大数据开发培训课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据开发培训课
大数据的火爆我们是有目共睹的,学习大数据无疑都会选择一家专业的大数据培训学校,因为一般自学的效果都不是很好,毕竟大数据包含的技术知识太多了,首先要先了解大数据的一些基本概念。
一、基本概念
在讲什么是大数据之前,我们首先需要理清几个基本概念。
1.数据
关于数据的定义,大概没有一个权威版本。为方便,此处使用一个简单的工作定义:数据是可以获取和存储的信息。
直观而言,表达某种客观事实的数值是很容易被人们识别的数据(因为那是“数”)。但实际上,人类的一切语言文字、图形图画、音像记录,所有感官可以察觉的事物,只要能被记下来,能够查询到,就都是数据(data)。
不过数值是所有数据中很容易被处理的一种,许多和数据相关的概念,例如下面的数据可视化和数据分析,都是立足于数值数据的。
传统意义上的数据一词,尤其是相对于今天的“大数据”的“小数据”,主要
指的就是数值数据,甚至在很多情况下专指统计数值数据。这些数值数据用来描述某种客观事物的属性。
2.数据可视化
对应英语的data visulization(或可译为数据展示),指通过图表将若干数字以直观的方式呈现给读者。比如非常常见的饼图、柱状图、走势图、热点图、K 线等等,目前以二维展示为主,不过越来越多的三维图像和动态图也被用来展示数据。
3.数据分析
这一概念狭义上,指统计分析,即通过统计学手段,从数据中精炼对现实的描述。例如:针对以关系型数据库中以table形式存储的数据,按照某些指定的列进行分组,然后计算不同组的均值、方差、分布等。再以可视化的方式讲这些计算结果呈现出来。目前很多文章中提及的数据分析,其实是包括数据可视化的。
4.数据挖掘
这个概念的定义也是众说纷纭,落到实际,主要是在传统统计学的基础上,
结合机器学习的算法,对数据进行更深层次的分析,并从中获取一些传统统计学方法无法提供的Insights(比如预测)。
简单而言:针对某个特定问题构建一个数学模型(可以把这个模型想象成一个或多个公式),其中包含一些具体取值未知的参数。我们将收集到的相关领域的若干数据(这些数据称为训练数据)代入模型,通过运算(运算过程称为训练),得出那些参数的值。然后再用这个已经确定了参数的模型,去计算一些全新的数据,得出相应结果。这一过程叫做机器学习。
机器学习的算法纷繁复杂,常用的主要有回归分析、关联规则、分类、聚类、神经网络、决策树等。
千锋大数据课程基础内容开发采用“T”字形的思维,以大数据的深度为主,以机器学习、云计算等作为宽度,相辅相成。此外千锋大数据课程定期组织与一线名企的工程师进行面对面的就企业当下的项目讨论与研发,进而验证所学技术的正确方向。打造精品大数据课程,力争将同学们的技术打造地更加精致,成就美好未来。