瓦斯流量、含量、涌出量、衰减系数

瓦斯流量、含量、涌出量、衰减系数
瓦斯流量、含量、涌出量、衰减系数

瓦斯含量、涌出量、抽放量、衰减系数

(一)

1、单孔瓦斯流量(m 3/min )(钻孔瓦斯抽放量)

Q=K 1.S=K πDL K 1------瓦斯涌出速度或强度以(m 3/min.m 2)

D----钻孔直径

L-----钻孔长度

K 1值计算方法 K 1=q 0e -αt

q 0-----钻孔瓦斯涌出初速度 m 3/min.m 2

α- 钻孔瓦斯流量衰减系数

t---时间

q 0计算方法 q 0=aX[0.0004V ad 2+0.16] m 3/min.m 2

式中a 取0.026

X 为煤层瓦斯含量

V ad 煤层挥发分

或者:q 0=0.59/1440 X

钻孔瓦斯涌出衰减系数

可以通过实测进行计算而得

3、钻孔抽放时间决定因素

①采掘布置允许的抽放时间,要达到抽采掘平衡

②瓦斯抽放率。与瓦斯涌出量有关系,国家有相应规定

4、计算瓦斯含量两种方法:①直接法 采用钻孔取芯的地质钻孔取煤样方法采用解 吸仪进行计算。 ②间接法。利用实测某处瓦斯压力用公式反推瓦斯含量

X=bp 1abp +×e 31.011W

+n(t s -t) +k 10KP

(二)

第一节:瓦斯含量计算

1.1 主要原理是利用瓦斯压力计算瓦斯原始含量

瓦斯压力利用和深度的关系公式:P=(2.03-10.13) H (开采垂深及压力系数) 计算: 开采垂深取550m,,压力系数取2.6

通过间接法公式计算得在最低水平时:1#煤的瓦斯含量为:12.29m 3/min

第二节:区域抽采前的瓦斯含量

2.1回采工作面瓦斯涌出量计算:

q 采=q 1+q 2

开采层相对瓦斯涌出量q 1=K 1 ×K 2 ×K 3 ×m(W 0-W C )/M

W0由上式可得;

W C残存瓦斯含量由公式计算而得,它与原煤的水分、灰分有直接关系

K1和K2和K3由围岩瓦斯涌出、工作面丢煤系数、采区内准备巷道预排瓦斯有关

残存瓦斯量为:W C为4.2m3/t (1#);2.25 m3/t(2#);2.37 m3/t(3#)

q1=9.21m3/t

邻近层瓦斯:开采1#煤时2#煤层涌入吨煤瓦斯量为: 3.26m3/t√√

开采1#煤层时,3#煤层涌入吨煤瓦斯量为:4.41m3/t

开采1#煤层时,围岩涌入瓦斯量为:9.21×15%=1.38m3/t

邻近层总计:q2= 3.26+4.41+1.38=9.05m3/t

累计:q采=18.26m3/t

另外考虑瓦斯涌出不均匀性取回采工作面涌出系数为1.3

总相对瓦斯涌出量为:1.3×18.26=23.74m3/t(与产量大小无关)

折合绝对瓦斯涌出量:23.74×910/1440=15m3/min(与产量大小有直接关系)

2.2掘进工作面瓦斯涌出量:

(1)掘进煤壁瓦斯涌出量q3=D×V×q0 ×2(√L/V-1)=0.95m3/min

(2)落煤瓦斯涌出量q4=S.V.r(W0-W c)=0.59m3/min

绝对瓦斯涌出量总计q掘=1.54m3/min

相对瓦斯涌出量总计1.54×1440/63.2=35.09m3/t(掘进的产量每天推算按63.2T)

2.3采区的瓦斯涌出量计算(工作面和2个掘进面)

q区=K’(∑q回Ai+1440∑q掘i)/A0

此处K’瓦斯采区涌出不均匀系数1.3

q回采面相对瓦斯涌出量

Ai为采面平均日产量

q掘为掘进面瓦斯相对涌出量

A0为采区产量.与回采面的日产量相同.

经计算二采区相对瓦斯涌出量为34.03m3/t

2.4矿井瓦斯涌出量计算(矿井以一个采区二个掘进面达产)

瓦斯除了本身一个采面之外,和两个掘进面之外,另还要考虑其它采区涌入瓦斯

q=K’’’’(∑q区Ai)/∑A i

矿井相对涌出量为:1.3×(34.3×910)/910=44.24m3/t(考虑其它涌入系数)

矿井绝对涌出量:44.24×910/1440=27.96m3/min

2.5抽采率的确定:

因矿井绝对瓦斯涌出量为27.96m3/min在20-40之间故选择矿井抽采率达到35%为目标。M1煤层抽采后瓦斯含量为12.29×(1-35%)=7.99m3/t(达到了消突目的)

第三节区域抽采后矿井的瓦斯涌出量

3.1区域预抽后工作面瓦斯涌出量

开采层相对瓦斯涌出量

q1=1.3×1.03×0.85×1.12/1.12×(7.99-4.20)=4.31m3/t

邻近层相对瓦斯涌出量

q2-1=2.64m3/t q3-1=3.54m3/t 邻近层4.31×15%=0.65m3/t 累计6.83m3/t

3.26

4.41 0.65 8.32?

q采=4.31+6.83=11.14m3/t考虑涌入不均衡性取1.3系数得

工作面在预抽后相对瓦斯涌出量为:14.48m3/t;

绝对涌出量为:9.15 m3/min

3.2 区域预抽后掘进面瓦斯涌出量

q3= m3/min q4= m3/min

绝对涌出量:q掘=0.75m3/min

相对涌出量:q掘=0.75×1440/63.2 t =17.09m3/t (掘进的产量每天推算按63.2T)

3.3 区域预抽后采区瓦斯涌出量计算

q区=1.3×(14.48×910+1440×0.75×2)÷910=21.919m3/t

3.4区域预抽后矿井的瓦斯涌出量

相对涌出量:q井=21.91×910/910×1.3=28.48m3/t

绝对涌出量:q=28.48×910/1440=18m3/min

第四节:高负压抽采量、低负压抽采量确定

4.1高负压抽采量:由于只是对1# 煤层抽采,2#和3#未进行抽采,故抽放前后邻近层的瓦斯涌出量未变,只是本煤层的瓦斯量发生变化,故区域预抽前矿井的绝对瓦斯涌出量-区域预抽后矿井的绝对瓦斯涌出量就是高负压(本煤层预抽量)抽采量27.96-18=9.96 m3/min,抽采率为9.96÷27.96=3

5.62% ,风排64.38%

8.32

4.2低负压抽采量:采空区的抽采量主要抽采邻近层的瓦斯量8.88m3/t折算绝对瓦斯涌出量

5.61m3/min

4.3矿井瓦斯抽采率:(9.96+

5.61)÷27.96=55.68% (是否过高,因为低负压有一部分是

...............

风排的?)

.....

4.4矿井高低负压系统的技术参数

高负压:抽采量为9.96m3/min 出口压力为5Kpa 孔口负压为15Kpa 另加中间管道阻力低负压:抽采量为5.61m3/min 出口压力为5Kpa 孔口负压为5kpa 另加中间管道阻力按国家规定高负压瓦斯浓度不低于35%,低负压瓦斯浓度不低于15%

第五节抽放管路系统的计算

5.1 管径的计算

D=0.1457√KQ/V

高负压:K取1.5,

Q取混合量9.96/35%=42.69m3/min

V取经济流速10m/s

得:高负压主管=0.3011m

低负压主管=0.345m(低负压主管流量为56.1,其它一样),考虑高低负压留有一定余量取300mm主管

关于高负压和低负压主管流量、浓度、经济流速取值的说明:

根据《煤矿瓦斯抽放规定》对于高负压瓦斯抽放其瓦斯浓度必须达到30%以上,故取值

35%。对于低负压必须达到15%,故取值15%。其原因是因为高负压钻孔瓦斯是浓度较高的瓦斯,如果瓦斯浓度过低,则说明钻孔的封孔质量和管道气密性不好,存在漏气,抽放的空气量大,故瓦斯浓度低,同时流量大,负压低,抽放效果不好;

瓦斯泵的流量和矿井的瓦斯涌出量不相匹配,必然导致抽放的大部分是空气,瓦斯浓度降低,这就是为什么常常瓦斯泵主管高负压浓度达不到要求的另一介原因;

若瓦斯泵的气密性较好,则孔口真空度过高,而不是瓦斯泵的进口处的真空度过高。孔口真空度越高,负压越大,抽放效果越好。

高低负压支管选择:采取同样计算公式,但是瓦斯纯量不一样,高负压支管(采面和掘进迎头)选择取支管瓦斯纯量为最大值的55%计算得0。224m;低负压抽放(主要是采空区上隅角及采空区密闭)选取为62%,计算得0。273m。

高负压支管流量:浓度仍为35%,流速仍为10,纯流量为5。5 ,则流量为23.6m3/min 低负压支管流量:浓度仍为15%,流速仍为10,纯流量为3。5,则流量为35m3/min 关于公式中的k值说明:1、瓦斯涌出量不均匀,作为不均匀系数。2、瓦斯浓度低达不到要求取值进行调节。

二、抽放阻力的计算:

①管道阻力损失按下列公式计算:H=9.81(LQ2?/K0 D5)

计算高负压抽放管道阻力损失

计算低负压抽放管道阻力损失

②局部阻力损失:按管道阻力损失的20%计得高负压和低负压管道阻力

③总阻力计算结果为上述两者之和。

保护层开采工作面瓦斯涌出量预测_戴广龙

第32卷第4期煤 炭 学 报V o.l 32 N o .4 2007年 4月 J OURNAL OF CH I N A COAL SOC I ETY A pr . 2007  文章编号:0253-9993(2007)04-0382-04 保护层开采工作面瓦斯涌出量预测 戴广龙1 ,汪有清1 ,张纯如2 ,李庆明2 ,邵广印 2 (1.安徽理工大学资源开发与管理工程系,安徽淮南 232001;2.淮南矿业集团谢桥煤矿,安徽淮南 232001) 摘 要:分析了分源法预测保护层工作面瓦斯涌出量理论和保护层开采时上覆煤岩层采动裂隙的分布,然后应用分源法预测了谢桥矿1242(1)保护层开采工作面瓦斯涌出量,预测结果为 15.93~17.22m 3 /m in ,误差为3.3%~4.5%.关键词:保护层开采;瓦斯涌出量;预测;瓦斯治理中图分类号:TD712.5 文献标识码:A 收稿日期:2006-06-26 责任编辑:毕永华 基金项目:安徽省高校科技创新团队计划资助项目(矿业安全技术2006KJ005Td );安徽省自然科学基金资助项目(070414171) 作者简介:戴广龙(1962-),男,安徽霍邱人,教授.E -m ail :g l dai @aust .edu .cn Forecast of the gas effused fro m the face i n protecti ve sea m DA I Guang -long 1 ,WANG You -qing 1 ,Z HANG Chun -r u 2 ,LI Q ing -m ing 2 ,SHAO Guang -y in 2 (1.D epart men t of Res our ces E xpl or a ti on and M anage m e n t E ngineeri ng ,Anhu i Un i versit y of S cie n c e and Technol og y ,Hua i nan 232001,Ch i na ;2. X ie qiao M i ne ,Huainan M i n i ng (Gr oup )Co .Lt d.,Hua i nan 232001,Ch i na ) Abst ract :The t h eo r y o f forecasting gas seepage fro m differen t sources at pro t e c tive face was ana l y zed and t h e rule of cranny distribution on the top of cove rw as g iven .Then the forecasted gas flo w fro m the pr o tecti v e face 1242(1) of X ieqiao M ine is bet w een 15.93and 17.22m 3 /m in ,and t h e err o r is 3.3%~4.5%.K ey w ords :ex tract p r o tec tive sea m ;gas e m ission flo w ;f o recast ;gas contr o l 随着煤矿开采深度的增加,开采规模不断扩大,煤矿安全生产问题变得越来越突出,成为制约矿井高产高效的主要因素,尤其是在开采低透气性高瓦斯有突出危险的煤层过程中,煤与瓦斯突出是严重威胁煤矿安全生产的自然灾害之一.目前,公认为开采不具高瓦斯和突出危险性的保护层是有效减少或消除被保护层煤与瓦斯突出危险性的有效措施.开采保护层的目的是对被保护层卸压,释放被保护层的弹性潜能,增大煤层的透气性,有利于煤层气的运移和解吸,降低被保护层的瓦斯含量及内能.在《煤矿安全规程》中也明确规定:“在开采具有煤与瓦斯突出煤层群时,必须首先开采保护层”.由于保护层的开采,造成邻近层煤层卸压,致使裂隙范围内的卸压瓦斯涌入开采工作面,为了确保回采工作面的安全生产,所以对保护层的开采工作面瓦斯来源分析以及瓦斯涌出量的预测变得尤为重要. 1 分源法预测保护层开采工作面瓦斯涌出量理论 分源法预测矿井瓦斯涌出量亦称瓦斯含量法预测矿井瓦斯涌出量.该预测法的实质是按照矿井生产过程中瓦斯涌出源的多少、各个瓦斯源涌出瓦斯量的大小,来预计该矿井各个时期(如投产期、达标期、萎缩期等)的瓦斯涌出量.各个瓦斯源涌出瓦斯量的大小是以煤层瓦斯含量、瓦斯涌出规律及煤层开采技术条件为基础进行计算确定的.根据煤炭科学研究总院抚顺分院的研究,矿井瓦斯涌出的源、汇关系如图1所示.

矿井瓦斯涌出量预测计算公式

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式 (1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取;

m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3 /t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。 b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min; S —— 掘进巷道断面积,m 2;

瓦斯涌出量计算办法 Microsoft Word 文档

虬髯客 矿井瓦斯涌出量预测方法 虬髯客https://www.360docs.net/doc/821280846.html,/qiuranke000 2009-03-06 13:20:35 矿井瓦斯涌出量预测方法 AQ 1018-2006 国家安全生产监督管理总局2006-02-27发布2006-05-01实施 前言 本标准的附录A、附录B、附录C、附录D均为资料性附录。 本标准由国家安全生产监督管理总局提出。 本标准由国家安全生产监督管理总局归口。 本标准起草单位:煤炭科学研究总院抚顺分院。 本标准主要起草人:姜文忠、秦玉金、闫斌移、薛军峰 1 范围 本标准规定了采用分源预测法与矿山统计法进行矿井瓦斯涌出量预测的方法。 本标准适用于新建矿井、生产矿井新水平延深、新采区以及采掘工作面(放顶煤工作面除外)的瓦斯涌出量预测。 2 规范性引用文件 下列文件中的条款通过本标准的引用成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达。 MT/T 77煤层气测定方法(解吸法) 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》 3 术语及定义 3.1矿井瓦斯涌出量预测prediction of mine gas emission rate 计算出矿井在一定生产时期、生产方式和配产条件下的瓦斯涌出量,并绘制反映瓦斯涌出规律的涌出量等值线图。 3.2矿井瓦斯涌出量absolute gas emission rate

单位时间内从煤层以及采落的煤(岩)体涌入矿井中的气体总量,矿井进行瓦斯抽放时包括抽放瓦斯量。 3.3绝对瓦斯涌出量absolute gas emission rate 单位时间内从煤层和岩层以及采落的煤(岩)体所涌出的瓦斯量,单位采用m2/min。3.4相对瓦斯涌出量relative gas emission rate 平均每产1t煤所涌出的瓦斯量,单位为m2/t 3.5 矿山统计法statistical predicted method of mine gas 根据对本矿井或邻近矿井实际瓦斯涌出资料的统计分析得同的矿井瓦斯涌出量随开采深度变化的规律,预测新井或新水平瓦斯的方法。 3.6分源预测法predicted method by different gas source 根据时间和地点的不同,分成数个向矿井涌出的与瓦斯源,在分别对这些瓦斯涌出源进行预测的基础上得出矿井瓦斯涌出量的方法。 4 一般要求 4.1 新建矿井或生产矿井新水平,都必须进行瓦斯涌出量预测,以确定新矿井、新水平、新采区投产后瓦斯涌出量大小,作为矿井和采区通风设计、瓦斯抽放及瓦斯管理的依据。 4.2 矿井瓦斯涌出量预测采用分源预测法或矿山统计法。 4.3 矿井瓦斯涌出量预测应包括以下资料: a) 矿井采掘设计说明书: 1) 开拓、开采系统图、采掘接替计划; 2) 采煤方法、通风方式; 3) 掘进巷道参数、煤巷平均掘进速度; 4) 矿井、采区、回采工作面及掘进工作面产量。 b) 矿井地质报告: 1) 地层剖面图、柱状图等; 2) 各煤层和煤夹层的厚度、煤层间距离及顶、底板岩性。 c) 煤层瓦斯含量测定结果、风化带深度及瓦斯含量等值线图;

瓦斯抽放钻孔参数表

10403回风巷瓦斯抽放钻孔参数表 钻场孔号方位(°)倾角(°)直径(MM)钻孔深度 (M) 封孔长度 (M) 备注 下帮钻场01 87 -2 75 60 8 煤层倾角22度,抽 放钻孔两帮控制范 围15米,前方控制 范围60米。 02 83 -4 75 61 8 03 79 -6 75 61 8 上帮钻场01 95 +2 75 60 8 02 99 +4 75 61 8 03 103 +6 75 61 8 10403运输巷、回风巷瓦斯抽放钻孔参数表 钻场孔号方位(°)倾角(°)直径(MM)钻孔深度 (M) 封孔长度 (M) 备注 下帮钻场1 89 -01 75 60 8 煤层倾角22度,抽 放钻孔两帮控制范 围15米,前方控制 范围60米。 2 87 -02 75 60 8 3 8 4 -03 7 5 60 8 4 82 -0 5 75 61 8 5 80 -0 6 75 61 8 上帮钻场1 93 +01 75 60 8 2 95 +02 75 60 8 3 98 +03 75 60 8 4 100 +0 5 75 61 8 5 102 +0 6 75 61 8 10501运输巷掘进工作面探放水钻孔参数表 孔号开孔位置钻孔直径 (mm) 方位(°)倾角(°)直径(MM) 钻孔长度 (M) 01 掘 进 工作面75 91 ±00 75 80 02 70 -08 75 86 03 112 +08 75 86 04 91 +14 75 83

05 91 -14 75 83 10403运输巷掘进工作面瓦斯抽放钻孔参数表(自煤仓口以里28米处) 钻场 孔号 方位(°) 倾角(°) 直径(MM ) 钻孔深度 (M ) 封孔长度 (M ) 备 注 下 帮 钻 场 1 89 -1 75 60 8 煤层倾角22度,抽 放钻孔两帮控制范围15米,前方控制范围60米。 2 86 -2 75 60 8 3 84 -3 75 60 8 4 82 -5 75 61 8 5 79 -7 75 61 8 6 75 -8 75 46 8 7 71 -10 75 35 8 迎 头 钻 场 1 91 00 75 60 8 2 94 +1 75 60 8 3 96 +2 75 60 8 4 99 +3 7 5 61 8 5 101 +5 75 61 8 6 104 + 7 75 62 8 7 106 +9 75 63 8 8 111 +11 75 47 8 9 118 +14 75 35 8 10 127 +16 75 27 8 11 139 +18 75 21 8 B1 109 +6.5 75 53 8 B2 114 +8.5 75 40 8 B3 122 +11.0 75 30 8 B4 133 +14.5 75 23 8 B5 145 +18.5 75 19 8 B6 151 +19.5 75 17 8

矿井瓦斯涌出量预测方法A

矿井瓦斯涌出量预测方 法A 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

矿井瓦斯涌出量预测方法 AQ 1018-2006 国家安全生产监督管理总局2006-02-27发布 2006-05-01实施 前言 本标准的附录A、附录B、附录C、附录D均为资料性附录。 本标准由国家安全生产监督管理总局提出。 本标准由国家安全生产监督管理总局归口。 本标准起草单位:煤炭科学研究总院抚顺分院。 本标准主要起草人:姜文忠、秦玉金、闫斌移、薛军峰 1 范围 本标准规定了采用分源预测法与矿山统计法进行矿井瓦斯涌出量预测的方法。 本标准适用于新建矿井、生产矿井新水平延深、新采区以及采掘工作面(放顶煤工作面除外)的瓦斯涌出量预测。 2 规范性引用文件 下列文件中的条款通过本标准的引用成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达。 MT/T 77煤层气测定方法(解吸法) 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》 3 术语及定义 矿井瓦斯涌出量预测 prediction of mine gas emission rate 计算出矿井在一定生产时期、生产方式和配产条件下的瓦斯涌出量,并绘制反映瓦斯涌出规律的涌出量等值线图。 矿井瓦斯涌出量 absolute gas emission rate 单位时间内从煤层以及采落的煤(岩)体涌入矿井中的气体总量,矿井进行瓦斯抽放时包括抽放瓦斯量。 绝对瓦斯涌出量 absolute gas emission rate 单位时间内从煤层和岩层以及采落的煤(岩)体所涌出的瓦斯量,单位采用m2/min。 相对瓦斯涌出量 relative gas emission rate 平均每产1t煤所涌出的瓦斯量,单位为m2/t 矿山统计法 statistical predicted method of mine gas 根据对本矿井或邻近矿井实际瓦斯涌出资料的统计分析得同的矿井瓦斯涌出量随开采深度变化的规律,预测新井或新水平瓦斯的方法。 分源预测法 predicted method by different gas source

矿井瓦斯涌出量预测计算公式定稿版

矿井瓦斯涌出量预测计算公式精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中:

q 1一开采层相对瓦斯涌出量,m 3 /t ; K 1一围岩瓦斯涌出系数,取1.2; K 2—工作面丢煤瓦斯涌出系数,取1.18; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取0.83; m 一开采层厚度,6m ; M 一工作面采高,3.5m ; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。 b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为6.27m ;对于厚煤层,D=2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min),如无实测值可参考式(1-2)计算。

瓦斯抽放钻孔施工管理制度

瓦斯抽放钻孔施工制度瓦斯抽放钻孔是采掘工作面瓦斯治理工程的关键环节,其施工质量直接关系到工作面瓦斯治理的效果。为了进一步规范我矿瓦斯抽放钻孔的施工管理,确保钻孔的施工质量,消除瓦斯隐患。特制定本制度。 一、钻孔施工方法中的注意事项 1、电工每天必须检查电器设备的完好,并搞好电流整定工作,若出现失爆罚款500 元。 2、严格按照钻孔位置参数进行开孔,避免抽放孔封孔段塌孔,影响抽放瓦斯封孔质量,若出现因封孔不及时或开孔参数不准确而导致的踏孔现象罚钻机司机100 元,当班班长50 元,跟班班队长20 元。 3、用坡度规确定方位角,倾角稳固钻机,打好固定压车柱,对于出现因未按准确的角度打钻而导致打到岩石内的钻孔罚钻机司机各100 元,当班班长50 元,跟班班队长20 元。 4、每班完成60 节钻杆的打钻任务,除过非人非因素而导致的影响打钻进度,少打一根钻杆罚款10 元。 5、对于每班完成规定的任务外,每多打一根钻杆奖励5 元。 6、用水力打钻时,钻孔完成设计孔深后必须水压将孔内钻屑吹干净,以免影响抽放瓦斯量。 7、采用聚氨酯化学封孔必须待半小时后,接入气水分离器 的抽放瓦斯系统, 进行抽采瓦斯。 8、由于封孔不及时而导致巷内瓦斯超限的要进行追究其相关的责任

人,罚直接责任人500元,间接责任人200 元,当班班队长各100 元。 9、钻工先检查钻杆,应不堵塞、不歪曲、丝扣未磨损。不合格的严禁使用,对于因使用不合格的钻杆而导致钻孔报废的罚钻机司机各50 元。 10、连接钻杆时要对准丝扣,避免歪斜和漏水、漏气。 装卸钻头时,应严防管钳夹伤硬质合金片、夹扁钻头和岩芯管。 11、钻头送入孔内开始钻进时,给进压力不宜太大,要轻压慢转,待钻头下到孔底工作平稳后,钻进压力再逐渐增大。 12、开钻前必须先供水,水返回孔口后才能给压钻进,不准钻干孔;孔内煤、岩粉多时,应加大水量,切实冲好孔后方可停钻。 二、钻进过程中的注意事项如下: 1、发现煤壁松动、片帮、来压、出现雾气,煤壁挂红挂汗,见水或孔内水量、水压突然加大或减小以及顶钻时,必须立即停止钻进。 2、钻孔钻进时出现瓦斯急剧增大、忽大忽小、顶板来压、响煤炮、片帮、顶钻、夹钻等突出预兆现象时,要及时撤人,汇报安检员和调度室以便采取措施进行处理。 3、临时停钻时,要将钻头退离孔底一定安全距离,防止煤 岩)粉卡住钻杆;停钻8h 以上时应将钻杆拉出来。 三.安全组织措施 1、班长负责安全隐患排查及安排人员工作,所有人员要严格执行岗位责任制,对于隐患排查不及时和人员安排不合理而导致的工作失误罚班长100元,跟班队长和事故当事人各50 元。

瓦斯涌出量预测方法及问题

矿 山 安 全Mine Safety 今年7月底,国家煤矿安全监察局针对一些高瓦斯和低瓦斯矿井相继发生了煤与瓦斯突出事故的情况,要求强化煤矿瓦斯防治基础工作,立即组织开展矿井瓦斯等级鉴定。而开展矿井瓦斯等级鉴定,必须掌握瓦斯涌出量预测方法。 瓦斯涌出量预测方法是以煤层瓦斯含量及其分布规律,或以煤层瓦斯涌出量变化规律为基础,结合地质、开采等因素选取合理参数,预计瓦斯涌出量为多少的工作过程。所得的数据可以确定矿井或水平开采时采煤工作面和掘进工作面的瓦斯涌出量,从而划定矿井或水平开采时瓦斯涌出等级,进行矿井设计和选择瓦斯防治措施。 瓦斯涌出量预测方法 目前,在全国煤田勘探中瓦斯涌出量预测方法主要有以下几种。 一、梯度预测法 梯度预测法是最早被采用的一种预测方法,也是我国20世纪90年代矿井瓦斯涌出量预测普遍使用的预测方法。它是利用矿井已采瓦斯涌出量的实测资料,计算出瓦斯涌出量梯度,以预测深部采区的相对瓦斯涌出量。 二、类比法 根据生产矿井已采地区瓦斯涌出量的实测资料,计算出采煤工作面的相对瓦斯涌出量与煤层瓦斯含量的比值,还可计算出掘进巷道绝对瓦斯涌出量与煤层瓦斯含量的比值。在地 质条件类似的临近新建矿井,利用这 两个之间的比值,结合设计方案,进 行新矿井瓦斯涌出量预测。 三、分形法 R/S分析是一种时间序列分析 方法,是由赫斯特于1965年提出的, 该方法在分形理论中应用较广。赫 斯特分析R(T)/S(T)=R/S统计规 律时发现存在如下关系式:R/S∝ (T/2)H,式中H—赫斯特指数。 H=1/2,当赫斯特研究了江河的流 量、泥浆的沉积等自然现象之后, 发现当H>1/2时,意味着持久性, 即所研究物理量时间序列不是相互 独立的,而具有相关性。进一步研究 表明,当H>1/2时,用平均的观点 看,过去的一个增长趋势意味着将 来的一个增长趋势,反之亦然,即过 程有持久性;当H<1/2时,过去的 增量与未来呈负相关,过程具有反 持久性。因此,R/S分析在时间序 列中具有很强的预测预报作用。 四、灰色系统理论与模糊数学 预测法 灰色系统是邓聚龙教授提出的 一种新的系统理论,灰色系统理论 是通过一系列数据生成方法(直接累 加法、移动平均法、自适性累加法 等)将本没有规律的、杂乱无章的或 规律性不强的一组原始数据序列变 得具有显著规律性,高度的概括性, 而且使预测精度高,具有明显的确 定性。由后残差检验结果,灰色系统 预测拟合精度为好,预测结果正确 可靠。由矿井相对瓦斯涌出量测量 可知,灰色预测值与实际测量值基 本吻合,说明对矿井未来瓦斯涌出 量预测都不会有太大的误差,除非 开采方式改变或地质条件变化,才 有可能造成测量结果的失真情况。 五、神经网络模型预测法 BP算法在1985年由Rumelhart 等提出,该方法系统地解决了多层神 经元网络中隐单元层连接权的学习问 题,并在数学上给出了完整的推导。采 用BP算法的多层神经网络模型一般 称为BP网络。多层神经网络模型的一 般拓扑结构如图1所示。结合问题的 实际情况,本模型采用Sigmoid型函 数:f(x)=11+e-x。通过证明将样本输 入神经网络模型进行仿真,其相对误 差分别为4.43%、6.5%、2.11%,可以 看出神经网络预测具有较高的精度。 六、分源法 分源法是按照矿井生产过程中 瓦斯涌出源的多少、各个矿井瓦斯 源涌出瓦斯的大小,来预测矿井各 个时期的瓦斯涌出量,为矿井通风 设计提供更合理的矿井瓦斯涌出资 料,并为高、低瓦斯煤层如何合理配 采,减少矿井瓦斯涌出不均衡提供 科学依据。 七、三维灰趋势面分析法 趋势面分析法是用数学方法研 究地质变量的空间分布与瓦斯量变 化规律间相互关系的一种多元统计 分析方法。在一定意义上说,所谓 瓦斯涌出量预测方法及问题 景兴鹏 李彬刚 郑登锋 文

矿井瓦斯涌出量预测计算公式

矿井瓦斯涌出量预测计 算公式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取; m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。

b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D =2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min ),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min ): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min ; S —— 掘进巷道断面积,m 2; υ —— 巷道平均掘进速度,m /min ; γ —— 煤的密度,t /m 3; W 0 —— 煤层原始瓦斯含量,m 3/t ; W c —— 运出矿井后煤的残存瓦斯含量,m 3/t 。

瓦斯抽采钻孔设计

1111(3)工作面瓦斯抽采钻孔设计 一、概述 1115(1)综采工作面为我矿第一个13煤回采工作面,为减小采空区向工作面的瓦斯涌出量,减轻风排瓦斯量,采用顶板走向钻孔抽采采空区瓦斯。 一、钻孔参数 钻孔布置到裂隙带内。倾向顶板抽采钻孔直径不小于94mm,每组抽采钻孔2个,抽采钻孔组间间距5m。 顶板走向钻孔参数表 通风队根据钻孔实际抽采效果确定钻孔参数并及时调整。 二、封孔 钻孔孔径Φ94mm,封孔采用聚氨酯封孔法。成孔后先用水冲洗钻孔,然后下入Φ2寸铁管10m,用麻袋缠绕封孔管,在缠绕时浇聚胺脂然后迅速下入孔内,封孔长度不小于5m。封孔管外露长度150mm,并固定好,孔口封堵严实防止漏气。 钻孔封孔后用2.5寸软管接通轨道顺槽φ325mm瓦斯抽采管连接进行抽采。 三、钻孔验收 (1)施工现场设钻孔施工牌板,施工队必须严格按设计方位、倾角等参数施工。 (2)钻孔施工结束后及时悬挂标志牌,标明孔号、孔深、倾角等参数。 (3)做好钻孔施工记录,详细记录钻孔位置、夹角、倾角、深度等参数。 (4)钻孔施工队伍要采取有效措施确保封孔质量。 (5)通风队严把钻孔施工、封孔质量关,按设计要求对钻孔和封孔质量进行现场验收。 四、钻孔抽放 (1)钻孔施工完毕封好孔后及时接通轨顺内瓦斯抽采管进行抽采。

1111(3)工作面瓦斯抽采钻孔参数变更 一、概述 1111(3)综采工作面为我矿第一个13煤回采工作面,为减小采空区向工作面的瓦斯涌出量,减轻风排瓦斯量,采用顶板走向钻孔抽采采空区瓦斯。 一、钻孔参数 钻孔布置到裂隙带内。倾向顶板抽采钻孔直径不小于94mm,每组抽采钻孔2个,抽采钻孔组间间距5m。 顶板走向钻孔参数表 通风队根据钻孔实际抽采效果确定钻孔参数并及时调整。 二、封孔 钻孔孔径Φ94mm,封孔采用聚氨酯封孔法。成孔后先用水冲洗钻孔,然后下入Φ2寸铁管10m,用麻袋缠绕封孔管,在缠绕时浇聚胺脂然后迅速下入孔内,封孔长度不小于5m。当在煤层开孔时封孔套管下入岩层段不小于3m。封孔管外露长度150mm,并固定好,孔口封堵严实防止漏气。 钻孔封孔后用2.5寸软管接通轨道顺槽φ325mm瓦斯抽采管连接进行抽采。 三、钻孔验收 (6)施工现场设钻孔施工牌板,施工队必须严格按设计方位、倾角等参数施工。 (7)钻孔施工结束后及时悬挂标志牌,标明孔号、孔深、倾角等参数。 (8)做好钻孔施工记录,详细记录钻孔位置、夹角、倾角、深度等参数。 (9)钻孔施工队伍要采取有效措施确保封孔质量。 (10)通风队严把钻孔施工、封孔质量关,按设计要求对钻孔和封孔质量进行现场验收。 四、钻孔抽放 (2)钻孔施工完毕封好孔后及时接通轨顺内瓦斯抽采管进行抽采。

瓦斯涌出量的计算

1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量由开采层(包括围岩)和邻近层两部份组成,计算公式如下: q 采=q 1+q 2 式中:q 采——回采工作面相对瓦斯涌出量,m 3/t; q 1——开采层相对瓦斯涌出量,m 3/t ; q 2——邻近层相对瓦斯涌出量,m 3/t ; 1、开采层瓦斯涌出量 )(q 03211c W W M m K K K -?? ??= 式中:K 1——围岩瓦斯涌出系数; K 2--回采工作面丢煤涌出系数,其值为回采率的倒数; K 3-—顺槽掘进预排系数,后退式回采,K 3=(B —2b )/ B ; B ——回采工作面长度,m ; b -—顺槽瓦斯预排宽度,m ; m ——开采层厚度,m ; M ——工作面采高,m ; W 0——煤层原始瓦斯含量,m 3/t ; W c -—煤层残存瓦斯含量,m 3/t. 2、邻近层瓦斯涌出量 )(q 012ci i i n i i W W M m -??=∑ =η 式中:q 2—— 邻近层相对瓦斯涌出量,m 3/t ; i η——邻近层瓦斯排放率,%; W 0i -—各邻近层原始瓦斯含量,m 3/t ; W ci —-各邻近层残存瓦斯含量,m 3/t ; m i —-各邻近层煤厚,m ; 其余符号意义同前。 2、掘进面瓦斯涌出量计算

掘进工作面瓦斯涌出来源包括两部份,一是暴露煤壁涌出瓦斯,二是破落煤块涌出瓦斯,其涌出量计算公式如下: q 掘=q 3+q 4 q 3=D×V×q 0×(2 1V L -) q 4=S×V×γ×(W 0-W c ) 式中:q 掘——掘进面绝对瓦斯涌出量,m 3/min ; q 3——掘进巷道煤壁绝对瓦斯涌出量,m 3/min ; q 4——掘进巷道落煤绝对瓦斯涌出量,m 3/min ; D ——巷道断面内暴露煤壁面周边长度,m ; V ——巷道平均掘进速度,m/min; L —-掘进煤巷长度,m; q 0——掘进面煤壁瓦斯涌出初速度,m 3/(m 2·min); q 0=0.026 [ 0。0004×(V r )2+0.16 ] ×W 0 式中:V r —-掘进煤层原煤挥发份,% S--掘进煤巷断面积,m 2 ; γ-—原煤容重,t/m 3; 其余符号意义同前. 3、采区瓦斯涌出量计算 1 i 1A 1440K ? ?? ??+=∑∑==n n i i i i q A q q 掘采‘ 区 式中:q 区——生产采区相对瓦斯涌出量,m 3/t ; K′——生产采区内采空区瓦斯涌出系数; q 采i ——第i 个回采工作面相对瓦斯涌出量,m 3/t ; A i ——第i 个回采工作面的日产量,t; q 掘i ——第i 个掘进工作面绝对瓦斯涌出量,m 3/min ; A o ——生产采区平均日产量,t; 4、矿井瓦斯涌出量

穿层钻孔瓦斯抽放半径

淮北矿业(集团)公司 芦岭矿8煤层瓦斯抽采半径测定研究报告 北京科技大学 淮北矿业集团公司芦岭矿 二○○八年一月

目录 目录 (1) 1. 研究的内容与方法 (3) 2. 矿井概况及开采范围 (5) 3. 煤系地层及煤层赋存情况 (7) 3.1. 地层 (7) 3.2. 含煤地层 (9) 3.3. 煤层赋存情况 (12) 3.4. 煤质特征 (17) 3.5. 地质构造特征 (21) 3.6. 水文地质情况 (25) 3.7. 矿井水文地质类型及水害威胁程度 (30) 3.8. 煤层瓦斯赋存、煤尘及煤的自燃情况 (31) 4. 8煤层瓦斯基本参数 (32) 4.1. 8煤层原始瓦斯压力分析 (32) 4.2. 8煤层原始瓦斯含量分析 (33) 4.3. 8煤层瓦斯流量的测定 (35) 4.4. 8煤层透气性系数的测定 (38) 4.5. 8煤层其他瓦斯地质参数 (40) 5. 8煤层瓦斯抽采半径与相关参数分析 (43) 5.1. 有效抽采半径与时间之间的关系 (45) 5.2. 抽采半径与负压之间的关系 (46) 5.3. 抽采半径与钻孔直径之间的关系 (47) 5.4. 抽采半径与煤层透气性系数之间的关系 (47) 6. 总结 (49)

1.研究的内容与方法 芦岭矿是淮北矿业集团公司煤与瓦斯突出最为严重的矿井,自建井以来已经发生大小有记录的煤与瓦斯突出或动力现象20余次。特别是2000年以来突出发生的频率和强度不断增大,其中2002年4月7日发生在Ⅱ一采区Ⅱ818采面3#煤眼斜石门的煤与瓦斯突出极其强烈,共突出煤量8924t,喷出瓦斯量多达123万m3;日常生产期间也经常有不同程度的小型突出或动力现象发生。突出隐患的存在不仅极大增加了企业的生产成本,而且随着生产规模的日趋展开或开采水平的不断延深将严重威胁着安全生产,形势非常严峻。 随着矿井煤与瓦斯突出危险性的不断提高,相应的安全管理和决策工作也必将面临更加严重的考验。首先是现场工程技术人员从意识上要更加重视对突出煤层瓦斯赋存、运移、涌出特征及煤与瓦斯突出规律的分析与掌握;其次是在此基础上逐步总结出比较适合本矿井实际条件的瓦斯预测技术及其指标体系,并力求加以应用、推广;最后达到跟踪采掘进程及时制定出有效安全措施的目的。 鉴于此,在淮北矿业集团公司领导的积极关注和支持下,由集团公司通防处牵头并周密组织,芦岭煤矿与北京科技大学土木与环境工程学院联合开展了“芦岭煤矿8煤层穿层钻孔瓦斯抽采半径测定”工作,该项目主要包括以下几方面的研究内容: 1)收集与整理芦岭矿8煤层瓦斯相关参数测量的数据,包括压力、流量、透气系数及K1、Δh2、Smax等进行分析。 2)8煤层煤的工业性指标(f、a、b和ΔP等)测试分析。 3)确定8煤层穿层钻孔瓦斯抽采半径。 研究方法的主要依据: 1)《煤层煤样采取方法GB482-95》; 2)《煤矿井下煤层瓦斯压力的直接测定方法MT/T 638-96》; 3)《钻孔瓦斯涌出初速度的测定方法MT/T 639-96》; 4)《钻屑瓦斯解吸指标的测定方法MT/T 641-96》;

煤矿计算公式

一、常见断面面积计算: 1、半圆拱形面积=巷宽×(巷高+0.39×巷宽) 2、三心拱形面积=巷宽×(巷高+0.26×巷宽) 3、梯形面积=(上底+下底)×巷高÷2 4、矩形面积=巷宽×巷高 二、风速测定计算: V表=n/t (m/s) (一般为侧身法测风速) 式中:V表:计算出的表速; n:见表读数; t:测风时间(s) V真=a+ b×V表 式中:V真:真风速(扣除风表误差后的风速); a、b:为校正见表常数。 V平=K V真=(S-0.4)×V真÷S 式中:K为校正系数(侧身法测风时K=(S-0.4)/S,迎面测风时取1.14);S为测风地点的井巷断面积 三、风量的测定: Q=SV 式中Q:井巷中的风量(m3/s);S:测风地点的井巷断面积(m2); V:井巷中的平均风速(m/s)例1:某半圆拱巷道宽2m,巷道壁高1m,风速1m/s,问此巷道风量是多少。 例2:某煤巷掘进断面积3m2,风量36 m3/min,风速超限吗? 四、矿井瓦斯涌出量的计算: 1、矿井绝对瓦斯涌出量计算(Q瓦) Q瓦=QC(m3/min) 式中Q:为工作面的风量;C:为工作面的瓦斯浓度(回风流瓦斯浓度-进风流中瓦斯浓度)例:某矿井瓦斯涌出量3 m3/min,按总回风巷瓦斯浓度不超限计算矿井供风量不得小于多少。 2、相对瓦斯涌出量(q瓦) q瓦=(m3/t) 式中Q瓦:矿井绝对瓦斯涌出量;1440:为每天1440分钟; N:工作的天数(当月); T:当月的产量 五、全矿井风量计算: 1、按井下同时工作最多人为数计算 Q矿=4NK(m3/min) 式中4:为《规程》第103条规定每人在井下每分钟供给风量不得少于4立方米;N:井下最多人数;K:系数(1.2~1.5) 2、按独立通风的采煤、掘进、硐室及其他地点实际需要风量的总和计算 Q矿=(∑Q采+∑Q掘+∑Q硐…+∑Q其他)×K 式中K:校正系数(取1.2~1.8) 六、采煤工作面需风量 1、按瓦斯涌出量计算

瓦斯涌出量及其影响因素

瓦斯涌出量及其影响因素 1.瓦斯涌出量 瓦斯涌出量是指在矿井建设和生产过程中从煤与岩石内涌出的瓦斯量,对应于整个矿井的称为矿井瓦斯涌出量,对应于翼、采区或工作面,称为翼、采区或工作面的瓦斯涌出量。矿井瓦斯涌出量的大小通常用矿井绝对瓦斯涌出量和矿井相对瓦斯涌出量两个参数来表示。 ⑴矿井绝对瓦斯涌出量 矿井在单位时间内涌出的瓦斯体积,单位为m3/min或m3/d。其与风量、瓦斯浓度的关系为: Qg = Qf×C (1—29) 式中:Qg—绝对瓦斯涌出量,m3/min; Qf—瓦斯涌出区域的风量,m3/min; C—风流中的平均瓦斯浓度,%。 ⑵矿井相对瓦斯涌出量 矿井在正常生产条件下,平均日产一吨煤同期所涌出的瓦斯量,单位m3/t。其与绝对瓦斯涌出量、煤量的关系为: qg= Qg/T (1—30) 式中:q一相对瓦斯涌出量,m3/t; Qg—绝对瓦斯涌出量,m3 /d; T—矿井日产煤量,t/d。 2.影响瓦斯涌出量的因素 矿井瓦斯涌出量大小,取决于自然因素和开采技术因素的综合影响。 ⑴自然因素 自然因素包括煤层的自然条件和地面气压变化因素两个方面。 ①煤层的瓦斯含量是影响瓦斯涌出量的决定因素。煤层瓦斯含量越大,瓦斯压力越高,透气性越好,则涌出的瓦斯量就越高。煤层瓦斯含量的单位与矿井相对瓦斯涌出量相同,但其代表的物理意义却完全不同,数量上也不相等。矿井瓦斯涌出量中,除包含本煤层涌出的瓦斯外,邻近煤层通过采空区涌出的瓦斯等还占有相当的比例,因此,有些矿井的相对瓦斯涌出量要大于煤层瓦斯含量。 ②在瓦斯带内开采的矿井,随着开采深度的增加,相对瓦斯涌出量增高。煤系地层中有相邻煤层存在时,其含有的瓦斯会通过裂隙涌出到开采煤层的风流中,因此,相邻煤层越多,含有的瓦斯量越大,距离开采层越近,则矿井的瓦斯涌出量就越大。 ③地面大气压变化时引起井下大气压的相应变化,它对采空区(包括采煤工作面后部采空区和封闭不严的老空区)或坍冒处瓦斯涌出的影响比较显著。如图1-33所示大气压力变化时,引起瓦斯涌出增加的是工作面采空区(图中②③)和老空区(图中⑤⑥)的瓦斯涌出,

矿井瓦斯涌出量预测计算公式

矿井瓦斯涌出量预测计算 公式 Prepared on 22 November 2020

一、预测原则 1、根据矿井瓦斯涌出量预测方法(AQ 1018-2006标准)。 2、本矿井处于基建阶段,瓦斯涌出主要来源为回采工作面、煤巷掘进面及煤壁涌出。 3、岩巷瓦斯涌出量一般按照工作面配风量和工作面瓦斯浓度进行计算。 4、全矿井的瓦斯涌出量由煤、岩巷掘进工作面、其他巷道或硐室和瓦斯抽采量组成。 二、预测依据 1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量预测用相对瓦斯涌出量表达,以24h 为一个预测圆班,采用式(1-1)计算。 21q q q +=采 式(1-1) 式中: q 采一回采工作面相对瓦斯涌出量,m 3/t ; q 1一开采层相对瓦斯涌出量,m 3/t ; q 2一邻近层相对瓦斯涌出量,m 3/t 。 开采层和邻近层相对瓦斯涌出量计算方法如下: a.不分层开采时,开采层瓦斯涌出量由式(1-2)计算: ()c W W M m k k k q -????=03211 式(1-2) 式中: q 1一开采层相对瓦斯涌出量,m 3/t ; K 1一围岩瓦斯涌出系数,取; K 2—工作面丢煤瓦斯涌出系数,取; K 3—采区内准备巷道预排瓦斯对开采层瓦斯涌出影响系数,取; m 一开采层厚度,6m ; M 一工作面采高,; W 0—煤层原始瓦斯含量,m 3/t ; Wc —运出矿井后煤的残存瓦斯含量,m 3/t 。

b. 未开采邻近层,故不计算邻近层瓦斯涌出量。 2、掘进工作面煤壁和落煤瓦斯涌出量 a.掘进巷道煤壁瓦斯涌出量 掘进巷道煤壁瓦斯涌出量采用式(1-1)计算。 30q 1)D v q =??? (1-1) 式中: q 3—掘进巷道煤壁瓦斯涌出量,m 3/min ; D —巷道断面内暴露煤壁面的周边长度,m ;本矿主采3#煤层,煤层平均厚度为;对于厚煤层,D =2h+b ,h 及b 分别为巷道的高度及宽度。 υ—巷道平均掘进速度,m /min ; L —巷道长度,m ; q 0—煤壁瓦斯涌出强度,m 3/(m 2min ),如无实测值可参考式(1-2)计算。 q 0= [(Vr )2+]W 0 (1-2) 式中: q 0 — 巷道煤壁瓦斯涌出量初速度,m 3/(m 2min ): V r — 煤中挥发分含量,%,古城煤矿3#煤层挥发份经煤炭工业厅综合测试中心鉴定为%。 W 0 — 煤层原始瓦斯含量,m 3/t 。 b. 掘进落煤的瓦斯涌出量 掘进巷道落煤的瓦斯涌出量采用式(1-3)计算。 q 4=S·v ·γ·(W 0-W c ) (1-3) 式中:q 4 —— 掘进巷道落煤的瓦斯涌出量,m 3/min ; S —— 掘进巷道断面积,m 2; υ —— 巷道平均掘进速度,m /min ; γ —— 煤的密度,t /m 3; W 0 —— 煤层原始瓦斯含量,m 3/t ; W c —— 运出矿井后煤的残存瓦斯含量,m 3/t 。

相关文档
最新文档