污水厂脱氮除磷三种方法

合集下载

污水处理中的脱氮与除磷技术

污水处理中的脱氮与除磷技术

成本与能耗
综合考虑处理成本、能耗等因素,选择经济可行 的技术方案。
环保与安全
优先选择环保友好、安全可靠的技术,减少对环 境的影响。
05
案例分析
生物脱氮与除磷技术的应用案例
序批式反应器(SBR)
SBR是一种常用的生物脱氮除磷工艺,通过间歇式反应和沉淀,实现生物脱氮 与除磷。该工艺具有较好的脱氮除磷效果,同时能够降低能耗和运营成本。
活性污泥法
活性污泥法是一种传统的生物脱氮除磷工艺,通过曝气和沉淀过程,使污水中 的有机物得到降解,同时实现脱氮除磷。该工艺适用于处理大规模的污水,但 需要较高的能耗和运营成本。
技术改进与创新案例
高效生物脱氮除磷技术
通过优化反应器设计和微生物种群, 提高生物脱氮除磷效率。例如,采用 高效硝化菌和聚磷菌等微生物,提高 硝化效率和聚磷效果。
物理除磷技术
02
01
03
物理除磷技术是通过吸附、过滤、沉淀等方式去除污 水中的磷。
物理除磷技术适用于低磷含量和高浊度污水的处理, 具有处理效果好、操作简单等优点。
物理除磷技术需要定期更换吸附剂或过滤材料,且处 理效果受水质变化影响较大。
04
脱氮与除磷技术的比较与选择
技术比较
脱氮技术
主要通过硝化、反硝化等过程去除污水中的氮元素,常用方法包括生物脱氮和化学脱氮。生物脱氮技 术成熟,但需要较高的能耗和较长的处理时间;化学脱氮技术效率高,但药剂消耗量大,成本较高。
人才培养与交流
加强污水处理领域的人才培养和国 际交流,引进国外先进技术和管理 经验,提高我国污水处理技术的整 体水平。
THANK YOU
感谢聆听
生物除磷技术需要良好的硝化反应和混合液回流条 件,以保证聚磷菌的活性。

脱氮除磷污水处理工艺最新版本

脱氮除磷污水处理工艺最新版本
.
生物法除磷的理论基础:
生物除磷是利用聚磷菌一类的微生物, 能够过量地, 在数量上超过其生理需要, 从外部环境摄取磷, 并将磷以聚合的形态储藏在体内, 形成高磷污泥, 排出系统外, 达到从污水中除磷的效果。
.
有机磷 ADP ATP 无机磷 无机磷 ATP ADP 有机磷 释放 聚磷 聚 磷 菌 → 聚 磷 菌 合成 降解 溶解质 ATP ADP PHB PHB ADP ATP 无机物 厌氧段 好氧段 聚 磷 菌 的 作 用 机 理
.
该反应的微生物属自养型厌氧细菌,生长速率非常低,但将氨氮厌氧转化能力非常高,可以达到4.8kgTN/(m3·d),最佳运行条件: 温度为10~43℃,pH值为6.7~8.3。
.
自养型氨厌氧氧化菌生长慢,启动时间非常长,为使ANAMMOX污泥保留在反应器中并得到足够的生物量,需要有效的污泥截留(由此建议用生物膜反应器)。另外ANAMMOX过程的营养需求,是否出现羟胺、肼类化合物,二氧化氮等代谢中间产[HJ]物和二次污染问题等都是新工艺实际运行中要解决的问题。
.
图1 ANAMMOX流化床反应器装置 1.污水 2.亚硝酸盐溶液 3.4.5.泵 6.取样口 7.ANAMMOX流化床反应器 8.恒温水浴 9.水封 10.湿式气体流量计 11.出水
.
该工艺的本质是通过控制环境温度造成两类细菌不同的增长速率,利用该动力学参数的不同造成“分选压力” 。使用无需污泥停留(以恒化器方式运行,其SRT=HRT)的单个CSTR反应器来实现,在较短的HRT(即SRT)和30 ~40℃的条件下,可有效地通过种群筛选产生大量的亚硝酸盐氧化菌,并使硝化过程稳定地控制在亚硝化阶段,以 NO2-为硝化终产物。SHARON工艺适用于含高浓度氨(>500mg/L)废水的处理工艺,

污水脱氮除磷工艺

污水脱氮除磷工艺


(5)填料构型与高度。一般,填料间距40~50mm,填料高度为 6~7.5m。
(6) 结垢控制。填料结垢(
)将降低吹脱塔的处理效率。
3. 折点加氯法(★) :
折点氯化法:投加过量氯或次氯酸钠(超过“折点”),使废水中 氨完全氧化为N2的方法。
Cl 2 H2O HOCl H Cl
NH
4
生物强化除磷工艺可以使得系统排除的剩余污泥 中磷含量占到干重5%~6%。
若还未满足排放标准,就必须借助化学法除磷。
1、生物强化除磷工艺
利用好氧微生物中聚磷菌在好氧条件下对污水中 溶解性磷酸盐过量吸收作用,然后沉淀分离而除磷。
(1)生物除磷机理(★)
厌氧环境 有机基质
好氧环境
产酸菌 乙酸
聚P
聚ቤተ መጻሕፍቲ ባይዱ菌
P
(1)厌氧环境条件: (a)氧化还原电位:放磷时ORP一般小于
100mV; (b)溶解氧浓度:厌氧区要求无溶解氧;好氧
呼吸会消耗易降解有机质; (c)NOx-浓度:产酸菌利用NOx- 作为电子受体,
抑制厌氧发酵过程,反硝化时消耗易生物降解有机 质。
(2)有机物浓度及可利用性:碳源的性质对吸放 磷及其速率影响极大。
置式反硝化生物脱氮系统。 反硝化反应以水中的有机物为碳源,曝气池中
含有大量的硝酸盐的回流混合液,在缺氧池中进行 反硝化脱氮。
缺氧-好氧生物脱氮工艺
(二) 化学法除氮 1、离子交换法
常用天然的离子交换剂,如沸石等。
对某些阳离子的交换。选择性次序为:
与合成树脂相比,天然离子交换剂价格便宜且 可用石灰再生。
(3) 生物除磷工艺
(a) A/O法(☆) 由厌氧池和好氧池组成的同时去除污水中有机 污染物及磷的处理系统。

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。

2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。

通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。

3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。

近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。

与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。

分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。

分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。

二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。

城市污水生物脱氮除磷方法综述

城市污水生物脱氮除磷方法综述

城市污水生物脱氮除磷方法综述摘要:本文归纳了脱氮除磷研究中的关键问题,指出了生物脱氮除磷原理及经典工艺,并说明了脱氮除磷技术的研究进展,同时对今后的脱氮除磷工艺做了展望。

关键词:富营养化脱氮除磷 a/o/a工艺1.生物脱氮除磷机理研究1.1生物脱氮机理1.1.1 传统生物脱氮理论生物脱氮包括氨化、硝化、反硝化三个过程。

水体中的有机氮首先在氨化菌的作用下,转化为氨态氮,这也就是所谓的氨化阶段;之后是硝化阶段,硝化阶段其实由两部分组成,首先水体中的氨态氮在好氧的条件下通过亚硝化菌转化为亚硝酸盐氮,然后硝化菌在好氧的条件下将亚硝酸盐氮转化为硝酸盐氮。

最后是反硝化阶段,该阶段在缺氧的条件下,通过反硝化菌将亚硝酸盐氮和硝酸盐氮转化为n2。

1.1.2 同时硝化与反硝化(snd)同时硝化与反硝化(snd)指在一定条件下,硝化与反硝化反应发生在同一处理条件及同一处理空间内的现象。

有以下优点:(1)能有效保持反应器中ph稳定,减少或取消碱度的投加。

(2)减少传统反应器的容积,节省基建费用。

(3)对于仅由一个反应池组成的序批式反应器来讲, snd能够降低实现硝化、反硝化所需时间。

(4)曝气量的节省,能够进一步降低能耗。

1.1.3 短程硝化反硝化短程硝化反硝化是将硝化控制在no-2阶段而终止,随后进行反硝化。

实现短程硝化和反硝化的关键在于抑制硝酸菌的增长,从而使亚硝酸盐在硝化过程中得到稳定的积累[1]。

短程硝化反硝化可节省氧供应量约为25%,降低能耗,节省碳源40%,减少污泥生成量可达50%,减少投碱量,缩短反应时间和减少容积。

短程硝化反硝化工艺尤其适用于低碳氮比、高氨氮、高ph 值和高碱度废水的处理。

短程硝化反硝化不仅可节省工程投资,更重要的是可以节省运行费用,适用水质范围较宽。

1.2生物除磷机理1.2.1 传统生物除磷理论在厌氧的条件下,聚磷菌把细胞中的聚磷水解为正磷酸盐释放胞外,并从中获取能量,利用污水中易降解的有机物,合成储能物质聚b一经基丁酸(phb)等储于细胞内,在好氧的条件下,聚磷菌以游离氧为电子受体,氧化细胞内储存的phb,并利用该反应产生的能量,过量从污水中摄取磷酸盐,合成高能atp,其中一部分又转化为聚磷,作为能量储于细胞内,好氧吸磷大于厌氧释磷量,通过排放富磷污泥可以实现高效除磷目的。

污水脱氮除磷技术介绍

污水脱氮除磷技术介绍

污水脱氮除磷技术介绍污水脱氮除磷技术是指对污水中的氮、磷进行有效去除的技术。

磷和氮是污水中的主要污染物之一,如果不进行有效去除,会导致水体富营养化,引发藻类大量繁殖,影响水体的生态平衡。

因此,对污水中的氮、磷进行去除是保护水体环境的重要措施之一一、污水脱氮技术1.生物脱氮法:生物脱氮法是利用特定微生物将污水中的氨氮转化为氮气排放。

这种方法需要提供好氧和缺氧条件,通过调控曝气和停氧时间,使特定微生物发挥作用。

目前常用的生物脱氮方法有硝化-反硝化法和厌氧氨氧化-硝化法两种。

2.化学脱氮法:化学脱氮法是指通过加入化学药剂使污水中的氮污染物发生化学反应,将氮污染物转化为氮气排放。

常用的化学药剂有硫酸铁、硫酸铝等。

这种方法操作简单,但药剂投入量大,处理成本较高。

3.膜法脱氮:膜法脱氮是利用气液界面上的气流驱动气体分子穿透膜,并利用膜的选择性透过性,选择性去除污水中的氮气。

膜法脱氮技术通常包括反渗透法(RO)、气体渗透法(GO)、气体渗透双极渗透法(GPD)等。

二、污水除磷技术1.化学除磷法:化学除磷法是通过加入化学药剂与污水中的磷形成沉淀物,将磷从污水中去除。

常用的化学药剂有氢氧化钙(Ca(OH)2)、氢氧化铝(Al(OH)3)等。

这种方法操作简单,但药剂投入量大,处理成本较高。

2.生物除磷法:生物除磷法是通过调控好氧-缺氧情况下特定微生物的生长环境,促使其在缺氧条件下吸收和积累磷。

常用的生物除磷方法有反硝化除磷法、AO法、高效耐磷生物工艺等。

3.吸附除磷法:吸附除磷法是通过将特定材料引入污水中,利用材料对磷的吸附性能,将污水中的磷吸附到材料表面。

常用的吸附材料有Fe3O4、氧化铝、活性炭等。

4.膜法除磷:膜法除磷是利用膜的选择性透过性,选择性去除污水中的磷。

常见的膜法除磷技术有微滤膜法(MF)、超滤膜法(UF)、纳滤膜法(NF)、反渗透膜法(RO)等。

需要注意的是,不同的工业场所的污水特性各异,其处理过程、工艺选择也会有所不同。

污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析2020年9月6日星期日目录一、生物脱氮 (3)1、硝化过程 (3)2、反硝化过程 (4)3、生物脱氮的基本条件 (5)4、废水生物脱氮处理方法 (6)二、化学脱氮 (7)1、吹脱法 (7)2、化学沉淀法(磷酸铵镁沉淀法) (8)3、低浓度氨氮工业废水处理技术 (9)4、不同浓度工业含氨氮废水的处理方法比较 (11)三、化学法除磷 (11)1、石灰除磷 (12)2、铝盐除磷 (12)3、铁盐除磷 (13)四、生物除磷 (13)1、生物除磷的原理 (13)2、生物除磷的影响因素: (14)3、废水生物除磷的方法有哪些 (15)4、除磷设施运行管理的注意事项 (15)一、生物脱氮脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。

污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。

含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。

硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。

含氮有机化合物最终转化为氮气,从污水中去除。

1、硝化过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。

这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。

第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。

这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。

氧化1g氨氮大约需要消耗4.3gO2和8.64gHCO3-(相当于7.14gCaCO3碱度)。

硝化过程的影响因素:1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。

污水生物脱氮除磷新工艺(共41张PPT)

污水生物脱氮除磷新工艺(共41张PPT)
响厌氧产物PHB的合成,进而影响到后续除磷效果。
▪ 一般而言,要同时达到氮磷的去除目的,城 市污水中碳氮比(COD/TKN)至少为 9。当城 市污水中碳源低于此要求时,由于大多数处 理工艺流程都把缺氧反硝化置于厌氧释磷之 后,反硝化效果受到碳源量的限制,大量的 未被反硝化的硝酸盐随回流污泥进入厌氧区 ,干扰厌氧释磷的正常进行,最终影响到整 个营养盐去除系统的稳定运行。
▪ 一、脱氮除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 2 、除磷的传统工艺
▪ 1、 脱氮的传统工艺 ▪ 自然界中氮一般有四种形态:
▪ 有机氮、
▪ 氨氮、 ▪ 亚硝酸盐氮 ▪ 硝酸盐氮
▪ 生活污水中的氮主要形态是有机氮和氨氮。
▪ 有机氮占生活污水含氮量的40-60%, ▪ 氨氮占50-60%,
▪ 亚硝酸盐和硝酸盐氮仅占0-5%。
▪ 总反应
▪ NH4+ + O2 + HCO3- →

NO3- + H2O + H2CO3 + 微生物细胞
▪ 反硝化反应如下:

▪ NO3- + CH3OH + H2CO3 → ▪ N2↑+H2O + HCO3-+微生物细胞 ▪
生物脱氮工艺
▪ 传统生物脱氮存在问题?
▪ 首先,需要充分地氧化氨氮到硝酸氮,要消
内回流
污泥回流
图3 MUCT工艺
▪ MUCT工艺有两个缺氧池,前一个接受二沉池回流污泥,后一个接受好 氧区硝化混合液,使污泥的脱氮与混合液的脱氮分开,进一步减少硝酸 盐进入厌氧区的可能。
OWASA工艺
进水
初沉池 污泥
混合液内回流
厌氧
缺氧

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺
通常污水处理设备的外壳都是金属材质(碳钢、不锈钢)或者玻璃钢材质制作。

不同的污水处理设备对污染水的敏感度处理工艺和处理后的排放标准都不相同。

污水中95%以上的氨氮(HN3-N)以NH4的形式存在。

通过鼓风曝气,亚硝酸菌首先将氨氮转化为亚硝酸盐:
(亚硝酸菌)NH4+1.5O2NO2-+2H+H2O。

然后将亚硝酸盐转化为硝酸盐:硝酸菌No2总体反应为:NH4+2O2NO3+2H+H2O。

污水处理设备
以上反应在好氧部分进行。

在厌氧部分,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如碱生产菌、假单胞菌、无色杆菌等)进行反硝化和脱氮。

反消化菌利用NO3中的氧(又称化合态氧或硝化氧)继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮N2这个过程可以用以下方式表示:
反消化菌NO3-+有机物N2+N2O+OH。

除磷原理:
厌氧段优势的非丝状储磷菌分解储存的聚磷酸盐,提供能量,吸收水中大量的BOD5,释放正磷酸盐,降低厌氧段的BOD5,提高磷含量。

公厕污水进入好氧段后,好氧微生物利用氧化分解获得的能量,吸收原水中释放的大量正磷和磷,完成磷的过渡积累,达到去除BOD5和除磷的目的。

污水处理脱氮除磷工艺原理。

脱氮除磷工艺汇总

脱氮除磷工艺汇总

脱氮除磷工艺汇总MBR工艺脱氮除磷MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。

在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善.MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善.所以MBR工艺一般和SBR系列/AAO等工艺组合使用. 五种常见组合工艺:SBR—MBR工艺A2O—MBR工艺3A—MBR工艺A2O/A-MBR工艺A(2A)O—MBR工艺SBR—MBR工艺:将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。

由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力.此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。

与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。

A2O-MBR工艺:由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O—MBR工艺,可进一步拓展MBR的应用范畴。

在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。

A2O—MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。

脱氮除磷方法

脱氮除磷方法

脱氮除磷方法
脱氮除磷是指将废水中的氮和磷去除,以减少废水对环境的污染。

以下是脱氮除磷的几种方法:
1. 生物法:生物法是利用微生物将废水中的氮和磷转化为微生物体内的有机物或无机物,从而达到去除氮和磷的目的。

生物法包括生物接触氧化法、生物膜法、生物滤池法等。

2. 化学法:化学法是利用化学反应将废水中的氮和磷转化为无害的化合物,从而达到去除氮和磷的目的。

化学法包括化学沉淀法、化学氧化法、离子交换法等。

3. 物理法:物理法是利用物理原理将废水中的氮和磷去除,从而达到去除氮和磷的目的。

物理法包括沉淀法、过滤法、膜分离法等。

4. 综合法:综合法是将多种方法结合起来,同时去除废水中的氮和磷。

综合法可以提高废水处理效率,降低处理成本。

综合法包括生物-化学法、生物-物理法等。

总之,脱氮除磷是一项非常重要的环保工作,需要采取多种方法进行处理,以保护环境和人类健康。

废水脱氮除磷原理

废水脱氮除磷原理

废水脱氮除磷原理
废水脱氮除磷是一种常用的废水处理方法,该方法通过物理、化学或生物等方式,将废水中的氮和磷去除,以达到净化废水、保护水环境的目的。

废水脱氮的原理主要通过氧化还原反应来实现。

在废水处理过程中,氧化剂(如氧气、臭氧等)被引入到废水中,与废水中的氮物质发生反应。

氧化剂可以将氮物质氧化成为更容易去除的形态,如将氨氮氧化为亚硝酸盐或硝酸盐。

然后,通过一系列的反应和处理,将氧化后的产物从废水中去除。

废水除磷的原理主要是通过化学沉淀、生物吸附或沉淀和生物两种方式来实现。

化学沉淀是指向废水中加入化学药剂,使废水中的磷与药剂发生反应,形成不溶于水的沉淀物,从而达到去除磷的目的。

生物吸附是指利用微生物或植物等生物体的吸附能力,将废水中的磷物质吸附到生物体的表面或细胞内部。

沉淀和生物两种方式常常结合使用,以增加废水除磷的效果。

综上所述,废水脱氮除磷主要是通过氧化和沉淀、吸附等方式来实现的。

通过选择适当的处理方法、调整工艺参数和控制操作条件,可以高效地脱除废水中的氮和磷,保护水资源,减少污染。

污水深度处理与脱氮除磷

污水深度处理与脱氮除磷

污水深度处理与脱氮除磷污水深度处理与脱氮除磷污水处理是一项非常重要的环境保护工作,特别是在城市化进程加快的今天,城市生活污水的排放成为了一个不可忽视的问题。

为了保护水环境,我们需要对污水进行深度处理,并进行脱氮除磷等工艺,以减少对水体的污染。

污水深度处理的一种常见工艺是生物处理技术。

生物处理是利用生物体的代谢活动将有机物、氮、磷等污染物转化为稳定、无毒的物质的过程。

其中,脱氮除磷是生物处理的重要组成部分,主要是利用与污水中的氮、磷有亲和力的细菌来进行处理。

脱氮是指将污水中的氨氮转化为氮气,并释放到大气中。

常见的脱氮工艺有硝化反硝化法和膜生物反应器法。

硝化反硝化法主要是利用硝化细菌和反硝化细菌的代谢活动来完成。

首先,硝化细菌将污水中的氨氮氧化为亚硝酸盐,然后反硝化细菌将亚硝酸盐还原为氮气释放到大气中。

膜生物反应器法则是利用特殊的膜分离技术,将硝化细菌和反硝化细菌固定在膜上,使其能够同时进行硝化和反硝化反应,高效地实现脱氮处理。

除磷是指将污水中的磷转化为难溶的物质,以实现去除。

常用的除磷工艺有化学除磷法和生物除磷法。

化学除磷法主要是通过加入化学药剂,如聚合氯化铝、硫酸铝等,将污水中的磷转化为难溶的磷酸盐沉淀物,然后通过混凝沉淀和固液分离等工艺将其去除。

生物除磷法则是通过培养和利用具有生物磷去除能力的细菌,将污水中的磷转化为多聚磷酸盐等可沉淀物质,然后进行混凝沉淀和固液分离,最终完成除磷处理。

污水深度处理与脱氮除磷不仅可以减少对水环境的污染,还可以有效地保护水资源。

首先,通过深度处理,可以将污水中的有机物、氮、磷等污染物转化为无毒的物质,减少对水体生物的危害。

其次,脱氮除磷可以减少水体中养分的浓度,防止营养过剩导致的水体富营养化,维护水体的生态平衡。

此外,污水深度处理还可以回收利用污水中的水资源,减少对自然水源的依赖。

在进行污水深度处理与脱氮除磷过程中,我们还需要注意一些问题。

首先,需要控制处理过程的温度、pH值等,以提供最适宜的环境条件,促进细菌的正常生长和代谢。

污水厂脱氮除磷三种方法

污水厂脱氮除磷三种方法

污水厂脱氮除磷三种方法传统A²/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A²/O 工艺进行污水处理。

然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。

在传统A²/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。

传统A²/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A²/O 工艺进行污水处理。

然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。

在传统A²/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。

传统A²O工艺存在的矛盾01 污泥龄矛盾传统A²/O 工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同:1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。

冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d 以上;即使夏季,若SRT<5 d,系统的硝化效果将显得极其微弱。

2)PAOs 属短世代周期微生物,甚至其最大世代周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。

从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。

若排泥不及时,一方面会因PAOs 的内源呼吸使胞内糖原(Glycogen)消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚-β- 羟基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT 也影响到系统内PAOs 和聚糖菌(GAOs)的优势生长。

污水脱氮除磷原理

污水脱氮除磷原理

污水脱氮除磷原理
污水脱氮除磷是一种常见的污水处理方法,旨在降低污水中的氮和磷含量,以减少对水环境的污染。

脱氮的原理通常采用生物脱氮方法,其中最常见的是硝化-反硝化过程。

在这个过程中,通过微生物的作用,将污水中的氨氮逐步转化为亚硝酸盐,然后再转化为硝酸盐。

同时,硝化过程中产生的氮气可以通过通气系统排出。

除磷的原理主要是通过化学反应将溶解性磷酸盐转化成不溶性磷酸盐沉淀,从而达到除磷的效果。

常用的除磷方法包括化学除磷和生物除磷。

化学除磷通常采用加入金属盐溶液(如氯化铁、氯化铝等)的方式,金属离子与磷酸盐发生反应生成不溶性的金属磷酸盐沉淀。

这些沉淀物随后通过沉淀池或沉淀池被除去。

生物除磷主要是利用某些特殊的细菌和微生物,在厌氧条件下将污水中的磷酸盐转化为多聚磷酸盐,这些多聚磷酸盐可以沉积在活性污泥中。

在后续的污泥处理过程中,这些磷酸盐有机体可以被分解,从而达到除磷的效果。

综上所述,污水脱氮除磷的原理一般是通过生物反应和化学反应,将污水中的氮和磷转化成沉淀物或沉积在活性污泥中,从而达到减少水环境污染的目的。

几种脱氮除磷污水处理工艺简介之化学文章

几种脱氮除磷污水处理工艺简介之化学文章

几种脱氮除磷污水处理工艺简介之化学文章摘要:简单介绍了目前在城市污水处理几种常用的污水脱氮除磷处理工艺及其发展改进的工艺。

关键字:脱氮除磷文章,氧化沟,A/A/O,SBR,BAF,VertiCel-BNR工艺污水处理的生物脱氮除磷工艺都包含厌氧、缺氧、好氧三个不同过程的交替循环。

按照构筑物的组成形式、运行性能以及运行操作方式的不同,又分为悬浮性活性污泥法和固着性生物膜法两大类文章应用于城市污水厂的悬浮性活性污泥法污水处理工艺主要有三个系列:(1)氧化沟系列;(2)A/O系列;(3)序批式反应器(SBR)系列。

各个系列不断的发展、改进,形成了目前比较典型的工艺有:A/A/O工艺、改良A/A/O工艺、UCT工艺、改良UCT工艺、CARROUSEL-2000氧化沟工艺、双沟式DE氧化沟工艺、三沟式T型氧化沟工艺、VIP工艺、CASS工艺、MSBR工艺、Unitank工艺等。

应用于城市污水处理厂的固着性生物膜法工艺主要有生物滤池工艺。

1、氧化沟工艺文章目前在国内外较为流行的氧化沟有:卡罗塞尔氧化沟、奥伯尔氧化沟、双沟式氧化沟、三沟式氧化沟。

氧化沟是活性污泥法的一种改进型,具有除磷脱氮功能,其曝气池为封闭的沟渠,废水和活性污泥的混合液在其中不断循环流动,因此氧化沟又名“连续循环曝气法”。

(1)卡罗塞尔氧化沟是荷兰DHV公司开发的。

该工艺在曝气渠道端部装有低速表面曝气机。

在曝气渠内用隔板分格,构成连续渠道。

为了保证沟中流速,曝气渠的几何尺寸和表曝机的设计是至关重要的。

(2)双沟式(DE型)氧化沟和三沟式(T型)氧化沟是丹麦克鲁格公司开发的。

DE型氧化沟为双沟组成,氧化沟与二沉池分建,有独立的污泥回流系统,DE型氧化沟可按除磷脱氮等多种工艺运行。

双沟式氧化沟是由两个容积相同,交替运行的曝气沟组成。

三沟式氧化沟集曝气沉淀于一体,工艺更为简单。

三沟交替进水,两外沟交替出水,两外沟分别作为曝气或沉淀交替运行,不需二沉池及污泥回流设备,同DE型氧化沟相同,需要的自动化程度高。

污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理1.生物脱氮废水中存在着有机氮、NH3-N、NxO--N等形式的氮,而其中以NH3-N和有机氮为主要形式。

生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程。

进行生物脱氮可分为氨化-硝化-反硝化三个步骤。

由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

1.1. 氨化作用氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。

参与氨化作用的细菌称为氨化细菌。

在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。

另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。

RCH(NH2)COOH→RCH2COOH+NH1CH3CH(NH2)COOH→CH3CH(OH)COOH+NH3CH2(OH)CH(NH2)COOH→CH3COCOOH+NH31.2. 硝化作用硝化作用是指将NH3-N氧化为NxO--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。

亚硝酸菌和硝酸菌统称为硝化菌。

发生硝化反应时细菌分别从氧化NH3-N和N2O--N 的过程中获得能量,碳源来自无机碳化合物,如CO2-3、HCO-、CO2等。

硝化过程的三个重要特征:⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2;⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季;⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化需要碱度5.57g(以NaCO3计)。

1.3. 反硝化作用反硝化作用是指在厌氧或缺氧(DO<0.3-0.5mg/L)条件下,NOx--N及其它氮氧化物被用作电子受体被还原为氮气或氮的其它气态氧化物的生物学反应,这个过程由反硝化菌完成[3--4]。

污水生物法脱氮除磷技术及应用

污水生物法脱氮除磷技术及应用

3.同时生物脱氮除磷典型工艺
混合液回流 Ri 出水 进水 厌氧池 好氧池 沉淀池
缺氧池
回流污泥 R 剩余污泥
图2-23 典型的 好氧池 二沉池 出水
剩余污泥 污泥回流 (a)流程1
混合液回流 进水 前置缺氧池 出水 厌氧池 缺氧池 好氧池 二沉池
⑥有毒物质 硝化与反硝化过程都受有毒物质的影响,硝化菌 更易受到影响。对硝化菌有抑制作用的有毒物质有 Zn、Cu、Hg、Cr、Ni、Pb、CN-、HCN等。
3)生物脱氮的典型工艺
混合液回流
进水
缺氧池
好氧池
二沉池
出水
污泥回流
空气
剩余污泥
图2-20 A/O生物脱氮工艺流程
2.污水生物除磷
1)生物除磷基本原理
③ pH值 硝化菌对pH值变化十分敏感,pH值在7.0~7.8时, 亚硝酸菌的活性最好;而硝酸菌在pH值为7.7~8.1时 活性最好。反硝化最适宜的pH值在7.0~7.5。 ④碳氮比 对于硝化过程,碳氮比影响活性污泥中硝化细菌所 占的比例,过高的碳氮比将降低污泥中硝化细菌的比 例。
⑤泥龄 硝化过程的泥龄一般为硝化菌最小世代时间的2 倍以上。当冬季温度低于10℃,应适当提高泥龄。
剩余污泥 污泥回流
(b)流程2
同时生物脱氮除磷A2/O的变形工艺
4、Bardenpho同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要功 能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。
5、UCT工艺
—含NO3-N的污泥直接回流到厌氧池,会引起反硝化作用, 反硝化菌将争夺除磷菌的有机物而影响除磷效果,因此 提出UCT(Univercity of Cape Town)工艺。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水厂脱氮除磷三种方法传统A²/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A²/O 工艺进行污水处理。

然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。

在传统A²/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。

传统A²/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A²/O 工艺进行污水处理。

然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。

在传统A²/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。

传统A²O工艺存在的矛盾01 污泥龄矛盾传统A²/O 工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同:1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。

冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d 以上;即使夏季,若SRT<5 d,系统的硝化效果将显得极其微弱。

2)PAOs 属短世代周期微生物,甚至其最大世代周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。

从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。

若排泥不及时,一方面会因PAOs 的内源呼吸使胞内糖原(Glycogen)消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚-β- 羟基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT 也影响到系统内PAOs 和聚糖菌(GAOs)的优势生长。

在30 ℃的长泥龄(SRT≈10 d)厌氧环境中,GAOs 对乙酸盐的吸收速率高于PAOs,使其在系统中占主导地位,影响PAOs 释磷行为的充分发挥。

02 碳源竞争及硝酸盐和DO 残余干扰在传统A²/O脱氮除磷系统中,碳源主要消耗于释磷、反硝化和异养菌的正常代谢等方面,其中释磷和反硝化速率与进水碳源中易降解部分的含量有很大关系。

一般而言,要同时完成脱氮和除磷两个过程,进水的碳氮比(BOD5 /ρ(TN))>4~5,碳磷比(BOD5 /ρ(TP))>20~30。

当碳源含量低于此时,因前端厌氧区PAOs 吸收进水中挥发性脂肪酸(VFAs)及醇类等易降解发酵产物完成其细胞内PHAs 的合成,使得后续缺氧区没有足够的优质碳源而抑制反硝化潜力的充分发挥,降低了系统对TN 的脱除效率。

反硝化菌以内碳源和甲醇或VFAs 类为碳源时的反硝化速率分别为17~48 、120~900 mg/(g·d)。

因反硝化不彻底而残余的硝酸盐随外回流污泥进入厌氧区,反硝化菌将优先于PAOs 利用环境中的有机物进行反硝化脱氮,干扰厌氧释磷的正常进行,最终影响系统对磷的高效去除。

一般,当厌氧区的NO3-N 的质量浓度>1.0 mg/L 时,会对PAOs 释磷产生抑制,当其达到3~4 mg/L 时,PAOs 的释磷行为几乎完全被抑制,释磷(PO4 3--P)速率降至2.4 mg/(g·d)。

按照回流位置的不同,溶解氧(DO)残余干扰主要包括:1)从分子态氧(O2)和硝酸盐(NO3-N)作为电子受体的氧化产能数据分析,以O2 作为电子受体的产能约为NO3-N 的1.5 倍,因此当系统中同时存在O2 和NO3-N 时,反硝化菌及普通异养菌将优先以O2 为电子受体进行产能代谢。

2)氧的存在破坏了PAOs 释磷所需的“厌氧压抑”环境,致使厌氧菌以O2 为终电子受体而抑制其发酵产酸作用,妨碍磷的正常释放,同时也将导致好氧异养菌与PAOs 进行碳源竞争。

一般厌氧区的DO 的质量浓度应严格控制在0.2 mg/L 以下。

从某种意义上来说硝酸盐及DO 残余干扰释磷或反硝化过程归根还是功能菌对碳源的竞争问题。

传统A²O工艺改进策略分析01 基于SRT 矛盾的复合式A²/O工艺在传统A²/O工艺的好氧区投加浮动载体填料,使载体表面附着生长自养硝化菌,而PAOs 和反硝化菌则处于悬浮生长状态,这样附着态的自养硝化菌的SRT 相对独立,其硝化速率受短SRT 排泥的影响较小,甚至在一定程度上得到强化。

悬浮污泥SRT、填料投配比及投配位置的选择不仅要考虑硝化的增强程度,还要考虑悬浮态污泥含量降低对系统反硝化和除磷的负面影响。

载体填料的投配并不意味可大幅度增加系统排泥量,缩短悬浮污泥SRT 以提高系统除磷效率;相反,SRT 的缩短可能降低悬浮态污泥(MLSS)含量,从而影响系统的反硝化效果,甚至造成除磷效果恶化。

研究表明,当悬浮污泥SRT 控制为5 d 时,复合式A²/O 工艺的硝化效果与传统A²/O 工艺相比,两者的硝化效果无明显差异,复合式A²/O工艺的载体填料不能完全独立地发挥其硝化性能;若再降低悬浮污泥SRT 则因系统悬浮污泥含量的降低致使硝酸盐积累,影响厌氧磷的正常释放。

02 基于“碳源竞争”角度的工艺解决传统A²/O工艺碳源竞争及其硝酸盐和DO 残余干扰释磷或反硝化的问题,主要集中在3 方面:•针对碳源竞争采取的解决策略,如补充外碳源、反硝化和释磷重新分配碳源(如倒置A²/O工艺)等;•解决硝酸盐干扰释磷提出的工艺改革,如JHB、UCT、MUCT 等工艺;•针对DO 残余干扰释磷、反硝化的问题,可在好氧区末端增设适当容积的“非曝气区”。

1、补充外碳源补充外碳源是在不改变原有工艺池体结构及各功能区顺序的情况下,针对短期内因水质波动引起碳源不足而提出的应急措施。

一般供选择的碳源可分为2 类:1)甲醇、乙醇、葡萄糖和乙酸钠等有机化合物;2)可替代有机碳源,如厌氧消化污泥上清液、木屑、牲畜或家禽粪便及含高碳源的工业废水等。

相对糖类、纤维素等高碳物质而言,因微生物以低分子碳水化合物(如,甲醇、乙酸钠等)为碳源进行合成代谢时所需能量较大,使其更倾向于利用此类碳源进行分解代谢,如反硝化等。

任何外碳源的投加都要使系统经历一定的适应期,方可达到预期的效果。

针对要解决的矛盾主体选择合适的碳源投加点对系统的稳定运行和节能降耗至关重要。

一般在厌氧区投加外碳源不仅能改善系统除磷效果,而且可增强系统的反硝化潜能;但是若反硝化碳源严重不足致使系统TN 脱除欠佳时,应优先考虑向缺氧区投加。

2、倒置A²/O 工艺及其改良工艺传统A²/O工艺以牺牲系统的反硝化速率为前提,优先考虑释磷对碳源的需求,而将厌氧区置于工艺前端,缺氧区后置,忽视了释磷本身并非除磷工艺的目的所在。

从除磷角度分析可知,倒置A²/O 工艺还具有2 个优势:•“饥饿效应”。

PAOs厌氧释磷后直接进入生化效率较高的好氧环境,其在厌氧条件下形成的摄磷驱动力可以得到充分地利用。

•“群体效应”。

允许所有参与回流的污泥经历完整的释磷、摄磷过程。

然而有研究者认为,倒置A2 /O 工艺的布置形式。

3、JHB、UCT 及改良UCT 工艺与分点进水倒置A2 /O 工艺相比,JHB(亦称A A2 /O 工艺)和UCT 工艺的设计初衷是通过改变外回流位点以解决硝酸盐、DO残余干扰释磷。

JHB 工艺中的氮素的脱除主要发生在污泥反硝化区和缺氧区,且两者的脱除量相当,污泥反硝化区的设置改变了氮素在各功能区的分配比例,使厌氧区能够更好地专注于释磷。

JHB 工艺流程与倒置A2 /O 工艺相同,对于低C/N 进水而言,JHB 工艺污泥反硝化区的设置可能会引起后续各功能区的碳源不足,为此也有必要采用分点进水方式。

与倒置A2 /O 工艺不同,UCT 工艺是在不改变传统A2 /O 工艺各功能区空间位置的情况下,污泥先回流至缺氧区,使其经历反硝化脱氮后,再通过缺氧区的混合液回流至厌氧区,避免了回流污泥中硝酸盐、DO 对厌氧释磷的干扰。

UCT 工艺流程在进水C/N 适中的情况下,缺氧区的反硝化作用可使回流至厌氧区的混合液中硝酸盐的含量接近于0;而当进水C/N 较低时,UCT 工艺中的缺氧区可能无法实现氮的完全脱除,仍有部分硝酸盐进入厌氧区,因此又产生了改良UCT 工艺(MUCT)。

与UCT 工艺相比,MUCT 将传统A2 /O 工艺中的缺氧区分隔为2 个独立区域,前缺氧区接受来自二沉池的回流污泥,后缺氧区接受好氧区的硝化液,从而使外回流污泥的反硝化与内回流硝化液的反硝化完全分离,进一步减少了硝酸盐对厌氧释磷的影响。

以MUCT工艺为主体工艺的流程图无论UCT 还是MUCT,回流系统的改变强化了厌氧、缺氧的交替环境,使其与JHB 一样,缺氧区容易富集反硝化PAOs,实现同步脱氮除磷。

03 兼顾SRT 矛盾及“碳源竞争”工艺1、新型双污泥脱氮除磷工艺新型双污泥脱氮除磷工艺(PASF)工艺也可谓是传统A2/O 与曝气生物滤池(BAF)的组合工艺,是以分相培养为基础的双泥系统,能更好地满足各功能微生物对环境、营养物质及生存空间的最佳需求。

在工艺设计及运行过程中,通过缩短前端A2 /O 工艺好氧区的HRT,将硝化过程从中分离而顺序“嫁接”于二沉池后端的BAF。

对于PAOs 的厌氧释磷而言,因前端的污泥单元不承担硝化功能,在理想条件下外回流污泥中不含有硝酸盐,为PAOs 释磷创造了良好的“压抑”环境,使其优先利用原水中的VFAs 类物质合成PHAs 并释放磷;再者,也因长SRT 硝化菌以生物膜形式固着生长在填料表面而短SRT 的PAOs 和反硝化菌呈悬浮态生长在前端的污泥单元,实现了硝化菌与反硝化菌、PAOs 等功能微生物的SRT 分离,缓解了SRT 矛盾。

决定缺氧区反硝化效果的因素主要有2个:进入缺氧区的优质碳源(VFAs 和PHAs)含量及来自BAF 的内回流硝化液中的硝酸盐含量。

当进水C/N 较高时,硝酸盐成为反硝化的限制因子,随着内回流比的增大缺氧区异养反硝化效果也相应提高,但升高幅度却呈递减趋势;而当进水C/N 较低时,因碳源成为反硝化的限制因子,根据异养反硝化菌和反硝化PAOs 对电子受体的竞争机制,适当提高内回流硝酸盐负荷的方式刺激反硝化聚磷菌(DPAOs)的优势生长,使其以硝酸盐为电子受体,并以PHAs 为电子供体进行同步反硝化脱氮除磷,实现“一碳两用”,同时可节省系统的能耗,减少污泥产量。

相关文档
最新文档