《三角形的内角和》2[1]PPT课件

合集下载

北师大版小学四年级下册数学《三角形的内角和》课件

北师大版小学四年级下册数学《三角形的内角和》课件
等腰三角形(36°):顶角是90°,两个底角各为45°,所以内角和为90° + 45° + 45° = 180°。解析:等腰三角形的两个底角相等,且与顶角之和为180°,因此内角和为180°。
答案及解析
直角三角形(45°)
一个角是90°,另外两个角各为45°,所以内角和为90° + 45° + 45° = 180°。解析:直角三角形中有 一个90°的角,另外两个锐角的和为90°,因此内角和为180°。
进阶题答案及解析
我们可以使用拼接法来证明任意三角形的内角和为180°。将三角形的三个内角分别标记为A、B和C, 将它们拼接成一个平角,即A + B + C = 180°。
答案及解析
要点一
如果一个三角形的两个内角之和 是90°,那么第三个角是9…
三角形的三个内角的和为180°,如果两个角的和是90°,那 么第三个角的度数就是180° - 90° = 90°。
在数学问题解决中的应用
代数问题
在代数问题中,三角形内角和定理可以与其他数学概念结合 使用,例如方程组、不等式等。通过引入三角形内角和定理 ,可以简化代数问题的求解过程。
三角函数
三角形内角和定理是学习三角函数的基础之一。通过理解三 角形的角度关系,可以进一步学习三角函数的性质和应用。
04
教学方法与手段
情感态度与价值观
培养学生对数学的兴趣和热爱,提高他们的探索精 神和合作意识。
教学内容概述
80%
三角形内角和的定义
三角形内角和是指一个三角形的 三个内角的度数之和。
100%
三角形内角和定理
任意三角形的内角和等于180度 。
80%
三角形内角和的应用

三角形内角和ppt课件完整版

三角形内角和ppt课件完整版
度或边长。
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免

《三角形的内角和》三角形PPT免费精品课件

《三角形的内角和》三角形PPT免费精品课件
三角形的内角和 有多种方法可以求证三角形的内角和:
量一量
折一折
拼一拼
三角形的内角和是180度。
因为:三角形的内角和是180°, 所以:这个三角形沿虚线剪成两个小三角形,
每个小三角形的内角和也是180°。
课堂练习 已知等腰三角形的风筝,一个底角70°,顶角 多少度?
70° 70°
方法一: 180°-70°-70°=40° 方法二: 180°-70°×2=40°
答:顶角是40°。
课堂小结 这节课你们都学会了哪些知识?
方法一: ∠1=84° ∠2=58° ∠3=38°
1
2
3
∠1+∠2+∠3= 84°+58°+38°=180°
三角形的内角和是180度。
探究新知 小组活动2:按照下面的方法折一折,你发现了什么?
1
方法二:Biblioteka 1223
3
钝角三角形 ∠1+∠2+∠3 = 平角 =180°
三角形的内角和是180度。
探究新知
人教版 数学 四年级 下册
5 三角形
三角形的内角和
情境导入 说一说三角形有几个内角?
三角形有3个内角。
情境导入 你知道三角形的内角和指的是什么吗?
三角形的内角和是三个 内角度数相加的和。
探究新知
画几个不同类型的三角形。量一量,算一算,三 角形的3个内角的和各是多少度。
探究新知 小组活动1:量一量,三角形三个内角分别是多少?内 角和是多少?展示你们的答案,说说你发现了什么?
方法三:
3
1
2
3
∠1+∠2+∠3 = 平角 =180°
三角形的内角和是180度。

《三角形的内角和》PPT

《三角形的内角和》PPT

《三角形的内角和》PPT一、幻灯片 1:封面标题:三角形的内角和二、幻灯片 2:引入在我们的日常生活中,三角形无处不在。

从建筑结构到道路标志,从家具设计到艺术作品,三角形都扮演着重要的角色。

那大家有没有想过,三角形的三个内角之间存在着怎样的关系呢?这就是我们今天要探讨的主题——三角形的内角和。

三、幻灯片 3:三角形的定义首先,让我们来回顾一下什么是三角形。

三角形是由三条线段首尾相连所组成的封闭图形。

它有三个顶点、三条边和三个内角。

四、幻灯片 4:内角的概念接下来,我们了解一下内角的概念。

三角形的内角就是三角形相邻两边所组成的角。

比如在三角形 ABC 中,∠A、∠B、∠C 就是它的三个内角。

五、幻灯片 5:测量法探究内角和我们可以通过测量三角形的三个内角的度数,然后将它们相加,来探究三角形的内角和。

比如,我们测量一个锐角三角形的三个内角,分别是 50°、60°和 70°,将它们相加:50°+ 60°+ 70°= 180°。

六、幻灯片 6:测量法的误差但是,通过测量的方法来探究三角形的内角和可能会存在一定的误差。

因为测量过程中可能会出现读数不准确、测量工具不够精确等问题。

七、幻灯片 7:剪拼法探究内角和那有没有更准确的方法呢?我们可以试试剪拼法。

将三角形的三个内角剪下来,然后拼在一起,看看能得到什么。

八、幻灯片 8:剪拼法演示比如,我们把三角形ABC 的三个内角∠A、∠B、∠C 分别剪下来,然后把它们的顶点重合拼在一起,会发现正好形成了一个平角,也就是 180°。

九、幻灯片 9:推理证明内角和除了测量和剪拼的方法,我们还可以通过推理来证明三角形的内角和是 180°。

十、幻灯片 10:证明过程以三角形 ABC 为例,过点 A 作直线 EF 平行于 BC。

因为 EF∥BC,所以∠EAB =∠B,∠FAC =∠C。

又因为∠EAB +∠BAC +∠FAC = 180°,所以∠B +∠BAC +∠C = 180°,即三角形的内角和是 180°。

2024版《三角形的内角和》优质ppt课件

2024版《三角形的内角和》优质ppt课件

《三角形的内角和》优质ppt课件CONTENTS•三角形基本概念与性质•三角形内角和定理推导•三角形内角和定理应用举例•拓展:多边形内角和计算方法探讨•练习题与课堂互动环节•课程小结与预习提示三角形基本概念与性质01三角形定义及分类三角形定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形分类按边可分为等边三角形、等腰三角形和不属于以上两种的其他三角形;按角可分为锐角三角形、直角三角形和钝角三角形。

三角形边长与角度关系三角形边长关系任意两边之和大于第三边,任意两边之差小于第三边。

三角形角度关系三角形内角和等于180°,外角和等于360°。

三边相等,三个内角均为60°。

等边三角形等腰三角形直角三角形锐角三角形和钝角三角形有两边相等,且两底角相等;顶角的平分线、底边上的中线和高互相重合(简称“三线合一”)。

有一个角为90°,斜边中线等于斜边一半;两锐角互余,且满足勾股定理。

除上述特殊三角形外,其余均为普通锐角三角形或钝角三角形,它们不具有特殊的性质。

特殊三角形性质介绍三角形内角和定理推导02直观感受法01通过测量不同类型的三角形的三个内角,并求和,观察结果是否接近或等于180度。

02利用三角形纸片的撕拼,将三个内角拼在一起,观察是否能拼成一个平角。

拼图验证法将三角形三个内角剪下,并尝试拼合,观察是否能拼成一个平角。

通过动画演示,将三角形三个内角旋转、平移拼接,直观展示三角形内角和为180度的过程。

过三角形一个顶点做对边的平行线,利用平行线的性质及平角的定义进行证明。

延长三角形的一条边,并作出与之相邻的外角,通过外角性质及平角的定义进行证明。

利用向量的加法运算及共线向量定理进行证明。

平行线性质证明外角性质证明向量法证明几何证明法三角形内角和定理应用举例03求角度问题已知三角形两个内角,求第三个内角的大小。

已知三角形一个内角及相邻两边,求另一个内角的大小。

三角形内角和说课ppt课件

三角形内角和说课ppt课件

感谢观看
THANKS
三角形内角和的基础知识
三角形的定义和分类
三角形是由不在同一直线上的三条线段首尾顺次 相接所组成的图形。根据边长特点,三角形可以 分为等边三角形、等腰三角形和普通三角形。
等腰三角形有两边长度相等,对应的两角也相等 ,另一个角为顶角。
等边三角形三边长度相等,三个内角相等,均为 60°。
普通三角形三边长度和三个内角均不相等。
电子工程
在电子工程中,三角形内角和定理可以用于计算电路中的 电阻、电容、电感等元件的参数,以及确定电路的性能和 稳定性。
05
三角形内角和定理的拓展和
深化理解
对称三角形内角和定理的拓展
总结词
揭示规律,拓展思维
详细描述
通过对称三角形的案例分析,揭示三角形内角和定理背后的规律,引导学生拓展 思维,探索不同证明方法的可能性。
三角形内角和说课 ppt课件
• 引言 • 三角形内角和的基础知识 • 三角形内角和的证明方法 • 三角形内角和的应用 • 三角形内角和定理的拓展和深化
理解 • 总结与回顾
目录
01
引言
主题和目的
主题
探究三角形的内角和
目的
通过多种方法证明三角形内角和为180度,并运用该结论解决实际问题
背景和重要性
03
这种证明方法较为抽象,但可以借助计算机软件进行计算 和验证。
04
三角形内角和的应用
在几何学中的应用
证明定理
三角形内角和定理是几何学中最 基本的定理之一,它可以应用于
证明其他定理和性质。
计算角度
通过三角形内角和定理,我们可以 快速计算出三角形的内角大小,以 及一个角度相对于其他角度的大小 。

三角形的内角和(PPT课件)2024新版

三角形的内角和(PPT课件)2024新版
忽视三角形形状的多样性,认为只有某些特殊形状的三角 形才具有内角和为180度的性质。实际上,所有三角形的内 角和均为180度,与形状无关。
拓展延伸:多边形内角和探讨
多边形的定义及分类
由三条或三条以上的线段首尾顺 次连接所组成的平面图形叫做多 边形。按照边数可分为三边形、 四边形、五边形等。
多边形内角和的计算 公式
在建筑设计中,需要测量建筑物的各个角度,以确保建筑物的稳定性和
美观性。三角形内角和的原理可以帮助建筑师快速准确地计算角度。
02
屋顶角度设计
屋顶的角度设计对于建筑物的排水、采光和保温等方面都有重要影响。
利用三角形内角和的原理,建筑师可以设计出合理的屋顶角度。
03
楼梯角度计算
在楼梯设计中,需要计算楼梯的倾斜角度,以确保人们上下楼梯时的舒
艺术创作
在艺术创作中,艺术家经常需要运用几何原理来构图和设计。三角形内角和的原理可以帮 助艺术家创造出具有美感和平衡感的作品。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义
01
三角形的三个内角之和等于180度。
三角形内角和的验证方法
02
通过测量、撕拼、折叠等方法验证三角形的内角和为180度。
可以通过三角形内角和定理和 邻补角的性质来证明三角形外 角和定理。
03
三角形外角性质与计算
三角形外角定义及性质
三角形外角的定义
三角形的一边与另一边的延长线组成的角,叫做三角形的外 角。
三角形外角的性质
三角形的外角等于与它不相邻的两个内角之和。此外,三角 形的一个外角大于任何一个和它不相邻的内角。
方法二:通过撕拼法 证明
从而得到∠A + ∠B + ∠C = 180度。

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件

这个家就再也围不起来了……”“为什么?”
老二很纳闷。
同学们,你们知道其中的道理吗?

三角板
30
算一算,两块 三角板的内角 和分别是多少 度呢?
猜一猜 想一想
大小、形状不同的三角形, 它们的内角和一样吗?都是 180º吗? • 三角形按角分,可以分为哪几 类?
活动一:
量一量三角形的每一个 内角,再求出三个内角的 和,看一看有什么发现。
1800-1400-250
=400-250
=150
答:∠2的度数为150。
笑笑说:“我有一个等 腰三角形的风筝,它的一 个底角是700,它的顶角 是多少度?你能帮我算一 算吗?”
400
1800-700 -700 =1100 -700 =400
700
700 1800-700×2
它一的个一等个腰底三角角是形70的0,风它筝,==148000 0 -1400
②在直角三角形中,两个锐角的和等于90 º。 (√ )
③在钝角三角形中,两个锐角的和大于90 º。 (×)
④三角形中有一个角是60 º,那么这个三角形 一定是个锐角三角形。( ×) ⑤一个三角形中一定不可能有两个钝角。(√ )
家里镜框上的一块三角形玻璃碎了(如 图)。聪明的明明,只带了其中的一块去玻璃 店,就配到了和原来一模一样的。你知道他带 的是哪一块吗?
的顶角是多少度? 答:它的顶角是400。
我的一个角 是多少度?
我的一个底角 是多少度?
我是一个直角三角 形,我的另一个锐 角是多少度?
1800÷3=60°=(814800÷0-2 960)
÷2
①1800-900-400
=900-400
=42°

《三角形的内角和》教学PPT课件

《三角形的内角和》教学PPT课件
☞ 小组合作:用量角器量一量你们小组内的三
角形每个内角的度数,计算出每个 三角形的 内角和,并做好记录。
结论
三角形的内角和是180°
现在,你知道它们谁能继承王位吗?
认为钝角三角 形的内角和大
认为锐角三角 形的内角和大
认为直角三角 形的内角和大
还有什么方法可以得 到三角形的内角和?
撕一撕,拼一拼
分享收获
这把钥匙不对喔! 这把钥匙不对喔!
恭喜获得老师 的一个拥抱!
90°
270°
180°
2. 在直角三角形中,一个锐角是36º,ห้องสมุดไป่ตู้另一个锐角是( )。
不是这把钥匙喔! 不是这把钥匙喔!
54°
44°
64°
恭喜获得同 桌一个拥抱!
3. 在等腰三角形中,顶角是40º,一个 底角是( )。
不是这把钥匙喔! 不是这把钥匙喔!
我有一个锐角三角形,一个直角三角形, 和一个钝角三角形,它们谁的内角和大呢? 谁能告诉我,他就是王位的继承人。
不对,应该是锐角三 你角们形说的的内都角不和对大,。直 角三角形的内角和大。
它们谁能继承王位呢?
认为钝角三角 形的内角和大
认为锐角三角 形的内角和大
认为直角三角 形的内角和大
你来量一量
三角形的内角和
猴王选太子
我有一个锐角三角形,一个直角三角形, 和一个钝角三角形,它们谁的内角和大呢? 谁能告诉我,他就是王位的继承人。
大王,我认为钝角三 角形的内角和大。
我有一个锐角三角形,一个直角三角形, 和一个钝角三角形,它们谁的内角和大呢? 谁能告诉我,他就是王位的继承人。
不对,应该是锐角三 大角王形,的我内认角为和钝大角。三 角形的内角和大。

三角形内角和ppt课件

三角形内角和ppt课件

直角三角形的内角和等于180° ,其中两个锐角的度数之和为 90°。
直角三角形是轴对称图形,其 对称轴为直角边中垂线。
THANKS
感谢观看
在实际问题中的应用
测量角度问题
通过PPT展示如何利用三角形内角和定理解决实际测量角度的问题,如测量山 的高度、建筑物的角度等。
工程设计问题
介绍如何利用三角形内角和定理进行工程设计,如桥梁设计、建筑结构设计等 。
04
特殊三角形的内角和
等边三角形的内角和
等边三角形的三个内角都相等,每个角的大小为60°,因此其 内角和为180°。
三角形内角和ppt课件
目录
• 三角形内角和的定义 • 三角形内角和的证明方法 • 三角形内角和的应用 • 特殊三角形的内角和
01
三角形内角和的定义
什么是三角形的内角
01
三角形的内角是指三角形内部的 角,即相邻两边之间的夹角。
02
三角形有三个内角,分别为∠A、 ∠B和∠C,它们的大小在0°到 180°之间。
通过三角函数的加法定理,将三角形 的三个内角表示为两角之和的形式, 再利用诱导公式进行推导,最终得出 三角形内角和的性质。
常用的三角函数证明方法包括利用三 角函数的加法定理和诱导公式进行推 导。
03
三角形内角和的应用
在几何图形中的应用
三角形内角和定理证明
通过PPT展示不同证明方法,如通过 平行线、通过三角形全等或通过三角 形相似来证明三角形内角和为180度 。
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。 三角形内角和的大小等于180°。
三角形内角和定理
三角形内角和定理是几何学中的基本 定理之一,它表明任何三角形的三个 内角之和等于180°。

《三角形的内角和》完整版课件

《三角形的内角和》完整版课件

《三角形的内角和》完整版课件Contents目录•三角形基本概念与性质•三角形内角和定理及其证明•三角形外角性质与计算•三角形面积计算公式推导与应用Contents目录•直角三角形中特殊角度和边长关系探讨•三角形相似与全等条件判断及证明方法•总结回顾与拓展延伸01三角形基本概念与性质三角形定义及分类三角形定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形分类按边可分为不等边三角形、等腰三角形和等边三角形;按角可分为锐角三角形、直角三角形和钝角三角形。

三角形边与角关系三角形边的关系任意两边之和大于第三边,任意两边之差小于第三边。

三角形角的关系三个内角之和等于180°,外角等于与它不相邻的两个内角之和。

两腰相等,两底角相等;三线合一(底边上的中线、高线和顶角的平分线互相重合)。

等腰三角形性质三边相等,三个内角都是60°;三线合一(任意一边上的中线、高线和这边所对角的平分线互相重合)。

等边三角形性质有一个角是90°;勾股定理(直角三角形的两条直角边的平方和等于斜边的平方)。

直角三角形性质特殊三角形性质02三角形内角和定理及其证明三角形内角和定理表述01三角形内角和定理:三角形的三个内角之和等于180度。

02该定理是三角形的基本性质之一,也是研究三角形的重要基础。

通过作辅助线,将三角形划分为两个直角三角形,利用直角三角形的性质证明三角形内角和定理。

几何证明法代数证明法向量证明法通过三角形的角度表示和代数运算,证明三角形内角和定理。

利用向量的夹角公式和向量运算,证明三角形内角和定理。

030201多种证明方法介绍定理应用举例计算三角形中未知角度已知三角形两个角度,可利用三角形内角和定理求出第三个角度。

判断三角形的形状根据三角形内角和定理,可以判断三角形的形状,如等边三角形、等腰三角形等。

解决与三角形有关的问题在几何、三角学等领域中,三角形内角和定理是解决与三角形有关问题的基础。

《三角形的内角和》ppt课件

《三角形的内角和》ppt课件
在数学教育中的价值
三角形内角和定理是初中数学中的重要内容之一,对于培养学生的逻辑思维、推理能力和数学素 养具有重要意义。
02
三角形内角和的基本概念
角度与三角形的关系
三角形是由三条边和三个角组成的几何图形。 角度是描述两条射线之间的夹角大小的量度。 三角形中的角度与边长之间存在一定的关系,如正弦、余弦定理等。
基于三角形内角和定理,可以推 导出许多三角恒等式,这些恒等 式在解决三角函数问题时非常有 用。例如,正弦定理、余弦定理
等。
三角函数的应用
在物理学、工程学、天文学等领 域中,经常需要使用三角函数来 解决实际问题。而三角形内角和 定理是解决这些问题的关键之一。
在实际问题中的应用
建筑设计
在建筑设计中,经常需要使用三 角形内角和定理来计算角度、长 度等参数,以确保建筑物的稳定
性和美观性。
地图绘制
在地图绘制中,三角形内角和定理 被用来确定地图上两点之间的角度, 从而保证地图的准确性和可靠性。
导航定位
在导航定位中,三角形内角和定理 被用来计算航向、俯仰角等参数, 以确保飞机、船舶等交通工具的正 确航行方向。
05
总结与回顾
三角形内角和的总结
三角形内角和的定义
三角形内角和是指三角形三个内角的度数之和。
培养空间思维
学习三角形内角和定理有 助于培养学生的空间思维 能力和几何直觉。
回顾与思考
01
回顾三角形内角和定理的证明过程,加深对定 理的理解。
02
思考三角形内角和定理在现实生活中的应用, 提高解决实际问题的能力。
03
探究其他几何图形的内角和性质,拓展几何知 识面。
THANKS
内角和为180度的结论。

人教版四年级下册数学《三角形的内角和》课件(共15张PPT)

人教版四年级下册数学《三角形的内角和》课件(共15张PPT)

量一量

180°

请同学们每人再画一个三角形,量一量, 看看内角和是多少度。
给大家10分钟的时间,前后桌四人 为一个小组,小组内一起讨论讨论, 想出验证方法,待会请各小组代表 进行分享。
剪一剪,拼一拼
不为三角形内角和
剪一剪,拼一拼
3
1
2
3
平角:180°
3
1
2
3
1
2
3
平角:180°
剪一剪 拼一拼
3
平角:180°
折一折,拼一拼
1
1 22
33
平角:180°
折一折 拼一拼
1
1
2
2
3
3
平角:180°
1
1
2
2
3
3
平角:180°
一、测量法 二、剪拼法 三、折拼法
结论:三角形的内角和是180°。
①和②两个三角形的内角和各是多少度?
18①是多少度?
人教版小学数学四年级下册
三角形的内角和
授课人:
说一说:你知道三角形的哪些特性?
三个顶点 三条边 三个角(内角)
三角形的内角和:三角形的三个内角之和。
说一说:关于三角形的内角和,你们知道什么?
三角形的内角和是180°
①号三角形内角和是多少呢? 三角形无论什么大小、形状,内角和都是180°


②号三角形的内角和呢?
55° 35°
180°- 35°- 90°=55°
50° 65° 65°
30°
120° 30°
180°- 50°- 65°=65° 180°- 30°- 120°=30°
课堂 小结

《三角形的内角和》PPT课件

《三角形的内角和》PPT课件
三角形内角和性质
三角形内角和与角度关系
三角形内角和为180度
在任何三角形中,三个内角的和总是 等于180度。
角度互余关系
在一个三角形中,如果两个角的和小 于90度,则这两个角互为余角。
角度互补关系
在直角三角形中,两个锐角的角度和 为90度,它们互为补角。
三角形内角和与边长关系
边长与角度关系
在三角形中,边长越长, 对应的角度越大;边长越 短,对应的角度越小。
步骤四
将剪下来的三个角拼在 一起,观察是否能拼成
一个平角。
实验结果分析与讨论
结果分析
通过实验操作,我们发现三角形ABC的三个内角拼在一起后,能够形成一个平角,即三角形的内角和为 180度。
讨论
实验结果验证了三角形的内角和定理,即任意三角形的内角和都等于180度。这一结论在数学和几何学中 有着广泛的应用,对于解决与三角形相关的问题具有重要意义。同时,实验结果也说明了实验操作的准确 性和可靠性。
通过不断练习和挑战自我,可 以提高自己的几何思维能力和 解题能力。
THANKS
感谢观看
《三角形的内角 和》PPT课件
目录
• 课程引入 • 三角形内角和定理 • 三角形内角和性质 • 三角形内角和计算 • 实验操作与探究 • 拓展延伸与应用举例
01
课程引入
三角形的定义与分类
三角形的定义
由不在同一直线上的三条线段首尾 顺次相接所组成的图形叫做三角形。
三角形的分类
根据三角形的边长和角度,可以将 三角形分为等边三角形、等腰三角 形、直角三角形等。
三角形内角和概念
三角形内角和的定义
三角形三个内角的度数之和。
三角形内角和的性质
任意三角形的内角和都等于180度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们在测量时,由于在测量工具、测量方 法等各方面的原因,使我们的测量结果存 在一定的误差。 实际上,三角形内角和就等于180度
第二关

一个等腰三角形的风筝, 它的一个底角是700,他 的顶角是多少度?
4?00
1800-700 -700
1800-700×2
700
700
一个等腰三角形的风筝, 它的一个底角是700,它 的顶角是多少度?
45° 90°
90° 60°
1
23 锐角三角形
1
1
23
23
直角三角形 钝角三角形
所有三角形的内角 猜想:和都是180°吗?
活动一:
活动记录表
内角
度数
∠1 ∠2 ∠3
三角形
锐角三角形
直角三角形
钝角三角形
内角和
我的发现:
活动二:
撕一撕 拼一拼
三角形的内角和
3 平角:1800
平角:1800
平角:1800
活动三:
折一折 拼一拼
1 1
1
1
2
2
3
3
钝角三角形
1
1
2
2
3
3
锐角三角形
2
2
3
3
直角三角形
三角形的内角和
一、测量法
活动记录表
三角形形状
每个角的度数பைடு நூலகம்
三个内角和
二、撕拼法
三、折叠法
结论:
2
1
3
2 3 1
2 13
无论是锐角三角形,直角三 角形还是钝角三角形,它们 的内角和都是180°。
测量误差:
结束语
当你尽了自己的最大努力时,失败也是伟大的 ,所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
三角形的内角和
三角形的内角和
2
1
3
三角形三个内角的度数之和 叫做三角形的内角和。
∠1+∠2+∠3
不对。我有一个大 钝角,所以我的内
角和才最大!
我的三角形 最大,所以 我的内角和
最大!
我的三角形小, 那我的内角和 就小喽……
90° +60 ° +30 ° =180 °
90° +45 ° +45 ° =180 ° 30° 45°
演讲人:XXXXXX 时 间:XX年XX月XX日
相关文档
最新文档