陶瓷式 高分子式
第2章 电阻式传感器
这些气敏元件全部附有加热器,它的作用是使 附着在探测部分处的油雾、尘埃等烧掉,同时加速 气体氧化还原反应,从而提高元件的灵敏度和响应 速度,一般加热到200℃~400℃。
第2章 电阻式传感器
◎气敏元件的基本测量电路 半导体式气敏传感器
的基本测量电路主要包 括两部分:即气敏元件 的加热回路和测试回路。
第2章 电阻式传感器
气敏、湿敏电阻式传感器
☆气敏电阻传感器
利用半导体气敏元件同气体接触,造成半导体性质变化, 借此来检测待定气体的成分或者测量其浓度的传感器的总称。
气敏传感器主要用于工业上天然气、煤气、石油化工等部 门的易燃、易爆、有毒、有害气体的监测、预报和自动控制。
气敏电阻的材料是金属氧化物
气敏传感器实训报告总结
一、实训背景随着我国经济的快速发展和科技的不断进步,传感器技术已成为现代社会不可或缺的一部分。
气敏传感器作为一种重要的传感器,广泛应用于环境监测、工业控制、医疗健康等领域。
为了更好地掌握气敏传感器的原理、应用及操作技能,我们开展了为期一周的气敏传感器实训。
二、实训目的1. 了解气敏传感器的原理、结构及工作原理;2. 掌握气敏传感器的应用领域及特点;3. 熟悉气敏传感器的操作方法和实验技能;4. 提高团队合作能力和实际动手能力。
三、实训内容1. 气敏传感器原理及结构学习实训期间,我们学习了气敏传感器的原理、结构及工作原理。
气敏传感器是通过检测气体浓度来感知环境变化的,其基本原理是利用半导体材料对气体敏感的特性。
当气体浓度发生变化时,半导体的电导率也会随之改变,从而产生电压信号。
2. 气敏传感器应用领域及特点实训中,我们了解了气敏传感器的应用领域及特点。
气敏传感器主要应用于以下领域:(1)环境监测:如空气质量监测、大气污染监测等;(2)工业控制:如工业生产过程中的气体浓度检测、泄漏检测等;(3)医疗健康:如呼吸监测、睡眠监测等;(4)智能家居:如室内空气质量监测、烟雾报警等。
3. 气敏传感器操作方法及实验技能实训期间,我们学习了气敏传感器的操作方法和实验技能。
主要包括:(1)气敏传感器的安装与调试;(2)气敏传感器的信号采集与处理;(3)气敏传感器的数据分析和误差分析。
4. 气敏传感器实验在实训过程中,我们进行了以下实验:(1)气敏传感器的响应特性实验;(2)气敏传感器的线性度实验;(3)气敏传感器的灵敏度实验;(4)气敏传感器的选择性实验。
四、实训成果通过本次实训,我们取得了以下成果:1. 掌握了气敏传感器的原理、结构及工作原理;2. 了解气敏传感器的应用领域及特点;3. 熟悉气敏传感器的操作方法和实验技能;4. 提高了团队合作能力和实际动手能力。
五、实训总结1. 实训过程中,我们充分认识到气敏传感器在各个领域的广泛应用,以及其在环境监测、工业控制、医疗健康等方面的重要性;2. 通过实验操作,我们掌握了气敏传感器的安装、调试、信号采集与处理、数据分析和误差分析等技能;3. 实训过程中,我们学会了如何运用理论知识解决实际问题,提高了我们的动手能力和团队合作能力;4. 本次实训让我们认识到传感器技术在现代社会中的广泛应用,激发了我们对传感器技术研究的兴趣。
物理实验中的气敏传感技术及其应用
物理实验中的气敏传感技术及其应用一、引言在物理实验中,气敏传感技术是一项非常重要的技术。
它可以通过感知、检测和测量气体中的一些特定物理或化学变化,来获得气体的信息。
本文将介绍气敏传感技术的工作原理、应用场景以及一些相关的研究成果。
二、气敏传感技术的工作原理气敏传感技术主要是通过一些特定的材料来实现的。
这些材料具有对气体环境中某种特定物理或化学性质变化的敏感性。
传感器中的这些材料可以是一些金属氧化物、半导体或聚合物等。
当这些材料与目标气体接触后,其电阻、电容、压力等物理性质会发生变化,通过测量这些变化,就可以了解气体的特性。
三、气敏传感技术的应用场景气敏传感技术在许多领域都有广泛的应用。
下面列举几个典型的应用场景。
1. 环境监测气敏传感技术常用于环境监测中,如空气质量监测、水质监测等。
通过布置合适的传感器网络,可以及时监测气体的含量和浓度,为环境污染的预防和治理提供数据支持。
2. 工业生产气敏传感技术在工业生产中也有很多应用,例如气体检测,可以用于检测煤气泄漏、酒精浓度等。
此外,气体的监测也可以用于控制工业过程中的供气量,确保生产的质量和安全。
3. 医疗领域在医疗领域中,气敏传感技术可以用于监测人体呼吸、血氧浓度等生理指标。
通过实时监测这些指标,可以提供有关患者身体状况的信息,辅助医生进行临床诊断和治疗。
四、气敏传感技术的研究进展气敏传感技术在科学研究中一直是一个活跃的领域。
以下是一些相关研究领域的最新进展。
1. 纳米材料的应用近年来,纳米材料成为气敏传感技术的研究热点。
由于纳米材料具有较大的比表面积和特殊的电子结构,使其在气体检测中表现出更高的灵敏度和选择性。
2. 物联网与气敏传感技术的结合随着物联网技术的快速发展,气敏传感技术与物联网的结合成为可能。
通过将传感器与互联网连接,可以实现远程监测和实时数据传输,提高气体检测的效率和准确性。
3. 人工智能在气敏传感技术中的应用人工智能技术的发展为气敏传感技术提供了新的思路。
气敏传感器_实验报告
一、实验目的1. 了解气敏传感器的工作原理和基本特性;2. 掌握气敏传感器的检测方法及实验操作步骤;3. 分析气敏传感器在不同气体环境下的响应特性。
二、实验原理气敏传感器是一种将气体浓度转换为电信号的传感器。
其基本原理是:当气体分子与半导体材料发生作用时,会引起半导体材料电阻率的变化,从而实现气体的检测。
气敏传感器主要分为半导体气敏传感器和金属氧化物气敏传感器两大类。
三、实验仪器与材料1. 气敏传感器:MQ-2、MQ-3、MQ-5等;2. 气体发生装置:酒精、甲烷、丙烷等;3. 信号发生器:直流稳压电源、信号放大器等;4. 测量仪器:数字多用表、示波器等;5. 实验装置:气敏传感器实验台、实验电路等。
四、实验步骤1. 准备实验装置,将气敏传感器连接到实验电路中;2. 设置实验参数,包括气体种类、浓度、温度等;3. 通电预热气敏传感器,使其达到稳定状态;4. 调节气体发生装置,控制气体浓度;5. 测量气敏传感器的输出电压或电流,记录数据;6. 分析气敏传感器的响应特性,绘制响应曲线。
五、实验结果与分析1. 气敏传感器在不同气体环境下的响应特性(1)MQ-2气敏传感器对酒精的响应特性实验结果表明,MQ-2气敏传感器对酒精的检测灵敏度高,在低浓度下即可检测到酒精。
随着酒精浓度的增加,气敏传感器的输出电压逐渐增大。
在酒精浓度为0.5%时,气敏传感器的输出电压达到最大值。
(2)MQ-3气敏传感器对甲烷的响应特性实验结果表明,MQ-3气敏传感器对甲烷的检测灵敏度高,在低浓度下即可检测到甲烷。
随着甲烷浓度的增加,气敏传感器的输出电压逐渐增大。
在甲烷浓度为0.5%时,气敏传感器的输出电压达到最大值。
(3)MQ-5气敏传感器对丙烷的响应特性实验结果表明,MQ-5气敏传感器对丙烷的检测灵敏度高,在低浓度下即可检测到丙烷。
随着丙烷浓度的增加,气敏传感器的输出电压逐渐增大。
在丙烷浓度为0.5%时,气敏传感器的输出电压达到最大值。
气敏酒精传感器实验报告 扩散硅压阻式压力传感器的压力测量.docx
气敏酒精传感器实验报告扩散硅压阻式压力传感器的压力测量传感器课程设计报告题目:扩散硅压阻式压力传感器的差压测量专业班级: BG1003姓名:桑海波时间: 2013.06.17~2013.06.21指导教师:胥飞2013年6月21日摘要本文介绍一种以AT89S52单片机为核心,包括ADC0809类型转换器的扩散硅压阻式压力传感器的差压测量系统。
简要介绍了扩散硅压阻式压力传感器电路的工作原理以及A/D变换电路的工作原理,完成了整个实验对于压力的采样和显示。
与其它类型传感器相比,扩散硅压阻式电阻应变式传感器有以下特点:测量范围广,精度高,输出特性的线性好,工作性能稳定、可靠,能在恶劣的化境条件下工作。
由于扩散硅压阻式压力传感器具有以上优点,所以它在测试技术中获得十分广泛的应用。
关键字:扩散硅压阻式压力传感器,AT89S52单片机,ADC0809,数码管目录1.引言 ............................................................................ (1)1.1 课题开发的背景和现状 ............................................................................ (1)1.2 课题开发的目的和意义 ............................................................................ (1)2.设计方案 ............................................................................ . (2)2.1设计要求 ............................................................................ . (2)2.2设计思路 ............................................................................ . (2)3.硬件设计 ............................................................................ ............. 3 3. 1电路总框图 ............................................................................ .. (3)3. 2传感器电路模块 ............................................................................ (3)3. 3 A/D变换电路模块............................................................................. .. (4)3. 4八段数码管显示 ............................................................................ (8)3. 5 AT89S52单片机 ............................................................................ (9)3. 6硬件实物 ............................................................................ . (12)4.实验数据采集及仿真 (13)4.1数据采集及显示 ............................................................................ .. (13)4.2实验数据分析 ............................................................................ (13)5.程序设计 ............................................................................ .. (16)5.1编程软件调试 ............................................................................ (16)5.2软件流程图 ............................................................................ . (17)5.3程序段 ............................................................................ (18)6.结果分析 ............................................................................ .. (19)7.参考文献 ............................................................................ .. (20)1.引言1.1 课题开发的背景和现状传感器是一种能够感受规定的被测量的信息,并按照一定规律转换成可用输出信号的的器件或装置,通常由敏感元件、转换元件、测量电路三部分组成。
气敏式传感器实训报告
一、引言随着科技的不断发展,传感器技术在各个领域中的应用越来越广泛。
气敏式传感器作为一种能够检测特定气体浓度的传感器,在环境保护、工业生产、健康监测等方面发挥着重要作用。
为了更好地理解和掌握气敏式传感器的工作原理和应用,我们进行了本次实训。
二、实训目的1. 理解气敏式传感器的工作原理。
2. 掌握气敏式传感器的检测方法和应用。
3. 培养实际操作能力和创新思维。
三、实训内容1. 气敏式传感器原理气敏式传感器是利用气体与半导体材料之间的相互作用来检测气体浓度的传感器。
常见的气敏式传感器有N型半导体气敏传感器和P型半导体气敏传感器。
当传感器受到特定气体的作用时,其电阻值会发生变化,通过测量电阻值的变化,可以确定气体的浓度。
2. 实训设备与材料- 气敏式传感器模块- 数据采集器- 电源- 气体发生器- 气体浓度标准样品- 连接线3. 实训步骤(1)连接设备:将气敏式传感器模块连接到数据采集器,确保连接牢固。
(2)设置参数:根据检测的气体种类,设置数据采集器的参数,如采样频率、阈值等。
(3)进行测试:打开气体发生器,逐步增加气体浓度,记录数据采集器显示的电阻值。
(4)数据分析:对测试数据进行处理和分析,得出气体浓度与电阻值之间的关系。
(5)结果验证:使用气体浓度标准样品进行验证,确保实验结果的准确性。
四、实训结果与分析1. 实验结果通过实验,我们得到了不同气体浓度下的电阻值,并绘制了气体浓度与电阻值之间的关系曲线。
2. 结果分析(1)在低浓度范围内,电阻值随气体浓度增加而增大。
(2)在高浓度范围内,电阻值随气体浓度增加而减小。
(3)在特定浓度范围内,电阻值与气体浓度呈线性关系。
五、实训总结1. 理论联系实际通过本次实训,我们深入了解了气敏式传感器的工作原理,将理论知识与实际操作相结合,提高了我们的实践能力。
2. 培养创新思维在实训过程中,我们遇到了一些问题,通过查阅资料、讨论和尝试,最终找到了解决方案。
这培养了我们的创新思维和解决问题的能力。
传感器实验报告
实验一 箔式应变片性能一、实验目地:1、观察了解箔式应变片的结构及粘贴方式。
2、测试应变梁变形的应变输出。
3、了解实际使用的应变电桥的性能和原理。
二、实验原理:本实验说明箔式应变片在单臂直流电桥、半桥、全桥里的性能和工作情况。
应变片是最常用的测力传感元件。
当用应变片测试时,应变片要牢固地粘贴在测试体表面,当被测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。
通过测量电路,转换成电信号输出显示。
电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为△R 1/R 1、△R 2/R 2、△R 3/R 3、△R 4/R 4,当使用一个应变片时,R ΔR R =∑;当二个应变片组成差动状态工作,则有RR R Δ2=∑;用四个应变片组成二个差动对工作,且R 1=R 2=R 3=R 4=R ,RR R Δ4=∑。
由此可知,单臂,半桥,全桥电路的灵敏度依次增大。
根据戴维南定理可以得出测试电桥的输出电压近似等于1/4·E ·∑R ,电桥灵敏度Ku =V /△R /R ,于是对应于单臂、半桥和全桥的电压灵敏度度分别为1/4E 、1/2E 和E.。
由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。
三、实验所需部件:直流稳压电源(±4V 档)、电桥、差动放大器、箔式应变片、砝码(20g )、电压表(±4v )。
四、实验步骤:1、调零 开启仪器电源,差动放大器增益至100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。
输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。
调零后电位器位置不要变化。
2、按图(1)将实验部件用实验线连接成测试桥路。
桥路中R 1、R 2、R3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。
气敏传感器应用的实训原理
气敏传感器应用的实训原理1. 气敏传感器简介气敏传感器(Gas Sensor)是一种可以感知和检测气体的装置,它可以将气体浓度转化为电信号输出,具有广泛的应用领域。
在工业生产、环境监测、安全防护等领域中,气敏传感器的应用越来越受到关注。
本文将介绍气敏传感器应用的实训原理。
2. 实训目的通过实训,学生将能够掌握以下内容: - 了解气敏传感器的构造和工作原理; - 学习气敏传感器的应用场景和使用方法; - 进行气敏传感器的测试与调试; - 学习气敏传感器数据的采集和处理。
3. 实训内容实训将按照以下步骤进行:3.1 气敏传感器原理演示通过实物演示,讲解气敏传感器的基本构造和工作原理。
学生可以观察气敏传感器的物理结构,并了解其感测气体的原理。
3.2 气敏传感器应用场景学习气敏传感器的应用场景,例如: - 煤气泄漏检测器:利用气敏传感器检测室内煤气浓度,当检测到超过阈值的浓度时,发出警报。
- 空气质量监测:利用气敏传感器检测室内空气中有害气体(如CO、CO2等)的浓度,根据浓度判断空气质量是否合格。
3.3 气敏传感器的使用方法学习如何使用气敏传感器,包括: 1. 选择合适的气敏传感器:根据应用场景选择适合的气敏传感器,考虑气体类型、测量范围、灵敏度等因素。
2. 连接电路:根据传感器的接口类型(模拟输出/数字输出)与控制器进行连接。
3. 供电和信号处理:按照气敏传感器的规格参数,给传感器供电并进行信号处理。
3.4 气敏传感器的测试与调试学习气敏传感器的测试与调试方法,包括: - 测试气敏传感器的灵敏度和响应时间。
- 测试气敏传感器的稳定性和准确性。
- 调试气敏传感器的工作范围和阈值。
3.5 气敏传感器数据的采集和处理学习如何采集和处理气敏传感器的数据,例如: - 使用模拟输入通道采集气敏传感器的模拟输出信号。
- 使用数字输入通道采集气敏传感器的数字输出信号。
- 使用软件对采集到的数据进行处理,如滤波、校准等。
气敏传感器实验报告
竭诚为您提供优质文档/双击可除气敏传感器实验报告篇一:气敏电阻实验报告实验报告气敏电阻实验一、实验目的了解气敏电阻(传感器)的原理与应用。
二、实验仪器直流恒压电源、差动放大器、电桥模块、万用表、气敏电阻(传感器)和九孔板接口平台。
三、实验原理气敏电阻传感器是一种将检测到的气体的成分和浓度转换为电信号的传感器。
气敏电阻是一种半导体敏感器件,它利用了气体的吸附而使半导体本身的电导率发生变化这一机理进行检测。
这使得气敏电阻可以把某种气体的成分、浓度等参数转化为电阻变化量,再转换为电流、电压信号。
常用的主要有接触式气体传感器、电化学气敏传感器和半导体气敏传感器等。
接触式气体传感器的检测元件一般为铂金属丝,使用时对铂丝通电流,保持300~400℃高温。
此时若与可燃性气体接触,可燃性气体就会在金属催化层上燃烧,因此铂丝温度上升,电阻值也上升。
通过测量铂丝的电阻值变化大小就可以知道可燃性气体的浓度。
电化学气敏传感器一般利用液体等电解质,其输出形式可以是气体氧化还原时产生的电流,也可以是离子作用于离子电极产生的电动势。
直热式气敏元件:加热丝和测量电极一同烧结在金属氧化物半导体管芯内,消耗功率大,稳定性较差。
旁热式气敏元件:以陶瓷管为基底,管内穿加热丝,管外侧有两个测量极,测量极之间为金属氧化物气敏材料,经高温烧结而成。
它性能稳定,消耗功率小,结构上往往加有封压双层的不锈钢丝网防爆,安全可靠。
四、实验内容及步骤设备旋钮初始位置:直流恒压源(正负)4V档、万用表置20V档、差动放大器增益拧至最小。
(1)差动放大器调零:将放大器两个输入端接地,接直流电源,用万用表测量输出电压,调节调零电位器使得输出电压为0。
(2)按图9-3-1接线。
(3)打开直流恒压源,预热5~15min后,用浸有酒精的棉球靠近传感器,并轻轻吹气使酒精挥发并进入传感器金属网内,同时观察万用表数值的变化,此时电压读数______。
它反映了传感器Ab两端间的电阻随着_______发生了变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气敏传感器实验
一、实验目的:了解气敏传感器原理及特性。
二、基本原理:气敏传感器是指能将被测气体浓度转换为与其成一定关系的电量输出的装置或器件。
它一般可分为:半导体式、接触燃烧式、红外吸收式、热导率变化式等等。
本实验采用的是TP-3集成半导体气敏传感器,该传感器的敏感元件由纳米级SnO2(氧化锡)及适当掺杂混合剂烧结而成,具微珠式结构,是对酒精敏感的电阻型气敏元件;当受到酒精气体作用时,它的电阻值变化经相应电路转换成电压输出信号,输出信号的大小与酒精浓度对应。
传感器对酒精浓度的响应特性曲线、实物及原理如下图所示。
(a)TP-3酒精浓度—输出曲线 (b)传感器实物、原理图
1酒精传感器响应特性曲线、实物及原理图
三、需用器件与单元:主机箱电压表、+5V直流稳压电源;气敏传感器、酒精棉球(自备)。
四、实验步骤:
1、按下图示意接线,注意传感器的引线号码。
气敏(酒精)传感器实验接线示意图
2、将电压表量程切换到20V档。
检查接线无误后合上主机箱电源开关,传感器通电较长时间(至少5分钟以上,因传感器长时间不通电的情况下,内阻会很小,上电后Vo输出很大,不能即时进入工作状态)后才能工作。
3、等待传感器输出Vo较小(小于V)时,用自备的酒精小棉球靠近传感器端面并吹2次气,使酒精挥发进入传感网内,观察电压表读数变化对照响应特性曲线得到酒精浓度。
实验完毕,关闭电源。