临床放射生物学基础
放射生物学讲义

快速电子 离子自由基物效应
射线质与相对生物效应
线性能量传递(LET,linear energy transmission) 射线与生物分子相互作用产生电离而发生的能量转换。 以射线沿径迹1u所消耗的能量表示,单位为KeV/u。 LET=dE/dL 高LET射线:质子、中子 低LET射线:直线加速器产生的X线和钴机产生γ线
细胞死亡的机制: 染色体DNA是关键靶 调亡:照射启动了细胞内的某种基因机制,从而发生一系 列程序性改变,最终导致细胞死亡。多 发生在间期细胞 及成熟分化的细胞。它是高度细胞类型依赖性的。唾液腺 分泌细胞:照射几次即出现口干;神经细胞,淋巴细胞等。 在一定意义上说,只需使肿瘤细胞产生增殖性死亡,即肿 瘤细胞不再无限分裂增殖,就能达到根治肿瘤的目的。 细胞死亡和再增殖完整性丢失(loss of reproductive integrity of tumor cells)存在根本意义上的不同。放射 可治愈性最主要依据是后者。
D0 Gy
线性二次模型(linearquadratic model) 辐射杀灭细胞有两部分:一部 分与照射剂量成比例,另一部 分与照射剂量的平方成比例 S=e -αD-βD2
α和β是常数
存活分数
S是照射剂量为D时的细胞存活 当αD= βD2或D= α/ β,照射剂量 与细胞杀灭成比例的部分与照射剂量 平方成比例的部分相等,在这个剂量 点α/ β,线性和平方项对细胞杀灭 的贡献相等。 α/ β:早反应组织高 晚反应组织低
第三章:电离辐射的细胞效应
辐射诱导的DNA损伤及修复
DNA的链断裂
单链断裂: 离体DNA受照射后约90%为单链断裂;活体DNA受照射后比 例更高。单链断裂后可以按照DNA的碱基配对原则修复 (如此时发生错误修复,可产生突变)。 双链断裂: 离体DNA受照射后约10%为双链断裂;活体DNA受照射后比 例更低。双链断裂后,由于模板的消失,一般不能修复。 注意断裂部位:如断裂部分彼此分开(间隔一段距离), 可以修复; 断裂在对侧互补碱基位置或仅隔几个碱基, 发生真正双链断裂,及染色体折成两段,导致细胞死亡/ 突变致癌。 双链断裂修复:同源和非同源重组
放射生物学

放射生物学(Radiobiology)放射生物学研究的是放射对生物体作用及其效应规律的一-门学科。
1.正常组织对放射性的反应2.肿瘤对放射性的反应正常组织对放射的反应最小耐受量(TD5/5)一定的剂量-分割模式照射后5年内严重放射并发症发生率不超过5%的剂量最大耐受量(TD50/5)一定的剂量-分割模式照射后5年内严重放射并发症发生率不超过50%的剂量肿瘤放射治疗的两大基本原则1.最大程度地杀灭肿瘤2.最大程度地保护正常组织正常组织与肿瘤组织分次照射后的差别二、分次放疗的生物学基础(4R理论)在引起相同正常组织损伤时,多数时候分割照射的肿瘤局控要优于单次照射分割放射的生物学基础一4R理论(1975由Withers提出)放射损伤的修复(Repair of radiation damage)细胞周期的再分布(Redistribution within the cell cycle)乏氧细胞的再氧合(Reoxygenation)再群体化(Repopulation)(一)细胞放射损伤的修复1.亚致死损伤(sublethal damage)指受照射以后,细胞的部分靶内所累积的电离事件,通常指DNA单链断裂。
亚致死损伤是一种可修复的放射损伤。
亚致死损伤的修复:指假如将某一给定单次照射剂量,分成间隔一定时间的两次时所观察到的存活细胞增加的现象。
1959年EIkind发现,当细胞受照射产生亚致死损伤而保持修复能力时,细胞能在3小时内完成这种修复,将其称之为亚致死损伤修复。
影响亚致死损伤的修复的因素:1.放射线的质低LET辐射细胞有亚致死损伤和亚致死损伤的修复,高LET辐射细胞没有亚致死损伤因此也没有亚致死损伤的修复2.细胞的氧合状态处于慢性乏氧环境的细胞比氧合状态好的细胞对亚致死损伤的修复能力差3.细胞群的增殖状态未增殖的细胞几乎没有亚致死损伤的修复临床意义:细胞亚致死损伤的修复速率一般为30分钟到数小时常用亚致死损伤半修复时间(T1/2) 来表示不同组织亚致死损伤的修复特性在临床非常规分割照射过程中,两次照射之间间隔时间应大于6小时,以利于亚致死损伤完全修复2.潜在致死损伤(potential lethal damage)正常状态下应当在照射后死亡的细胞,在照射后置于适当条件下由于损伤的修复又可存活的现象。
放射治疗技术生物

(3)总治疗时间:因为晚反应组织更新慢,放疗期 间不发生代偿性增殖,所以对治疗时间变化不敏感 ,缩短治疗时间会增长对肿瘤细胞旳杀灭,但不会 增长晚期并发症。早反应组织对治疗时间反应敏感 ,缩短治疗时间早反应组织损伤加重。早反应组织 对射线旳反应类似于肿瘤组织。
二、非常规分割照射旳生物学基础
超分割:指在一样旳总治疗时间内用更多旳分次数。一天内多 于一种分次,但分次剂量降低。 1.2Gy/次,每天2次,间隔6 小时以上。总剂量与常规放疗相同,其目旳是保护正常组织。
细胞存活旳意义
细胞存活曲线
1、细胞存活曲线旳绘制
离体细胞培养 不同剂量照射 单细胞接种 细 胞培养 2周左右计算集落形成数目 计算存活率
绘制存活曲线
2、细胞存活曲线旳形状
1)指数性存活曲线 2)非指数性存活曲线
3、细胞存活曲线有关参数旳含义
D0 (平均致死剂量):是指细胞存活从0.1下降到0.037或从 0.01下降到0.0037所需旳剂量。表达受照射细胞在高剂量 区旳放射敏感性。D0值越大,细胞对放射越抗拒。
线性二次模式与α/β值
S =e -n (αd +βd2) 描述了组织生物效应与分次照射及剂量 之间旳关系 预测不同剂量分割方式旳生物效应 进行不同剂量分割方式旳等效转换
不同组织射线照射后反应不同。根据细胞增殖动力学 和α/β比值将正常组织提成早反应组织和晚反应组织。
早反应组织:指机体内分裂、增殖活跃并对放射线早期反 应强烈旳组织,如上皮、黏膜、造血组织、精原细胞等;( 涉及大多数肿瘤组织) 晚反应组织:指机体内无再增殖能力,损伤后仅以修复代 偿其功能旳细胞组织,如脊髓、肾、肺、肝、结缔组织等。
② 潜在倍增时间(potential doubling time ,T pot), 用来描述肿瘤生长速度旳理论参数,定义:假设在没有细胞 丢失 旳情况下,肿瘤细胞群体增长一倍所需要旳时间。这 取决于细胞周期时间和生长百分比。 潜在倍增时间能够经过测定胸腺嘧啶标识数(LI)或S期百 分比(S-Phase fraction)取得:T pot=λ×Ts/LI ③ 细胞丢失因子(cell loss factor),肿瘤细胞旳丢失 能够经过计算细胞丢失因子来体现。细胞丢失因子=1- T pot/Td
放射生物学基础

正在分化中有增殖能力的细胞
对射线相当敏感,略低于第一类细胞。 由第一类细胞产生,较第一类细胞分化。 正在分化中不同造血系统的有分裂能力的 细胞和比较分化的精原细胞。
多种归宿的结缔组织细胞
处于相对敏感和相对抗拒之间。 分裂不规律,平均寿命长于前两类细胞。 内皮细胞、纤维母细胞和间质细胞。
正常组织和器官的放射效应
种系和个体发育的放射敏感性 早期反应组织和晚期反应组织 细胞群体动力学特点
种系和个体发育的方射敏感性
不同种系的生物对电离辐射的敏感性 有很大差异,其总的趋势是随着种系 演化越高,机体组织结构越复杂,其 放射敏感性越高。
早期反应组织和晚期反应组织
大多数情况下,增殖旺盛、分化程度低的细胞要 比无增殖能力、分化高的细胞对射线更敏感。 这是因为前者很快发生增殖死亡,而引起这种效 应所需要的照射剂量较低,而后者因为分裂活动 低下或不分裂,没有或很少发生增殖死亡,所需 要达到细胞死亡的剂量则要高得多。
非常规分割放射治疗
常规大剂量:缩短总的治疗时间,每次剂量同 常规分割稍多一点,一般大于250cGy/次,1 次/日,5日/周 分段治疗:有利于正常组织修复及肿瘤的再氧 合,对年老体弱病人较为适合。但延长疗程是 不利于肿瘤控制的。
分次照射计划的调整及临床应用
每周5次、每次2Gy的常规分割治疗方法, 虽然应用多年,但对每个具体肿瘤病人并不 一定是最佳的治疗方案。 因此需要我们调整分次治疗计划,以适合各 种不同临床情况肿瘤病人的治疗。
不同组织的α /β 值(Gy)
早反应组织 皮肤 空肠 结肠 睾丸 α /β 9~12 6~10 10~11 12~13 晚反应组织 脊髓 肾 肺 膀胱 α /β 1.0~4.9 1.5~2.4 2.4~6.3 3.1~7
肿瘤放射治疗策略——放射生物学基础篇

电离辐射对生物体的作用 《生物效应》
• 2.化学阶段 • 概念:受损的原子和分子与其他细胞成分发
生快速化学反应的时期 • 作用方式:电离和激发导致化学键的断裂和
自由基的形成(即破损的分子)。 • 此阶段的特点:清除反应之间的竞争,如灭
入射χ线光子
快速电子
自由基
离子自由基
由化学键断裂引起的化学变化
生物效应
电离辐射对生物体的作用 《电离辐射的直接和间接作用》
放射线的细胞效应 《电离辐射的细胞效应》
• 1.辐射诱导的DNA损伤及修复 • 理论依据:有许多的研究证据显示,
DNA是引起一系列放射生物学效应( 包括细胞死亡、突变和致癌)的关键 靶。 • DNA是射线杀伤细胞的主要靶。 • DNA的破坏,中断了细胞分裂所必须 的DNA复制过程。 • DNA损伤主要为单链或双链的断裂, 单链断裂在一定条件下还可能修复, 双链断裂则难以修复,导致细胞死亡
• 描述了组织生物效应与分次照射及剂量之间的关系 • 预测不同剂量分割方式的生物效应 • 进行不同剂量分割方式的等效转换
• n1(αd1 +βd12)= n2(αd2 +βd22)
• 不同组织射线照射后反应不同。根据细胞增殖动力学 和α/β比值将正常组织分成早反应组织和晚反应组织 。
肿瘤放射治疗策略
——放射生物学基础篇
概述
• 重要性:放射肿瘤学的三大基本 支柱:肿瘤学、放射物理学、临 床放射生物学。
• 目的:提高肿瘤放射治疗疗效, 减少正常组织损伤,延长患者生 命和改善生活质量。
• 意义:是放射肿瘤学家了解放射 线治疗肿瘤的生物学机制,以及 从事有关研究的思想库和试验基 地。
3第二章临床放射生物学

细胞死亡: 1.增殖性死亡:几个细胞周期以后才死 即失去无限增殖能力
亡,
2.间期性死亡(凋亡):几个小时内就死亡,细 胞对放射敏感性较高,比如淋巴细胞 细胞凋亡:是基因控制的细胞自主有序的死亡, 是主动争取的一种死亡过程。就像树叶或花自然 凋落一样。
辐射所致细胞死亡
几百戈瑞的大剂量照射之后,所有细胞机能都中止,最终发生细 胞溶解,这种情况被认为是细胞即刻死亡或间期死亡; 用较低的几个戈瑞照射正在分裂或还能进行分裂的细胞(如骨髓 细胞系、皮肤或小肠隐窝),此时部分细胞丧失其分裂或增殖能力。 另一方面,存活细胞或能够生存发育的细胞是指保持细胞增殖能力, 并能够因此而形成集落或克隆的细胞,这些细胞称为克隆源性细胞。 在体内,肿瘤和正常组织只有一小部分细胞属于克隆源性细胞,受照 后期数量迅速减少。 上述细胞死亡定义对放射治疗具有特殊意义,因为肿瘤细胞即使全都 依然存在,但失去了无限增殖能力,并因此而失去了局部浸润或远地 转移的能力,这样也就达到局部控制的目的。 同样,对于正常组织,大多数急性和慢性放射效应都发生在丧失生存 发育能力的情况下。
三.细胞存活曲线
受照射的细胞保留完整的增殖能力,能无限分裂 产生大量子代细胞形成一个集落或克隆的干细胞 称为细胞存活
细胞存活曲线:用来定量描述辐射吸收剂量与存 活细胞数量的相关性的一种方法。
指数性存活曲线:
细胞存活率与照射剂量成指数性反比关系,即在细 胞放射敏感性不变时,剂量越大,细胞死亡越多; 而敏感度越低,细胞存活率越高; 以同一剂量照射放射敏感与放射抗拒的细胞,其存 活率不同。根据指数性反比关系,即使照射剂量达 到极大时(临床一般不可能用这么高的剂量),也 会有少数细胞存活。p40图 用密集电离辐射如中子、a粒子为放射源,可有这 种放射效应。
放射生物学的基础理论讲解

⑦细胞周期的放射敏感性: Ⅰ:以细胞死亡为标准,M期最敏感,其敏感性是S 期的2.6倍,无亚致死性损伤。 Ⅱ:以细胞分裂延迟为指标,以G1、G2期最敏感。 如阻断G2期,使细胞进入M期 Ⅲ:以畸变为指标,S期最敏感
(四)单靶单击与单靶多击
细胞的死亡或者来自于单次致死性的击中细胞中的 靶或者来至于分成2次击中所产生的亚致死性损伤 的相加。前者以ad表示,后者以βd2表示。因而其最 终的细胞存活率为:S=e-(ad+d2)。可以分别把它们 简称为a型细胞杀灭及β型杀灭.它们的单位分别为 Gy-1和Gy-2。它们的比值即α/β=d(Gy)。当细胞 存活曲线肩区较大时,则α/β值小,而肩区小时则 α/β值较高。 α/β值相当于a型细胞杀灭和β型杀灭 二者生物效应相等时所需的剂量。S=e-(ad+d2)即是 所谓的线性-平方模式。
4、应用LQ模式设计非常规分割照射方案应注意以下原则: (1)为使晚反应组织的损伤相对低于肿瘤的杀灭,每分 次剂量应小于1.8-2.0Gy。 (2)每天的最高分次照射总量应小于4.8-5.0Gy。 (3)每分次照射间隔时间应大于6小时。 (4)在不致引起严重急性反应的情况下,尽量缩短总的 治疗时间。 (5)给予不致引起严重晚期损伤的最高总剂量,但不论 何种方案,两周内给予的总剂量不应超过55Gy。
评价:1、是经验公式,缺乏生物学基础。 2、把各种治疗归结为单次照射的生物剂量, 不符合临床上治疗情况。 3、不同组织具有不同的放射敏感性,因而 不能应用单一的指数0.24来代表所有的修复情况。 4、不同的分割剂量照射,其指数不一致。 5、没有考虑到正常组织照射后产生的加速 细胞增殖,另外,也与肿瘤细胞照射后经过一段潜 伏期,干细胞增殖速度加快的生物学现象不一致。
临床放射生物学基础

放射治疗实现的可能性
• B-T定律:
细胞的放射敏感性高低和细胞增长 速率成正比和细胞的分化程度成反比
恶性肿瘤细胞增长快,分化差和正 常组织相比,放射敏感性更高
辐射的细胞生物学效应
• 细胞死亡
(1)增殖性死亡
分裂几次后死亡,临床表现,肿瘤受照后 ,体积不立即缩小,甚至出现临时性增大,以 后,随着肿瘤细胞的不断死亡,肿瘤才缩小
存活率=
(PE)
种植细胞数空白组集落形成
细胞存活曲线
• 高LET线细胞存活曲线----指数性曲线 曲线公式 S=e-kD
• 低LET线细胞存活曲线----非指数性曲线 肩部反映低剂量下损伤修复 直线部分反映高剂量下指数性杀灭 曲线公式为一次二元方程式 S=1-(1-e-kD )n ( K 为直线部分的斜率) D0=1/K (D0 为平均致死剂量) S=1-(1-e-D/ D0 )n
细胞存活曲线 线性二次模型
分次剂量照射的细胞存活曲线
• 分次照射时,细胞存活曲线肩区的 每次照射重建。
细胞动力学的改变
细胞的放射敏感性
• 不同细胞群体的放射敏感性,不断分裂和更新 的细胞敏感,不分裂的细胞抗拒。
• 不同细胞周期时相的放射敏感性差异。 • 不同环境中的细胞敏感性特别是氧分压不同对
曲线几个重要参数: D0 ,n值,Dq值
细胞存活曲线 单击单靶模型
细胞存活曲线 单击单靶模型
e-1 = 0.37 e-2 = 0.14 e-3 = 0.05
细胞存活曲线 单击多靶模型
细胞存活曲线 线性二次模型
• Thames和Bentzen于80年代提出 • LQ模型以DNA双链断裂造成细胞死亡为理论依
放射生物学基础总结

间接作用:水的辐射反应的产物跟溶质分子间的作用BT定律:一种组织的放射敏感性与其细胞的分裂活动成正比而其分化程度成反比的结论放射增比剂(OER):缺氧条件下产生一定效应的剂量/有效条件下产生同样效应的剂量传能线密度(LET):电离粒子在其单位长度径迹上消耗的平均能量间期死亡:当细胞受到大剂量(100Gy或更大)照射时,细胞未经分裂就在间期立即死亡,这种死亡方式称为间期死亡铅当量:把达到与一定厚度的某屏蔽材料相同屏蔽效果的铅层厚度,称为该一定厚度屏蔽材料的铅当量屏蔽防护:是指在放射源和人员之间,放置能有效吸收放射线的屏蔽材料,从而衰减或取消射线对人体的危害放射损伤:由放射线照射引起的机体组织的损害原子能级:原子具有的能量是不连续的,这种不连续的能量状态,称为原子的能级时间防护:是指在不影响工作质量的前提下,尽量缩短人员受照射的时间危险度:即器官或组织接受单位当量剂量照射引起随机性损害效应的几率1.X线的防护的原则有哪些①X射线检查的正当化和最优化②X射线工作者与受检者防护兼顾③固有安全防护为主与个人防护为辅④合理降低个人受照剂量与全民检查频率2.光电效应的利与弊利:①不产生散射线,大大减少了照片的灰雾②可增加人体不同程度和造影剂对射线的吸收差别,产生高对比度的X线照片,对提高诊断的准确性很有好处③在放疗中,光电效应可增加肿瘤组织的剂量,提高其疗效。
弊:①入射X线通过光电效应可全部被人体吸收,增加了受检者的剂量。
3.宫内照射的有害效应包括哪些①胚胎死亡②畸形③智力低下④诱发癌症4.细胞周期各时相的放射敏感性①放射敏感性最高的时相是M和G2期②LS期放射抗性最强③若G1期想当长则G1早期有抗性,G1末期敏感④细胞内的巯基化合物较多,不敏感⑤S期后部的抗性通常最高5.辐射根据本质和作用的分类,并举例按粒子辐射:本质是一些高速运动的粒子。
本粒子带电粒子:a粒子,b粒子,质子(+),π介子,重离子质不带电的中性粒子:中子分电磁辐射:本质是一种电磁波(光子)如x射线,r射线,紫外线等。
临床放射生物学基础

临床放射生物学基础在医学领域中,临床放射生物学是一门至关重要的学科,它研究的是电离辐射与生物体相互作用的规律和机制,对于肿瘤的放射治疗、放射性损伤的预防和治疗等方面都具有重要的指导意义。
首先,我们来了解一下什么是电离辐射。
电离辐射是指能够使物质中的原子或分子发生电离的辐射,包括 X 射线、γ射线、质子、中子等。
当这些辐射与生物体相互作用时,会产生一系列的生物效应。
电离辐射对生物体的作用主要分为直接作用和间接作用。
直接作用是指辐射直接与生物大分子,如 DNA 等发生作用,导致其结构和功能的改变。
而间接作用则是通过辐射与水分子相互作用,产生自由基等活性物质,进而损伤生物大分子。
细胞是生物体的基本结构和功能单位,因此细胞对电离辐射的反应是临床放射生物学研究的重点之一。
不同类型的细胞对辐射的敏感性不同。
一般来说,增殖活跃的细胞,如造血细胞、胃肠道上皮细胞等,对辐射比较敏感;而神经细胞、肌肉细胞等分化成熟的细胞则相对不敏感。
细胞受到辐射后,会出现一系列的变化。
在细胞周期方面,辐射可能导致细胞周期的阻滞,使细胞停留在某个特定的时期,以便进行损伤修复。
如果损伤过于严重无法修复,细胞就会启动凋亡程序,以避免受损细胞的继续存活和增殖。
DNA 是遗传信息的携带者,辐射对 DNA 的损伤是导致细胞生物效应的关键因素。
常见的 DNA 损伤包括单链断裂、双链断裂、碱基损伤等。
其中,双链断裂被认为是最严重的损伤,如果不能及时准确地修复,很可能导致细胞死亡或基因突变。
辐射引起的生物效应还与辐射的剂量、剂量率、照射方式等因素有关。
低剂量辐射可能会引起一些适应性反应,如增强细胞的修复能力和抗氧化能力;而高剂量辐射则往往导致严重的损伤甚至细胞死亡。
剂量率越高,细胞损伤越严重;分次照射则可以利用细胞的修复能力,减轻辐射损伤。
在肿瘤的放射治疗中,临床放射生物学的原理得到了广泛的应用。
通过合理选择辐射剂量、照射方式和分次方案,可以最大程度地杀伤肿瘤细胞,同时保护正常组织。
大分割放疗的临床放射生物学基础-易俊林

大分割照射的临床生物学基础Basic Clinical Radiobiology of Hypofractionation Radiotherapy易俊林中国医学科学院肿瘤医院放疗科国医学科学院肿瘤医院放疗科易俊林临床放射生物学●研究对象: 肿瘤患者●研究核心: 剂量-效应关系时间-剂量-分割模式(TDF ) ●评价指标: 肿瘤控制 &正常组织损伤●研究目标: 寻找最大肿瘤控制和最小正常 组织损伤之间的最佳平衡●放疗的理论基础 相当于内科的药理学 国医学科学院肿瘤医院放疗科易俊林深部X-线机放射治疗学科的发展C0-60机IMRT&IGRT 1950年以前2000年以后直线加速器 1930年以前1960年代以后 二维三维IMRT四维及生物靶区国医学科学院肿瘤医院放疗科易俊林治疗分割模式的发展国医学科学院肿瘤医院放疗科易俊林肺癌大分割照射vs 手术 引起关注STARS and ROSEL 研究,58 pts cT1–2a (<4 cm), N0M0 SABR 31例, 18Gyx3 /12.5Gyx 4 或 12Gy x 5F 肺叶切除+纵隔淋巴结清扫或取样 27例国医学科学院肿瘤医院放疗科易俊林Therapeutic Ratio LossGain 国医学科学院肿瘤医院放疗科易俊林分次照射的敏感性特定照射靶区,相同正常组织损伤前提下, 分次数与肿瘤控制率的关系国医学科学院肿瘤医院放疗科易俊林大分割临床应用时正常组织a/β的计算◆正常组织(肺/脊髓)BED 计算时,是基于均匀剂量分布/全部体积照射的◆这种情况在临床实践中几乎不会发生,特别是在小体积/非均匀照射为特征的大分割的情况下◆在计算生物学效应时需要考虑 正常组织的构成 (串联/并联)和照射体积的 因素◆在大分割时,正常组织的等效a/β就尤为重要国医学科学院肿瘤医院放疗科易俊林大分割正常组织等效 a/β 的计算等效a/β基于L-Q 公式,考虑正常组织的构成和剂量分布均匀性最简单的情形,正常组织接受100%的均匀剂量照射国医学科学院肿瘤医院放疗科易俊林大分割正常组织等效 a/β 的计算非均匀照射时,以及正常组织并联/串联的构成时◆等效a/β值与正常组织的平均剂量负相关◆如果等效a/β值越高,越接近肿瘤组织(10),也就是说正常组织的单次剂量越低,越能从大分割照射中获益国医学科学院肿瘤医院放疗科易俊林大分割正常组织等效 a/β 和组织构成的关系n 表示组织构成 串联-并联轴, 0代表串联器官,1代表并联器官国医学科学院肿瘤医院放疗科易俊林肿瘤组织与正常组织的相对关系(1)前列腺癌周围型肺癌椎体转移瘤肿瘤α/β小于周围组织,周围组织为并行组织肿瘤α/β大于周围组织,周围组织为并行组织肿瘤α/β大于周围组织,周围重要器官 串行组织国医学科学院肿瘤医院放疗科易俊林肿瘤组织与正常组织的相对关系(2) 脑转移瘤肿瘤包埋于周围组织,a/β多种多样,周围组织为串行组织脑转移瘤的治疗决策因素: 1. KPS 2. 部位 3. 大小 4. 数目5. 临床症状6. 病理(乳腺癌/肺癌/肾癌/其他)7. 颅外病变控制情况国医学科学院肿瘤医院放疗科易俊林不同组织的α/β值-前列腺癌大分割 肿瘤组织的BED 获益比周围正常组织高, 治疗比>1, 有利于缩短治疗时间, 提高肿瘤细胞杀灭1999年~,17个 研究,9 EB-LDR ,1 EB-HDR , 5 EB ,2 离体实验前列腺癌国医学科学院肿瘤医院放疗科易俊林相同物理剂量对不同α/β值的组织的BEDHD-BT 54 Gy/9FEBRT 46Gy/23F+ 19.5 Gy/2F38 Gy/4F52.5 Gy/20F78 Gy/39F66 Gy/33F70.2 Gy/39F国医学科学院肿瘤医院放疗科易俊林前列腺癌大分割照射结果-SBRTFFBF, 无生化复发率; H,高危组; I, 中危组;L, 低危组国医学科学院肿瘤医院放疗科易俊林前列腺癌大分割照射结果(HDR-BT )国医学科学院肿瘤医院放疗科易俊林乳腺癌加速分割照射结果-局控和生存国医学科学院肿瘤医院放疗科易俊林乳腺癌加速分割照射结果-美容效果和毒副作用国医学科学院肿瘤医院放疗科易俊林肿瘤组织与正常组织的相对关系(2)前列腺癌周围型肺癌椎体转移瘤肿瘤α/β小于周围组织,周围组织为并行组织肿瘤α/β大于周围组织,周围组织为并行组织肿瘤α/β大于周围组织,周围重要器官 串行组织国医学科学院肿瘤医院放疗科易俊林肺癌大分割照射结果-SABR国医学科学院肿瘤医院放疗科易俊林肺癌大分割照射-SABR vs 手术STARS and ROSEL 研究,58 pts clinical T1–2a (<4 cm), N0M0 31 to SABR , 27 to 肺叶切除+纵隔淋巴结清扫或取样 18Gyx3 /12.5Gyx 4 或 12Gy x 5F国医学科学院肿瘤医院放疗科易俊林肺癌大分割照射毒副作用国医学科学院肿瘤医院放疗科易俊林肺癌大分割照射结果-BED/EQD2国医学科学院肿瘤医院放疗科易俊林BED 与TCP (NSCLC )左图:来自临床数据,不同分给模式的(2年局部控制率)与BED 的关系 右图:消除不同研究人数不同的情况下,计算出的TCP 与BED 的关系 实线:根据L-Q 模型拟合的TCP 与BED 的关系提示:SBRT/SRS 能够得到好的控制率,在于这些技术能够给予肿瘤更高的BED国医学科学院肿瘤医院放疗科易俊林肺癌局部控制率与BED 的关系-常规分割国医学科学院肿瘤医院放疗科易俊林Chi , BioMed Research International Volume 2013, Article ID 391021, /10.1155/2013/391021周围型肺癌肿瘤α/β大于周围组织,周围组织为并行组织国医学科学院肿瘤医院放疗科易俊Chi , BioMed Research International Volume 2013,Article ID 391021, /10.1155/2013/391021●新的模型 universal survival curve (USC) 模型●基于肿瘤细胞杀灭的多靶学说来预测细胞存活的模型 Park,C. IJROBP , 2008, 70,847–852国医学科学院肿瘤医院放疗科易俊L-Q 模型过高估计了高剂量条件下细胞杀灭效应2v假设α/β =8.6Gy时L-Q模型的细胞存活曲线LQL模型(线性-二次-线性模型)USC:万有曲线模型提示:在高剂量照射时,细胞或组织能够耐受比L-Q预测的更多的剂量国医学科学院肿瘤医院放疗科易俊林NSCLC 的α/β值计算数据来源Chi , BioMed Research International Volume 2013,国医学科学院肿瘤医院放疗科易俊林分次剂量与局部控制率的关系, 3FChi , BioMed Research International Volume 2013,国医学科学院肿瘤医院放疗科易俊林Tumor iso BED with differernt α/β ratios & LC in NSCLCChi , BioMed Research International Volume 2013,不同α/β值计算出的BED 均与LC 正相关,α/β取值>10时,相关性更好。
放射生物学基础

第三章 辐射对肿瘤组织的作用
第二节、从实验肿瘤的放射生物学研究中得到的一些 结论 ①肿瘤体积效应, 大肿瘤比小肿瘤难治愈。大肿瘤 内克隆源细胞数多。大肿瘤中的克隆源细胞对治疗 的敏感性更小。 ②再群体化的加速, 在照射后存活下来的克隆源性 细胞可能使肿瘤很快再群体化。肿瘤体积不能很好 地反映克隆源性细胞的杀灭情况。 ③瘤床效应 ④乏氧和再氧合
第三章 辐射对肿瘤组织的作用
(2)肿瘤的指数性生长和非指数性生长 指数性生长:肿瘤体积在相等的时间间隔
内以一个恒定的比例增加。 V=exp(0.693·T/Td) 0.693是Ln2,T是时间。
肿瘤体积的对数随时间呈线性生长,这是 最简单的生长模式,理论上必需满足:所有 细胞均在增殖,并且没有细胞丢失,也就是 说肿瘤倍增时间等于细胞周期时间。实际上 肿瘤生长的倍增时间要长于细胞周期时间, 因为存在细胞丢失和去周期化,肿瘤生长是 非指数性的。
第三章 辐射对肿瘤组织的作用
二、 肿瘤的生长速度
①肿瘤体积倍增时间(tumor volume doubling time ,Td)是描述肿瘤 生长速度的重要参数,由三个主要决定因素所决定:细胞周期时 间(the cell cycle time ,Tc);生长比例(the growth fraction ,GF); 细胞丢失率(the rate of cell loss)。如果细胞周期时间短、生长比 例高、细胞丢失少,则肿瘤增长速度块。
第三章 辐射对肿瘤组织的作用
以上是肿瘤实质细胞,其它参与形成肿瘤包块 的主要是间质,包括纤维细胞、血细胞、血管组织 等,有时肿瘤间质比肿瘤实质成分还多。临床上实 质成分多质软,间质成分多质硬。
放射生物学 (2)【可编辑全文】

发展简史
放射物理学的重要发现 1906年提出有关细胞、组织放射敏感性定律 20年代形成靶学说 40年代核武器开发和使用,全身性急性放射损伤和放射病理的研究进展很快。 1953细胞学技术发展,揭示了细胞生活周期各时相。同年阐明了乏氧具有增加细胞放射抵抗了力的作用。 60年代DNA损伤与修复的研究,提高到分子生物学水平。 80年代提出了放射治疗中需要考虑的生物因素—4“R”。
自由基与放射损伤
对脂类过氧化作用与生物膜的损伤 细胞中包括细胞膜、线粒体膜、内质网膜、溶酶体膜、核膜等在内的多种膜结构统称为生物膜。 OH +LH L • + H2O L• + O2 LOO• LOO• + LH LOOH + L• (1)膜脂改变导致膜功能改变和膜酶损伤; (2)脂质过氧化过程中形成的活性氧对酶和其他细胞成分的损伤; (3)脂氢过氧化物的分解产物,特别是醛类过氧化物的分解产物对细胞及其成分的毒性效应。
治疗次数
损伤程度
放射损伤示意图
1 2 3 4
5 6 7 8
损伤超过此水平,组织便不能修复
正常组织
肿瘤组织
9 10
11
121314151617
损伤程度
治疗次数
肿瘤复发示意图
1 2 3 4
5 6 7 8
损伤超过此水平,组织便不能修复
正常组织
肿瘤组织
9 10
11
121314151617
损伤程度
细胞放射损伤的修复
(一)细胞的放射损伤 亚致死损伤:通常指DNA 的单链断裂,可修复的损伤。即经过一段时间,细胞基因组受损伤的部位被酶切除,以DNA的另一条单链为模板,损伤部位经复制而修复。只有分割时才表现出来。总剂量20Gy时,一次照射,存活率0.048%,而每次2Gy照射10次,细胞存活率9%。可见,虽对细胞死亡影响不大,但会增加细胞生存率。 潜在致死损伤:正常状态下应当在照射后死亡的细胞,若至于适当条件下,由于损伤的修复又可存活的现象。 致死损伤:受照射后细胞完全丧失了分裂增殖能力,是一种不可修复的,不可逆和不能弥补的损伤。
放疗名词解释

放疗名词解释:1、放射生物学:临床放射生物学是在放射生物基础理论研究的基础上,探讨人类肿瘤及其正常组织在放射治疗过程中放射生物学效应问题的一门科学,是肿瘤放射治疗技术学的重要基础之一。
2、相对生物效应:是指要达到同样生物效应时的标准射线(250KV X射线)所用剂量和某种射线所用剂量的比值。
3、直接作用:指放射线直接作用于生物组织细胞中的生物大分子,使其产生电离和激发,并最终导致其发生放射性损伤称之为电离辐射的直接作用。
高LET射线以直接作用为主。
4、间接作用:指在放射线与生物组织作用、尤其是与生物组织内水分子作用产生自由基,这些自由基再与生物大分子作用使其损伤。
这种放射性损伤称之为电离辐射的间接作用。
5、核衰变:放射性核素自发地发出一种或一种以上的射线并转变成另一种核素的过程称为核衰变。
核衰变是放射性核素的一种属性。
衰变必然伴随有放射。
6、放射性活度:指单位时间内原子核衰变的数目,其单位为1/秒。
专用名:贝可Bq7、放射性同位素:不稳定的同位素具有放射性。
这种不稳定性主要是由于原子核中的质子和中子不平衡性造成的。
随着原子序数的增加,一种元素的同位素越来越多。
元素周期表后面的重元素都具有天然放射性。
8、放射源:在没有特别说明的情况下,一般规定为放射源前表面的中心,或产生辐射的靶面中心。
9、照射野中心轴:射线束的中心对称轴线,临床上一般用放射源S与穿过照射野中心的连线作为照射野的中心轴。
10、等中心:是准直器旋转轴(假定为照射野中心)和机架旋转轴的相交点,与机房中所有激光灯出射平面的焦点相重合。
此点到放射源的距离称源轴距11、肿瘤的致死剂量:通过放射治疗使绝大部分的肿瘤细胞死亡而达到控制肿瘤,局部治愈的放射剂量即为肿瘤的放射剂量。
12、正常组织耐受量:各种不同组织接受射线照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为该组织的耐受量。
13、组织量:所谓组织量是指患者受照射组织在一定深度的射线吸收剂量。
放射生物学的基础理论

Ⅳ:以染色体损伤为指标,G2期最敏感
3.细胞放射损伤在修复: (1)亚致死性损伤的修复:亚致死性损伤是 指细胞受到照射后,能完全修复的损伤 (2)潜在致死性损伤的修复:潜在致死性损 伤是指细胞受到照射后,如有适宜的条件或环 境,这种损伤就可以修复,如果得不到适宜的 条件和环境,这种损伤将转为不可逆的损伤, 从而使细胞最终丧失分裂能力。低敏感细胞 (3)致死性损伤:是指细胞所受的损伤在任 何情况下都不能恢复的损伤。M期细胞或大剂 量照射
(五)L-Q模式仅在下列条件下 才能应用:
1、每次照射后的亚致死性损伤的修复必须完全; 2、每次照射所产生的生物效应相似 3、没有把时间因素即细胞增殖考虑在内 4、细胞周期自我致敏忽略不计
(六)、L-Q模式及它的衍生公 式在临床上应用
1、ETD和BED ETD即外推耐受剂量 BED即等效生物 剂量 E/a=nd(1+β/a d)=ETD or BED 2、带有时间因子的LQ等效换算公式P339 3、带有不完全修复因子的LQ等效换算公式 P339
2.影响细胞放射敏感性的因数:
①细胞分化程度与放射敏感性成反比
②细胞内CAMP的水平,CAMP水平愈低,放射敏感性 愈强,研究表明细胞分裂相越多,细胞CAMP水平越低。 ③电镜下线粒体数量与放射敏感性 线粒体数量越少,越敏感,淋巴细胞线粒体少,心肌 细胞线粒体多
④具有多种归属的结缔组织细胞在发展的不同阶 段有不同的敏感性,纤维母细胞最敏感(瘢痕组 织),内皮细胞(血管内皮细胞:血管肉瘤 胸膜 内皮细胞:见皮瘤)为中度敏感,纤维细胞(纤 维瘤)低敏感。 ⑤恢复能力强的细胞较敏感:小肠隐窝细胞、唾 液腺细胞、肝细胞、肾细胞、具有内分泌的腺体
(四)单靶单击与单靶多击
细胞的死亡或者来自于单次致死性的击中细胞中的 靶或者来至于分成2次击中所产生的亚致死性损伤 的相加。前者以ad表示,后者以βd2表示。因而其最 终的细胞存活率为:S=e-(ad+d2)。可以分别把它们 简称为a型细胞杀灭及β型杀灭.它们的单位分别为 Gy-1和Gy-2。它们的比值即α/β=d(Gy)。当细胞 存活曲线肩区较大时,则α/β值小,而肩区小时则 α/β值较高。 α/β值相当于a型细胞杀灭和β型杀灭 二者生物效应相等时所需的剂量。S=e-(ad+d2)即是 所谓的线性-平方模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
靶的概念
所谓“靶”指的是细胞内对放射线敏感的 位点。Lee 1946年在他的“辐射对活细 胞作用”一书中,创立了靶的概念,认 为辐射的生物效应是由于放射线击中了 生物大分子或细胞内对射线敏感的特定 区域并使之电离的结果,并将这个敏感 区域形象的称为“靶”。
.
DNA单链断裂
单链断裂的修复过程是受酶控制的
.
早反应组织和晚反应组织
晚反应组织(Late responding tissue) 细胞更新慢,数周甚至一年或更长时 间也不进行自我更新,如神经细胞,放 射后的损伤很晚才表现出来,这类组 织α/β比值较小(3).
在临床上应根据早晚反应组织的特点, 安排合适的总剂量、总治疗时间和分 次剂量,特别保护晚反应组织
射线照射路径上的能 量释放 激发 电离
.
化学阶段
激发 电离
化学键断裂 自由基形成
分子结构破坏 修复正常
.
生物阶段
分子结构破坏
酶反应
修复 基因变异/癌变
DNA不能复制/ 有丝分裂停止
细胞死亡
.
电离辐射的直接作用和间接作用
辐射导致的DNA分子断 裂分为两类:直接作用 (direct effect)和间 接作用(indirect effect)。直接作用是 指射线直接作用于DNA 分子,使DNA 分子发生 损伤而导致断裂。间接 作用是指辐射可使水分 子产生自由基,自由基 作用于DNA分子并使之 断裂
.
一. 细胞放射损伤的修复
亚致死损伤的修复 是一专业术语,指假如将某一既定单次照射剂量分成
间隔一定时间的两次时所观察到的存活细胞增加的 现象。 1959年Elkind发现,当细胞受照射产生亚致死损伤而 保持修复能力时,细胞能在3小时内完成这种修复, 将其称之为亚致死损伤修复。为增加正常组织的损 伤修复,两次照射之间应间隔6小时以上.
4Rs
细胞放射损伤的修复 (Repair of radiation damage ):
周期内细胞时相的再分布 (Redistribution within the cell cycle)
氧效应及乏氧细胞的再氧合 (The oxygen effect and reoxygenation )
再群体化(Repopulation)
Dq值(准阈剂量,quasithreshold dose) 代表存活曲线的肩宽,也称为浪费剂量. 表示:开始照射到细胞呈指数性死亡时 所“浪费”的剂量. SF2:为用2GY单次照射后的细胞存活率, 作 为细胞放射敏感性的指标之一.
.
细胞存活曲线的临床意义
1:研究各种生物效应与放射剂量的关系. 2:比较各种因素(氧﹑放射增敏剂﹑化学
G1
S DNA合成期
细胞周期时相与放射敏感性
有丝分裂期细胞或接近有丝分裂期细胞 是放射最敏感细胞
晚S期细胞通常具有较大的放射抗拒性 若G1期相对较长,G1早期细胞表现相对辐
射抗拒,其后逐渐敏感,G1末期相对更敏 感 G2期细胞通常较敏感,敏感性与M期相似
.
.
肿瘤的增殖动力学
描述肿瘤生长的一些参数 潜在倍增时间(potential doubling
药 物﹑放射保护剂 ﹑不同射线 ﹑以及其 他物理因素) 对细胞放射敏感性的影响.应程度 的测量.它与物理剂量不一致.因为剂量 率不同,生物效应不一样.
.
线性二次模式
线性二次模式(Liner quadratic model, LQ) 电离辐射作用于靶细胞并造成该细胞的损伤 由α 和β两个损伤概率复合而成. 单击致死,损伤与吸收剂量成正比,用α表示. 多击致死,损伤与吸收剂量的平方成正比,用β表示.
n2d2〔 1+d2/(α/β) 〕= n1d1 〔 1+d1/(α/β) 〕
D2/D1= 1+d2/(α/β) / 1+d1/(α/β)
.
细胞周期时相与放射敏感性
细胞周期时间 (cell-cycle time),也称为 有丝分裂周期 G2 时间, 是两次 有效的有丝分 裂之间的时间
.
M 有丝分裂期
.
一.细胞放射损伤的修复 (Repair of radiation damage )
细胞放射损伤的类型
亚致死损伤(sublethal damage), 潜在致死损伤(potential lethal damage) 致死损伤(lethal damage)。
.
一细胞放射损伤的修复 (Repair of radiation damage )
.
哺乳动物细胞存活曲线
横坐标表示剂量, 按线性标度绘 制,
纵坐标表示存活 率,按对数标 度绘制
.
哺乳动物细胞存活曲线
D0(平均致死剂 量,mean lethal dose)
D0=1/k,K为直线的斜 率. 它表明,杀死63%的细 胞所需的照射剂量. D0值越小,细胞越敏感.
.
哺乳动物细胞存活曲线
中度敏 感
感觉器官(角膜、晶状体、结膜) 皮肤上皮(毛囊、皮脂腺)、口咽复
层上皮、小血管和淋巴管、唾液腺 、肾、肝、肺等上皮
各种组织器官的鳞状 细胞癌
60-70Gy/ 6-7W
低度敏 中枢神经系统、内分泌腺(包括性腺 各种组织器官的一般 70-80Gy/
感
内分泌细胞)、心脏
腺癌等
7-8W
不敏感 肌肉组织、骨与软骨组织、结缔组织 各种肉瘤及神经节胶 ≧80Gy 质细胞瘤等
细胞将不能存活。 那些处于即将坏死边缘部位的细胞但仍有一定
活力的细胞称为乏氧细胞。
.
乏氧细胞的再氧合
直径< 1mm的肿瘤是充分氧合的 超过这个大小会出现乏氧。
再氧合 如果用大剂量单次照射肿瘤,肿瘤内大多数
放射敏感的氧合好的细胞将被杀死,剩下的 那些活细胞是乏氧的。因此,照射后即刻的 乏氧分数将会接近100%,然后逐渐下降并接 近初始值,这种现象称为再氧合。
.
密度抑制的平台期细胞的X射线细胞存活曲线 .
二.周期内细胞时相的再分布
(Redistribution Within the Cell Cycle)
离体培养细胞实验表明,处于不同周期时相的 细胞放射敏感性是不同的,
总的倾向是 S期的细胞(特别是晚S期)是最耐受的 G2和M期的细胞是最放射敏感的。
T
T
C
.
DNA双链断裂 染色体断裂
一般认为,引起 DNA损伤并最终导致细胞 死亡的主要是 DNA的双链断裂。这主要 是由于在实验中发现辐射引起的单链断 裂可以大部分得到修复,而双链断裂不 易修复, 且修复的过程中有可能发生的 修复差错
A T
C
.
细胞存活曲线
细胞存活:经射线照射后,细胞仍具有无限 增殖能力称为细胞存活.如没有无限增殖能力, 即使形态完整,有有限分裂能力,但不 能传种接代,也称为细胞死亡.
time, Tpot) 是一个理论值,假设在 没有细胞丢失的情况下肿瘤细胞群体 增加一倍所需要的时间
决定因素: 细胞周期时间 生长比例
.
肿瘤的增殖动力学
描述肿瘤生长的一些参数 细胞丢失因子(cell lose factor) 细胞丢失因子=1-Tpot/Td Td: Tumor volume doubling time
.
线性二次模式
E/α=D〔1+d/(α/β)〕 E/α为生 物有效剂量(biologically effective dose, BED),单位为Gy. 它代表:整个分次照射或低剂量连续照 射过程的生物效应.
.
线性二次模式
LQ的临床意义 1:预测剂量分割方式的生物效应,而提出
超分割,加速超分割,低分割等照射方式. 2:不同剂量分割方式的等量转换
.
DNA是放射线对细胞作用最关键的靶
➢微辐射研究显示:用放射线杀死细胞时,单 独照射细胞浆所需的照射剂量要比单独照射细 胞核大得多。 ➢放射性同位素(如3H,125I)掺入核DNA可有效 地造成DNA损伤并杀死细胞。 ➢受放射线照射后染色体畸变率与细胞死亡密 切相关。 ➢当特异地把胸腺嘧啶类似物,如碘脱氧尿核 苷或溴脱氧尿核苷掺入染色体时可修饰细胞的 放射敏感性。
临床放射生物学基础 Radiobiology
北京大学人民医院放疗科 陈亚林
.
放射生物学 Radiobiology
放射生物学研究的是辐射对生物 体作用及其效应规律的一门科学
.
放射生物学 Radiobiology
电离辐射对生物体的作用分为
物理阶段 化学阶段 生物阶段
.
物理阶段
10-18—10-12s
.
四.再群体化(Repopulation)
损伤之后,组织的干细胞在机体调节机制的作 用下,增殖、分化、恢复组织原来形态的过 程称做 再群体化。再群体化的概念也用于 肿瘤,但涵义有所不同。照射或使用细胞毒 性药物以后,可启动肿瘤内存活的克隆源细 胞,使之比照射或用药以前分裂得更快,这 称之为加速再群体化(accelerated repopulation )。
可能的原因是,G2期细胞在分裂前没有充足 的时间修复放射损伤。
.
细胞周期再分布的意义
一般认为,分次放射治疗中存在着处于相对放 射抗拒时相的细胞向放射敏感时相移动的再 分布现象,这有助于提高放射线对肿瘤细胞 的杀伤效果。
如果未能进行有效的细胞周期内时相的再分布, 则也可能成为放射抗拒的机制之一。
.
三. 氧效应及乏氧细胞的再氧合
.
氧增强比
(Oxygen Enhancement Ratio . OER)
OER =
D0乏氧细胞 D0有氧细胞
.
.
.
肿瘤乏氧和乏氧细胞
首先指出实体瘤内有乏氧细胞存在是在1955年, 由Thomlinson 和Gray根据他们对人支气管癌 组织切片的观察提出的。