初中数学竞赛指导:二次根式问题分类解析
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.计算:=.【答案】【解析】=2﹣=.【考点】二次根式的加减法.2.下列实数是无理数的是()A.B.C.D.【答案】A.【解析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是无理数,选项正确;B、C、D、都是整数,是有理数,选项错误. 故选A.【考点】无理数.3.若式子有意义,则实数x的取值范围是【答案】x≥1.【解析】根据二次根式的性质可以得到x-1是非负数,由此即可求解.试题解析:依题意得x-1≥0,∴x≥1.【考点】二次根式有意义的条件.4.方程的解为 .【答案】x=1【解析】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.【考点】无理方程.5.函数y中,自变量x的取值范围是【答案】x≥.【解析】根据二次根式的意义,2x﹣1≥0,解得x≥.故答案是x≥.【考点】函数自变量的取值范围.6.计算:-12003+()-2-|3-|+3tan60°。
【答案】6【解析】首先计算乘方,化简二次根式,去掉绝对值符号,然后进行乘法,加减即可.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的化简,正确记忆特殊角的三角函数值.解:原式=﹣1+4﹣3+3+3×,=﹣1+4+3,=6.7.计算:·-=________.【答案】2【解析】原式=-=3-=2.8.使二次根式有意义的x的取值范围是 .【答案】x≤2.【解析】根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.【考点】二次根式的性质.9.与的大小关系是()A.>B.<C.=D.不能比较【答案】A.【解析】∵,∴,∴.故选A.【考点】实数大小比较.10.计算:.【答案】.【解析】先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.试题解析:==.【考点】二次根式的化简.11.【答案】.【解析】根据分母有理化、二次根式、非零数的零次幂的意义进行计算即可得出答案.试题解析:考点: 实数的混合运算.12.计算: .【答案】.【解析】把括号展开即可求值.试题解析:故答案为:.考点: 二次根式的运算.13.下列计算中,正确的是()A.B.C.D.【答案】D.【解析】A.已经是最简的,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确.故选D.【考点】二次根式化简.14.实数范围内有意义,则x的取值范围是()A.x>1B.x≥l C.x<1D.x≤1【答案】B.【解析】根据根式有意义的条件,根号下面的数或者式子要大于等于0,即解得:x≥l.【考点】根式有意义的条件.15.计算:【答案】.【解析】根据二次根式的混合运算顺序和运算法则计算即可.试题解析:【考点】二次根式的混合运算.16.是整数,则正整数n的最小值是()A.4B.5C.6D.7【答案】C.【解析】∵,∴当时,,∴原式=,∴n的最小值为6.故选C.考点: 二次根式的化简.17.实数4的平方根是.【答案】±2.【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根:∵(±2)2=4,∴16的平方根是±2.【考点】平方根.18.要使式子在实数范围内有意义,字母a的取值必须满足()A.a≥2B.a≤2C.a≠2D.a≠0【答案】A【解析】使式子在实数范围内有意义,必须有a-2≥0,解得a≥2,故选A【考点】二次根式成立的条件.19.下列运算正确的是()A.B.C.D.【答案】D.【解析】A.和不是同类二次根式,不能合并,此选项错误;B.3和不是同类二次根式,不能合并,此选项错误;C.,此选项错误;D.,此选项正确.故选D.【考点】二次根式的混合运算.20.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.21.下列运算正确的是()A.B.C.D.【答案】D【解析】二次根式的性质:当时,,当时,.A、,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算22.要使式子有意义,则x的取值范围是 .【答案】【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
二次根式—2024全国初中数学重点高中自招竞赛试题精选精编
二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.【答案】10【分析】本题考查二次根式的运算,将式子进行平方,运用完全平方公式展开后化简,即可解答.【详解】∵4+15+4-152=4+152+24+15⋅4-15+4-152=4+15+216-15+4-15=8+2=10,又4+15>0,4-15>0∴4+15+4-15=10.故答案为:10.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.【答案】2【分析】本题考查二次根式有意义的条件和配方法,掌握被开方数为非负数和配方法是解题关键.先确定x的取值范围,然后利用配方法分析其最值.【详解】解:由题意可得x-2≥04-x≥0,解得2≤x≤4,令y=x-2+4-x y≥0,则y2=x-2+4-x2=x-2+2x-24-x+4-x=2+2-x2+6x-8=2+2-x-32+1∵0≤-x-32+1≤1∴y2的最大值为4,∴y的最大值为2,即x-2+4-x的最大值为2.故答案为:2.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.【答案】1【分析】本题考查了二次根式的意义,幂的运算,求代数式的值,正确理解二次根式的意义是解答本题的关键.先根据二次根式的意义列出不等式组并求解,得到a=2,再代入方程求出b的值,从而得到x@y=2x -y,依此即可求得答案.【详解】根据题意得a-2≥08-4a≥0 ,∴a≥2 a≤2 ,∴a=2,将a=2代入a-2-8-4a+a b=12得0-0+2b=12,解得b=-1,∴x@y=2x-y,∴2@3=2×2-3=1.故答案为:1.4(2024·全国·八年级竞赛)计算:2+520172-52017=.【答案】-1【分析】本题主要考查了分式混合运算,平方差公式和积的乘方运算,解题的关键是熟练掌握运算法则,准确计算.根据相关的运算法则进行计算即可.【详解】解:2+520172-52017=2+52-52017=4-52017=-12017=-1.故答案为:-1.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.【答案】8【分析】本题考查了绝对值不等式的解法,根据题设借助绝对值的几何意义得x+4+x-2有最小值为6,又由x-1≥0得出当x=1时,x+4+x-2+x-1的最小值为6,然后由不等式恒成立即可求解.【详解】解:x+4+x-1≥a-x-2-2,∴x+4+x-2+x-1≥a-2当-4≤x≤2时,x+4+x-2有最小值为6,∵x-1≥0,∴当x=1时,x+4+x-2+x-1的最小值为6,∴6≥a-2,∴解得a≤8,∴a的最大值为8,故答案为:8.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.【答案】12【分析】本题考查了二次根式的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,解题的关键是掌握运算法则.【详解】解:原式=23×13×33+53+3×33-43-26-3×632=23×33-6=12.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.【答案】2010【分析】本题考查整式的混合运算、二次根式的性质,设参数计算是解答的关键.设a=2009,利用整式的混合运算法则和二次根式的性质是解答的关键.【详解】解:记a=2009,则原式=a a+1+1-aa+3a+2=a a+3+1-aa+2a+1=a2+3a+1-aa2+3a+2=a2+3a2+2a2+3a+1-a=a2+3a+12-a=a2+3a+1-a=a+12=a+1=2010,故答案为:2010.8(2024·全国·八年级竞赛)化简:-(x+1)2=.【答案】0【分析】本题考查了二次根式有意义的条件,由被开方数为非负数得到-x+12≤0,可确2≥0,即x+1定x+12=0,进而求解,掌握二次根式有意义的条件是解题的关键.【详解】解:由题意可得,-(x+1)2≥0,∴x+12≤0∴(x+1)2=0,∴-x+12=0=0,故答案为:0.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.【答案】2013【分析】本题考查了二次根式有意义的条件,二次根式的性质,熟练掌握各知识点是解答本题的关键.先根据二次根式有意义的条件求出x的取值范围,再根据二次根式的性质化简得x-2013=2012,然后两边平方即可求解.【详解】解:∵x-2013≥0,∴x≥2013,∴x>2012.∵20122-4024x+x2+x-2013=x,∴2012-x2+x-2013=x,∴2012-x+x-2013=x,∴x-2012+x-2013=x,∴x-2013=2012,即x-2013=20122,故x-20122=2013.故答案为:2013.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.【答案】2009【分析】本题考查了完全平方公式和二次根式化简,熟练巧用完全平方公式是解本题的关键;首先化简为完全平方公式形式,然后根据二次根式开方即可解答.【详解】解:1+20092+20092 20102-12010=1+2010-12+20092 20102-12010=1+20102-2×2010+1+2009220102-1 2010=20102-2×2010+2+200920102-12010=20102-2×2010-1+200920102-12010=20102-2×2009+200920102-12010=2010-200920102-12010=2010-20092010-1 2010=2009.故答案为:2009.11(2024·全国·八年级竞赛)5+26+5-26=.【答案】23【分析】本题考查二次根式的化简,熟练利用完全平方公式化简二次根式是解本题的关键.把原式化为3+22+3-22,再利用二次根式的性质化简即可.【详解】解:5+26+5-26=3+22+3-22=3+2+3-2=23,故答案为:23.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.【答案】22-3+1【分析】本题主要考查了二次根式的运算,先将二次根式化简,再根据二次根式的运算法则计算即可.【详解】原式=1-23+3+22-1+(3+22)(3-22)=22-3+(9-8)=22-3+1.故答案为:22-3+1.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.【答案】123或-123【分析】本题考查了二次根式的加减运算,掌握二次根式的运算法则是解题的关键.先把369化成最简二次根式,再把满足正整数a、b的所有值列举出来代入计算即可.【详解】解:∵369=341,正整数a、b满足等式a+b=369,∴a=41,b=241,即a=41,b=164,或a=241,b=41,即a=164,b=41,∴a-b=41-164=-123或a-b=164-41=123,故答案为:123或-123.14(2024·全国·七年级竞赛)计算:1-2=.+2-3+⋅⋅⋅+2016-2017+3-4【答案】2017-1/-1+2017【分析】本题主要考查了二次根式混合运算,解题的关键是根据绝对值的意义,去掉绝对值,然后根据二次根式加减运算法则进行计算即可.【详解】解:1-2+⋯+2016-2017+3-4+2-3=2-1+3-2+4-3+⋯+2017-2016=2017-1.故答案为:2017-1.15(2024·全国·九年级竞赛)计算:9+18-27=.【答案】3+32-33【分析】本题考查二次根式的加减运算,理解二次根式的性质,准确化简各数是解题关键.直接根据二次根式的性质化简即可.【详解】解:9+18-27=3+32-33故答案为:3+32-33.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.【答案】2079【分析】本题考查二次根式有意义的条件、绝对值的化简、算术平方根,熟知二次根式有意义的条件是解答的关键.先求得a≥2015,则a-8=a-8,进而得到a-2015=8,然后求解即可.【详解】解:依题意得a-2015≥0,则a≥2015,∴a-8=a-8,∴原式化为a-8+a-2015=a,即a-2015=8,得a-2015=64,∴a=2079.故答案为:2079.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.【答案】1-2x【分析】先判断出x-3<0,x+2>0,再根据二次根式的性质化简原式即可.此题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.【详解】解:∵-2<x<3,∴x-3<0,x+2>0,∴x2-6x+9-x2+4x+4=x-32-x+22=x-3-x+2=3-x-x-2=1-2x故答案为:1-2x二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3= (n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.4100【答案】A【详解】A1=[(n+1)+2][(n+1)-2]+4=(n+1)2-22+4=(n+1)2=n+1,A2=[(n+3)+2][(n+3)-2]+4=(n+3)2-22+4=(n+3)2=n+3,A3=[(n+5)+2][(n+5)-2]+4=(n+5)2-22+4=(n+5)2=n+5,同理A4=n+7,A5=n+9,⋯,A100=n+2×100-1=n+199=2005⇒n=2005-199=1806.故选:A.19(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-1【答案】C【分析】先化简4-23,再代入方程x2+ax+b=0并整理,根据题意列出二元一次方程组并求解求得a 和b的值,再代入计算即可.【详解】解:4-23=32-23+1==3-12=3-1.∵方程x2+ax+b=0的一根是4-23,∴4-232+4-23a+b=0.∴3-12+3-1a+b=0.∴a-23+4-a+b=0.∵a、b是整数,∴a-2=0,4-a+b=0.解得a=2, b=-2.∴a2+b2ab =22+-222×-2=-2.故选:C.【点睛】本题考查二次根式的化简,一元二次方程的解,二元一次方程组的应用,正确构造二元一次方程组是解题关键.20(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥2【答案】A【分析】此题主要考查了二次根式有意义的条件,根据二次根式没有意义的条件可得x-2<0,再解不等式即可,关键是掌握二次根式中的被开方数是非负数.【详解】解:二次根式x -2在实数范围内没有意义,∴x -2<0,解得:x <2故选:AD .21(2024·全国·八年级竞赛)已知13-7的整数部分是m ,小数部分是n ,则m m +7n +mn 的值为()A.10B.7C.6D.4【答案】A【分析】本题考查了无理数的估算,分母有理化,代数式求值,先根据无理数的估算求出m ,n 的值,再代入进行求解即可.【详解】解:13-7=3+73+7 3-7=3+72,∵4<7<9,∴2<7<3,∴2.5<3+72<3,∴m =2,n =3+72-2,∴m m +7n +mn =22+7×3+72-2+2×3+72-2 =10,故选:A .22(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则ab的值为()A.18B.8C.2D.92【答案】B【分析】本题考查了根与系数的关系.先整理成一般式,利用根与系数的关系分另求得b 和a 的值,再代入求解即可.【详解】解:方程a (x -b )2=7整理得ax 2-2abx +ab 2-7=0,∵1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,∴1+72+1-72=1=--2ab a =2b ,∴b =12,1+72⋅1-72=-32=ab 2-7a ,∴-32=12 2-7a ,∴a =4,∴a b=412=8.故选:B .23(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5B.0C.3D.75【答案】C【分析】此题考查了无理数与有理数的联系,根据二次根式的定义进行解答,解题的关键是正确理解75m 什么情况下为正整数.【详解】解:∵75m =52×3m ,∴3m 是一个平方数,∴正整数m 最小是3,故选:C .24(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则bb a+aa b的值为()A.23 B.-23C.-2D.-13【答案】B【分析】由题意可得a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,根据根与系数的关系可得a +1+b +1=-3,a +1 b +1 =-3,整理可得a +b =-5,ab =1,即得a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,然后把所求的式子变形后整体代入即可求解.【详解】解:∵a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,∴a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,∴a +1+b +1=-3,a +1 b +1 =-3,整理,得a +b =-5,ab =1,∴a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,∴b b a +aa b =-b a ab -a b ab =-b a -a b =-a 2+b 2ab=-23;故选:B .【点睛】本题考查了一元二次方程根与系数的关系,二次根式的化简求值,由题意得出a +b =-5,ab =1,是解题的关键.三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.【答案】4024【分析】本题考查了非负数的性质以及二次根式有意义的条件,得到x +y =2012是关键.根据二次根式的性质:被开方数是非负数求得2x +3y +4x +5y -m =0,然后根据非负数的性质得到关于x 和y 的方程组,然后结合x +y =2012即可求得m 的值.【详解】解:由x -2012+y ≥02012-x -y ≥0 可得x +y =2012,∴x +y =20122x +3y =04x +5y -m =0∴m =4x +5y =2x +y +2x +3y =402426(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .【答案】(1)32;(2)52.【分析】此题考查了等腰三角形的基本性质,学会在等腰三角形中构造直角三角形从而应用勾股定理来求解.(1)知道等腰三角形、底边利用等腰三角形高的特殊性质可构成直角三角形,再应用勾股定理求解h 值;(2)知道等腰三角底边和高,同理在等腰三角形中构造直角三角形,利用勾股定理来求a 值.【详解】(1)解:在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴6+3 2=146+43 2+h 2,∴36+123+3=1436+483+48 +h 2,∴39+123=9+123+12+h 2,∴h 2=18,∴h =18=32.(2)解:同理在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴a 2=12×46+22+26-1 2∴a 2=26+1 2+26-1 2∴a 2=50,∴a =52.27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.【答案】2x -3,22-3【分析】本题考查平方差公式、完全平方公式及多项式乘多项式、整式的加减,熟练掌握并灵活运用它们是本题的关键.分别利用完全平方和、平方差公式、多项式乘多项式的法则、整式加减的运算法则计算即可.【详解】解:原式=4x 2-4x +1-9x 2+4+5x 2+6x -8,=2x -3当x =2时,原式=2x -3=22-3.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.【答案】12【分析】先根据二次根式有意义的条件得出x =5,进而得出y =4,再化简求值,代入即可得出答案.【详解】解:由3x -15≥0,15-3x ≥0,∴x =5,∴y =4,∴2x +y 2-2x +y 2x -y ÷2y -12y =2x +y 2x +y -2x +y ÷2y -12y=2x+y-12y=2x+12y=12.29(2024·全国·八年级竞赛)已知a=4-15,求:(1)a-1a;(2)a5-6a4-16a3+7a2+23a-42008.【答案】(1)-6(2)1【分析】本题考查完全平方公式,无理数的估算:(1)先根据完全平方公式变形得出a+1a =8,求出a-1a2=6,再估算出0<4-15<1,即0<a<1,最后求出答案即可;(2)将式子变形,再将a2-8a+1=0代入,进而可得出答案.【详解】(1)解:a=4-15,∴a-42=15,∴a2-8a+1=0.∴a+1a=8,∴a-1a2=a+1a-2=8-2=6,∵3<15<4,∴-4<-15<-3,∴0<4-15<1,即0<a<1,∴a-1a<0,∴a-1a=-6.(2)解:∵a5-6a4-16a3+7a2+23a-4=a3a2-8a+1+2a2a2-8a+1-a a2-8a+1 -3a2-8a+1-1=0+0-0-0-1=-1,∴a5-6a4-16a3+7a2+23a-42008=-12008=1.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?【答案】(1)3<c<7(2)10<l<14(3)12【分析】本题考查二次根式的非负性,等腰三角形的定义,三角形的三边关系:(1)先根据非负性得出∴a=2,b=5,再根据三角形第三边的取值范围即可得出答案;(2)根据周长三边之和,即可得出答案;(3)当c=2时,可知不能构成三角形,当c=5时,求出三边之和即可.【详解】(1)解:a-2+(b-5)2=0,∴a=2,b=5,∵b-a<c<a+b,∴3<c<7.(2)l=a+b+c=7+c,∴10<l<14.(3)c=2时,三边长(2,2,5)不能构成三角形,舍去.∴c=5,l=2+5+5=12.11。
专题01 二次根式的性质与化简(题型与解法)(解析版)
专题01 二次根式的性质与化简二次根式的性质与化简问题,是第16章二次根式这一章重难点内容,极易出现关于二次根式的计算或者含参数计算的易错题,解决此类题型有何方法?来看本节内容在二次根式的化简与求值问题中,关键是化简,化简过程中一定要结合已知条件。
解决此类问题需要关注以下三个步骤:步骤一:分析要化简的代数式所需的关键要素,如被开方式能否配方、被开方式的符号能否确定等;步骤二:分析已知条件经过变形以后,是否能提供步骤一中所需的条件;步骤三:利用二次根式的性质进行化简,再代入求值.题型1:利用二次根式性质的化简 (2)题型2:二次根式含参数问题 (5)题型3:二次根式的“配完全平方”的化简 (6)题型4:二次根式的运用...................................................................................................................12题型1:利用二次根式性质的化简1.设x 、y 为实数,且4y =+ )A .3B .3±C .9D .9±【解答】解:根据题意可得:5050x x -³ìí-³î,解得:5x =当5x =时, 4.y =3==故选A.【点睛】本题考查了算术平方根有意义的条件,解题的关键是掌握被开方数是非负数.2.若a ,b 为实数,且4b =,则a b +的值为( )A .13-B .13C .5-D .5【解答】解:由题意,得90a -³,90a -³,解得9a =,当=9a 时,4044b ==+=,∴9413a b +=+=.故选:B .3.设x 、y 为实数,且2y =+,则x y -的值是( )A .1B .5C .2D .0【解答】解:根据题意得:3030x x -³ìí-³î,解得:3x =,则2y =.∴321x y -=-=.故选:A .4.已知实数aA .23a -B .1-C .1D .32a-【解答】解:由图知:12a <<,10a \->,20a -<,原式2[1123]2a a a a a =--=---+--=()().故选:A5.实数a ,b 在数轴上位置如图所示,则化简代数式:a =_____.【解答】解:由数轴可得:0<a ,b a >,<0a b \-a \-()a b a =--+b =,故答案为:b .6.实数a 、b 的结果是___________.【解答】解:根据图形可得,2112a b -<<-<<,,∴10a +<,10b ->,0a b -<()()()11a b a b -+-+=+-11a b a b =--+-+-2=-.7.如果2y =,那么y x 的值是______.【解答】解:∵2y =,∴150,150x x -³-³,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.8.实数a 、b ______.【解答】解:由数轴可得:a<0,0b >,a b >,∴0a b +<,+()a b a b =---+a b a b =----22a b =--.故答案为:22a b--【点睛】本题考查了数轴、绝对值的意义、二次根式的性质和化简,正确得出a ,b 的取值范围是解本题的关键.9.已知x ,y 是实数,且4y =,则x y -=______.【解答】解:∵4y =,∴30x -³,30x -³,∴3x =,将3x =代入4y =,得:4y =-,∴()34347x y -=--=+=.故答案为:7.10.已知23x <<,则化简22-=______.【解答】解:∵23x <<,∴20,40,50x x x -<-<->,∴22-=245x x x -+-+-245x x x =--++-7x =-,故答案为:7x -.【点睛】本题考查了二次根式的性质化简,化简绝对值,整式的加减,掌握二次根式的性质是解题的关键.11.实数a ,b ,c 在数轴上的对应点位置如图:(1)用“<”连接0,a ,b ,c 四个数;(2)化简:①||||a c c b -+-;②a .【解答】(1)解:由图可知:0c a b <<<.(2)解:①∵0c a b <<<,∴0,0a c c b ->-<,∴()()||||2a c c b a c c b a c c b a b c -+-=---=--+=+-;②∵0c a b <<<,且a b <,∴0,0a b c a +>-<,∴()()a a b c a a b c a b c =+--=++-=+.【点睛】本题考查有理数大小比较、数轴、绝对值,二次根式的化简,合并同类项,解答本题的关键是明确数轴的特点,利用数轴的知识解答.12.设a ,b ,c 为ABC V 【解答】解:根据a ,b ,c 为ABC V 的三边,得到0a b c ++>,0a b c --<,0b a c --<,0c b a --<,则原式a b c a b c b a c c b a =+++--+-----a b c b c a a c b c b a =++++-++-+--4c =.【点睛】此题考查了二次根式的性质与化简,以及三角形的三边关系,根据三角形三边的关系确定出各式的符号是解本题的关键.题型2:二次根式含参数问题1.若a<0 )A .B .-C .D .-【解答】解:Q a<0,=-D .2.实数a ,b 的值是( )A .ab -B .abC .ab ±D .a b【解答】解:由题意得00b a <>,()a b ab =-=-g ,故选:A .【点睛】本题考查二次根式的化简,解题的关键是根据数轴判断出a ,b 正负.3.已知0xy >,化简二次根式-A B C .D .【解答】解:由二次根式有意义的条件可得:20x y³,∵0xy >,∴0x >,0y >,∴y y -=-=-=故选:C.【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的(0)(0)a a a a a ³ì==í-<î.4.化简(1a -的结果是( )A C .D 【解答】解:∵(1a -∴10a ->,则1a >,∴10a -<∴(1a -==B .【点睛】此题考查的是二次根式的化简,掌握二次根式有意义的条件、二次根式的除法公式和分母有理化是解题关键.5.已知a b < )A .-B .-C .D .【解答】解:由题意,得:30a b -≥,∴30a b £,∵a b <,∴0a £==-A .【点睛】本题考查二次根式的化简.熟练掌握二次根式的性质,是解题的关键.6.若0x <A .B .-C .D .-【解答】解:0x <Q ,==-D .【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.7.把 ___.【解答】解:==故答案为:.【点睛】本题主要考查了二次根式的化简,熟知二次根式的性质是解题的关键.8.ABC V 的三边长分别为1、k 、3,则化简7-3=﹣_____.【解答】解:∵ABC V 的三边长分别为1、k 、3,∴24k <<,∴23>0k -,290k -<,∴73-()723k =--()79223k k =---+ 10292k k =--+ 1=.故答案为:1.【点睛】本题考查的是三角形的三边关系的应用,绝对值的化简,二次根式的化简,掌握“二次根式的化简方法”是解本题的关键.题型3:二次根式的“配完全平方”的化简1小红对式子进行计算得:第11==;第2==根据小红的观察和计算,她得到以下几个结论:①第8;②对第n 个式子进行计算的结果1001;④将第n 个式子记为n a ,令1n n b a =,且229199575n n n n a a b b ++=,则正整数15n =.小红得到的结论中正确的有( )A .1个B .2个C【解答】由题可知,第n ===,故②正确;那么第83=-3===-,故①正确;第100则前100个式子的和为:11-+=-……,故③正确;令1,n n a x b x ==,则229199575n n n n a a b b ++=可化为22119199575x x x x +×+=2219(556x x +=因为n n a b ====所以2219()556x x +=可化为: 229556éù+=êúëû若15n =,则229556éù+¹êúëû,故④错误.综上所述,①②③正确.故选:C【点睛】此题考查二次根式的规律,解题关键是将此数式的通式直接写出来,同时化简时需要分母有理化.2个问题,并得到一些结论,其中正确的有_________________.①a +a 的变化而变化,当2a =时,此代数式有最小值2;②在2a <的条件下化简a +2;③当a +a 的取值范围是3a £;④=,则字母a 必须满足3a ³.【解答】解:∵a +a =2a a =+-∴代数式有最小值随随a 的变化而变化,当2a <时, 222a a a a +-=+-=,当2a >时,2222a a a +-=->,当2a =时,22a a +-=,∴2a ³,故①和②正确,∵3a a a =+-,当3a £时,333a a a a +-=+-=,当3a <时,3233a a a +-=->,故③正确;∵()230a -³,故无论a =故④错误,故答案为:①②③.3.已知2022a =,则22022a -=__________.【解答】解:∵2022a =有意义,∴20230a -³,即2023a ³,∴2022a a -+=,2022=,∴220232022a -=,∴220222023a -=,故答案为:2023.【点睛】本题主要考查了二次根式有意义的条件,代数式求值,正确得到2023a ³是解题的关键.4.化简:21)-+的结果是___.【解答】解:21)+51=+-62)=-64=-2=故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.5.设a ,b 是整数,方程20x ax b ++=a b +=___________.【解答】3===,∴把3代入方程有((2330a b ++=,整理得(11360a b a ++-+=,∵a ,b 是整数,∴113060a b a ++=ìí+=î,解得67a b =-ìí=î,∴671a b +=-+=.故答案为:1【点睛】本题考查的是一元二次方程的解,把方程的解代入方程,由a ,b 是整数就可以求出a ,b 的值.64+=,则1a a-的值是________【解答】4=,∴216=,∴1216a a ++=∴114a a +=,∴2221114144192a a a a a a æöæö-=+-×=-=ç÷ç÷èøèø,∴1a a-=±故答案为:±.【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键.7.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.某校数学兴趣小组,在学习完勾股定理和实数后,进行了如下的问题探索与分析【提出问题】已知01x <<的线段,将代数求和转化为线段求和问题.【解决问题】(1)如图,我们可以构造边长为1的正方形ABCD ,P 为BC 边上的动点.设BP x =,则1PC x =-.则=______+______的线段和;(2)在(1)的条件下,已知01x <<(3)【解答】(1AP DP =+的线段和;(2)作点D 关于BC 的对称点D ¢,连接AD ¢,则112DD ¢=+=,则AP PD +的最小值即为AD ¢的长,在Rt ADD ¢△中,由勾股定理得,AD ¢=,(3=,如图,3AB =,1CD =,6BC =,AB BC ^,CD BC ^,设BE x =,AE DE =-,\当点A 、D 、E 三点共线时,AE ED -的最大值为AD ,延长AD ,BC 交于E ,作DH AB ^于H ,可得2AH AB BH AB CD =-=-=,6DH BC ==,由勾股定理得,AD ===.【点睛】本题是四边形综合题,主要考查了轴对称-最短路线问题,勾股定理等知识,解题的关键是利用数形结合思想,学会利用转化思想解决问题.8.阅读下面的材料,并解决问题.1=-;=;¼(1)= .(2)观察上述规律并猜想:当n = .(用含n 的式子表示,不用说明理由)(3)请利用(2)的结论计算:①1)´= ;②1)´.【解答】(12=(2==1)=+11)=+1)=-4=;②1)´11)=+´1)1)=´2020=.【点睛】本题考查的是二次根式的化简求值,掌握二次根式的性质、平方差公式、分母有理化是解题的关键.题型4:二次根式的运用1.已知x y ==+ )A B .34C 1D【解答】解:∵x y ==∴x y x y +==-==-,===C .【点睛】本题考查二次根式的化简求值.熟练掌握二次根式的运算法则,利用整体思想进行求解,是解题的关键.2.若()210x y -+=A .B .C .D .【解答】解:∵()210x y -+=,()2100x y -+³³,∴()2100x y -+==,∴102100x y x y -+=ìí++=î,解得43x y =-ìí=-î,===D【点睛】此题考查了二元一次方程组的解法、算术平方根的非负性、算术平方根的求法,根据非负数的性质得到方程组是解题的关键.3.“黑白双雄,纵横江湖;双剑合壁,天下无敌”.其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.如223=-=,它们的积是有理数,我们说这两个二次根式互为有理化因式,在进行二次根式计算时利用有理化因式可以去掉根号,令nA=n为非负数),则()()22m nA A A A m n+-==-=-;1nmA A==+.则下列选项正确的有()个①若a是7A的小数部分,则3a2;②若54544b cA A A A-=-+(其中b c、为有理数),则15bc=-;2=6=④12233420222023111112324320232022A A A A A AA A++++=++++LA.4B.3C.2D.1【解答】解:由题意得7A=∵479<<,∴23<<,∴2a=-,∴32a====+,故①错误;∵54544b cAA A A-=+-+4=+,4=4=+,)()24b c b c-++=+,∵b c、为有理数,∴82b cb c-=ìí+=î,∴53bc=ìí=-î,∴15bc=-,故②正确;2=,∴2=+∴()1022n nA A+-=-,∴1022n n A A ++=-,6=,故③正确;====∴1223342022202311112324320232022A A A A A A A A ++++++++L=-+L =故选B .【点睛】本题主要考查了分母有理化,二次根式的混合计算,平方差公式的应用,无理数的估算等等,灵活运用所学知识是解题的关键.4.对于有理数,a b ,定义{}min ,a b 的含义为:当a b <时,{}min ,a b a =.例如:{}min 1,22-=-.已知}min a a =,}minb =a 和b}min a 的值为________.【解答】解:∵}mina a =,}min b ,∴a b <<,∵a b <<,且a 和b 为两个连续正整数,45<<,∴45a b ==,,}min a ===5:若一个三角形的三边长分别为a ,b ,c ,那么该三角形的面积为S =ABC V三边长分别为2,3ABC V 的面积是_________.【解答】解:∵ABC V又∵23+>c =,∴S ===3=.故答案为:3.【点睛】本题考查的是三角形的三边关系、有理数的乘方、二次根式性质、算术平方根,掌握二次根式的性质是解题的关键.6,同学们马上举手发言,小明站起来说:“老师,这道=1”而老师却说小明错了,为什么呢?a 成立,必须具备条件0a ³,而1-0.正确的思路是先判断正负,然后开方:1=-,你看明白了吗?请你做一做下面的习题:(1)= .2.(3)已知a,b ,c.【解答】(10>=;(221=+…1=-;(3)∵a ,b ,c 是三角形的三边,∴0a b c +->,0b a c --<,()2a b c a c b a b c a c b a =+-++-=+-++-=.【点睛】本题考查了二次根式的加减,利用二次根式的性质化简是解题关键.7.【探究函数1y x x=+的图象与性质】(1)函数1y x x=+的自变量x 的取值范围是 ;(2)下列四个函数图象中,函数1y x x =+的图象大致是 ;(3)对于函数1y x x=+,求当0x >时,y 的取值范围.请将下列的求解过程补充完整.解:∵0x >,∴1y x x=+22=+2=+______.∵20³,∴y ³____.【拓展说明】【解答】(1)解:∵1y x x =+,∴0x ¹,故答案为:0x ¹;(2)解:∵函数1y x x=+,∴当0x >时,0y >,当0x <时,0y <,故选:C .(3)解:∵0x >,∴1y x x=+22=+22=+.∵20³,∴2y ³.故答案为:2,2;(4)解:∵0x >,∴25445x x y x x x-+==+-2241=+--21=-,∵20³,∴1y ³-.【点睛】本题考查函数的图象与性质、完全平方公式和二次根式的灵活运用、平方式的非负性、理解题意,会根据函数解析式判断函数的性质和图象,会利用类比的方法解决问题是解答的关键.8.阅读下面问题:1==-;=;2==-.(1)(2)n 为正整数);(3)+【解答】(1;(2==(3)解:原式1=L1=-101=-9=.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.9.我们将、称为一对“对偶式”,因为22a b =-=-,所以构造“对偶式”再将其相乘可以有效的将和中的“”去掉,因此二次根式除法可以这样解:==3==+分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,解答下列问题:(1)”、 “<”或“=”填空);(2)已知x =y =的值;(3)【解答】(1====>,2>23+>>(2)解:22()x y x y x y xy xy x y --=++,∵x y -=3x y +==,1xy ==∴原式=(3=1=-+--+…+-1=-=【点睛】本题考查二次根式的化简求值,同时考查了完全平方公式的变形应用以及裂项法的应用,计算量较大.10.知识回顾我们在学习《二次根式》这一章时,对二次根式有意义的条件和性质进行了探索,得到了如下结论:I 0a ³.II .二次根式的性质:①()20a a =³||a =.类比推广根据探索二次根式相关知识过程中获得的经验,解决下面的问题.(1)根式在实数范围内有意义的条件是,根式在实数范围内有意义的条件是 ;(2)写出n 3n ³,n 是整数)在实数范围内有意义的条件和性质.【解答】(1)解:2014Q 为偶数,\根式0a ³;2015Q 为奇数,\根式a 为任意实数,故答案为:0a ³;a 为任意实数;(23n ³,n 是整数)有意义的条件:当n 为偶数时,0a ³;当n 为奇数时,a 为任意实数.3n ³,n 是整数)的性质:当n 为偶数时,①()0n a a =³当n 为奇数时,①n a =a =.【点睛】本题考查了数字类规律探究,解题关键是熟练掌握二次根式和乘方的相关知识.11.在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a ,b ,c 满足2222a b c +=,那我们称这个三角形为“类勾股三角形”,例如ABCV2,因为22222+=´,所以ABC V 是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法___________(填“正确”或“错误”)(2)已知ABC V 的其中两边长分别为1ABC V 为“类勾股三角形”,则另一边长为___________;(3)如果Rt ABC △是“类勾股三角形”,它的三边长分别为x ,y ,z (x ,y 为直角边长且x y <,z 为斜边长),用只含有x 的式子表示其周长和面积.【解答】(1)解:设等边三角形三边长分别是a ,b ,c ,则a b c ==,∴2222a b c +=,∴等边三角形是“类勾股三角形”,∴小璐的说法正确,故答案为:正确;(2)解:设另一边长为x ,①22212x +=,解得2x =,符合题意;②22212x +=,解得x =③2221x +=,无解;故答案为:2(3)解:∵x y z <<,∴222x y z <<,∴2222y z x +>,2222x y z +<,∴2222x z y +=,∵222x y z +=,∴2223y z =,∴2213x z =,∴z =,y =,∴周长为:(1x ,面积为:212xy x =.【点睛】本题考查勾股定理,理解题目中的新定义及掌握勾股定理是解题关键.12.老师就式子39´+-W d ,请同学们自己出问题并解答.(1)小磊的问题:若W 代表2(2)-,d 代表3(3)-,计算该式的值.(2)小敏的问题:若W d a 的值.(3)小捷的问题:若394´+-<W d ,且W 和d 所代表的数是互为相反数,直接写出W 所代表的数的取值范围.【解答】(1)解:由题意,得()()233293´-+--34927=´++12927=+-48=;(2)解:由题意得9+-∵计算的结果是有理数,∴=∴45a =;(3)解:设口所代表的有理数为y ,则〇所代表的有理数为y -,则39()4y y +--<,解得54y <-,\口所代表的数的取值范围为54<-□.13==,.请回答下列问题:(1)观察上面的解答过程,请写出 = ;(2)请你用含n (n 为正整数)的关系式表示上述各式子的变形规律;(3)利用上面的解法,请化简:......====.(2)解:观察前面例子的过程和结果得:=(3............=+......=1=-+110=-+9=.14.已知实数x 、y 满足8y =.(1)求x 与y 的值;(2)符号*表示一种新的运算,规定a b *x y *的值.【解答】(1)解:Q 实数x 、y 满足8y =+,5050x x -³ì\í-³î5x \=,8y \=;(2)解:根据新的运算,可得:x y *=====【点睛】本题考查了二次根式成立的条件,利用二次根式的性质化简及运算,熟练掌握和运用二次根式成立的条件是解决本题的关键.15.先阅读下面的材料,再解答下列问题.∵a b =-, ∴a b -=.例如:1=Q ,=这种变形叫做将分母有理化.利用上述思路方法计算下列各式:(1))...1++´(2)【解答】(1))...1+´1...1=+´)))11=´20231=-2022===(()543=++=-【点睛】本题考查了二次根式的混合运算,正确的分母有理化是解题的关键.16.课本再现(1)方程()200ax bx c a ++=¹的求根公式为x =,不仅表示可由方程的系数求出方程的根,而且反映了根与系数之间的联系.即方程的两个根为1x ,2x 满足:①12b x x a+=-;②12c x x a =.(这也称作韦达定理,是由16世纪法国数学家韦达发现的).请你选择其中一个结论进行证明;知识应用(2)已知一元二次方程22310x x --=的两根分别为m 、n ,求22【解答】解:(1)∵方程()200ax bx c a ++=¹的求根公式为x =且方程的两个根为1x ,2x ,∴1b x a=-,12x x =()22244b b ac a --=22244b b ac a -+=244aca =c a=;(2)∵元二次方程22310x x --=的两根分别为m 、n ,∴3122m n mn +==-,,∴()22313224m n mn mn m n æö+=+=´-=-ç÷èø.【点睛】本题主要考查了一元二次方程根与系数的关系,公式法解一元二次方程,二次根式的乘法和加法,熟知一元二次方程根与系数的关系是解题的关键.17.阅读与计算:请阅读以下材料,并完成相应的任务.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【解答】解:第1个数:当1n =时,n n ùú-úû==1=.第2个数:当2n =时,n n ùú-úû22ùú=-ú=1=1=.【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式混合运算法则,准确计算.。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.在0.1,﹣3,和这四个实数中,无理数是()A.0.1B.﹣3C.D.【答案】C【解析】在0.1,﹣3,和这四个实数中,无理数有:【考点】无理数2.读取表格中的信息,解决问题.a=b+2c b=c+2a c=a+2b满足的n可以取得的最小整数是.【答案】7.【解析】由,,,….∵,∴.∴.∵36<2014<37,∴n最小整数是7.【考点】1.探索规律题(数字的变化类);2.二次根式化简;3.不等式的应用.3.计算sin245°+cos30°•tan60°,其结果是()A.2B.1C.D.【答案】A【解析】原式=()2+×=+=2.故选:A.【考点】1、特殊角的三角函数值;2、实数的计算4.若式子在实数范围内有意义,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥2【答案】D【解析】根据题意得:x﹣2≥0,解得:x≥2.故选D.【考点】二次根式有意义的条件5.在下列实数中,无理数是()A.2B.3.14C.D.【答案】D.【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项:A、是整数,是有理数,选项错误;B、是小数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、是无理数,选项正确析.故选D.【考点】无理数.6.二次根式在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1【答案】B.【解析】根据题意得:x-1≥0,解得:x≥1.故选B.考点: 二次根式有意义的条件.7.下列计算正确的是 ()A.-=B.=-=1C.÷(-)=-1D.=3【答案】A【解析】∵-=2-=∴A对.∵==∴B错.∵÷(-)===+1∴C错∵===3-1∴D错.选A.8.计算:·-=________.【答案】2【解析】原式=-=3-=2.9.下列各式中,正确的是 ()A.=-3B.-=-3C.=±3D.=±3【答案】B【解析】因为-=-=-3,所以选B.10. 9的算术平方根是( )A.3B.±3C.81D.±81【答案】A.【解析】9的算术平方根是.故选A.考点: 算术平方根.11.已知则.【答案】【解析】因为所以所以,故.12.下列运算正确的是()A.B.C.D.【答案】B.【解析】A.与不是同类二次根式,不能合并,故本选项错误;B.,故本选项正确;C.3与不是同类二次根式,不能合并,故本选项错误;D. ,,故本选项错误.故选B.考点: 二次根式的运算与化简.13.的值等于()A.4B.-4C.±4D.【答案】A.【解析】根据42=16,可得.故选A.【考点】算术平方根.14.的算术平方根是()A.4B.C.2D.【答案】C.【解析】根据算术平方根的定义解答即可.∵∴4的算术平方根是2.故选C.考点:算术平方根.15.观察分析下列数据,按规律填空:(第n个数).【答案】.【解析】寻找规律:可写为.【考点】探索规律题(数字的变化类).16.下列计算正确的是()A.B.C.D.【答案】D【解析】A、与不是同类二次根式,无法合并,B、,C、,均错误;D、,本选项正确.【考点】二次根式的混合运算17.下列计算,正确的是A.B.C.D.【答案】C.【解析】A、与不是同类二次根式,不能合并,故A错误;B、与不是同类二次根式,不能合并,故B错误;C、,该选项正确;D、,故本选项错误.故选C.考点: 二次根式的混合运算.18.计算【答案】.【解析】先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:考点: 二次根式的混合运算.19.计算:=.【答案】7.【解析】直接根据二次根式的性质与化简进行计算即可..故填7.【考点】二次根式的性质与化简.20.已知:a.b.c满足,求:(1)a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.【答案】(1)a=2,b=5,c=3;(2)能构成三角形,周长=.【解析】(1)几个非负数的和为零,要求每一项为零,由题,a-2=0,b-5=0,c-3=0,a=2 ,b=5,c=3;(2)能构成三角形的条件是两边之和大于第三边,由题,,而,所以能构成三角形,周长=. 试题解析:(1)由题,∴a-2=0,b-5=0,c-3=0,∴a=2,b=5,c=3;(2)∵,,∴能构成三角形,三角形的周长=.【考点】1.非负数的性质;2.三角形三边的关系.21.下列二次根式中,取值范围是的是()A.B.C.D.【答案】C.【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须;要使在实数范围内有意义,必须,因此,取值范围是的是. 故选C.【考点】二次根式和分式有意义的条件.22.若,,求.的值【答案】4【解析】本题考查的是二次根式的混合运算,同时考查了因式分解,把a2b+ab2的因式分解为ab(a-b),再代入计算即求解为4.试题解析:解:∵,∴∴【考点】1、二次根式的混合运算.2、因式分解.23.如果,那么= .【答案】-2【解析】根据题意,可得=0,∣b-2∣=0,从而得到a+1=0,a=-1,b-2=0,b=2,ab=-2.因为二次根式为非负数,一个数的绝对值为非负数,由几个非负数的和为零,要求每一项都为零,即=0,∣b-2∣=0,而零的二次根式为0,0的绝对值为0,从而得到a+1=0,b-2=0,解得a=-1,b=2,ab=-2.【考点】几个非负数的和为零,要求每一项都为零.24.若平行四边形的一边长为2,面积为,则此边上的高介于A.3与4之间B.4与5之间C.5与6之间D.6与7之间【答案】B【解析】先根据四边形的面积公式列出算式,求出高的值,再估算出无理数,即可得出答案:根据四边形的面积公式可得:此边上的高=。
初二数学《二次根式》竞赛培优精选题(含解析)
二次根式竞赛培优题(含解析)一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.39940002.计算:=()A.B.C.D.3.的结果是()A.B.C.D.4.的值是()A.B.C.1D.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为.7.化简=.8.化简.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为.10.方程的解是x=11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=.12.计算:=(其中a>0)13.的值为.14.已知:对于正整数n,有,若某个正整数k满足,则k=.15.若n为整数,且是自然数,则n=.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为.17.若u、v满足v=,则u2﹣uv+v2=.18.已知a为实数,且与都是整数,则a的值是.19.使得++=1的一组正整数(a,b,c)为:.20.计算﹣20062的结果是.21.设=.22.若,,则x6+y6的值是.23.当时,的值为.24.已知,,则k=.25.当1≤x≤2时,经化简等于.26.计算=.27.已知x=,那么+1的值是.28.化简:,得到.29.=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).二次根式竞赛培优题(含解析)参考答案与试题解析一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.3994000【分析】设1998=a,把被开方数变形后,利用多项式的乘法法则计算后,加上a2再减去a2,前三项结合提取a2,剩下的三项利用完全平方公式化简,接着三项合并后提取2a,整体再利用完全平方公式化简,从而得到被开方数为一个数的完全平方,利用化简公式=|a|及a大于0即可得到最后结果.【解答】解:设1998=a,则1997×1998×1999×2000+1=(a﹣1)a(a+1)(a+2)+1=a4+2a3+a2﹣a2﹣a2﹣2a+1=a2(a+1)2﹣2a(a+1)+1=[a(a+1)﹣1]2,所以==1998×1999﹣1=3994001.故选:A.【点评】此题考查了二次根式的化简求值,考查了换元的思想,本题的技巧性比较强,要求学生熟练掌握完全平方公式的结构特点,同时注意利用凑项的方法构造满足公式的特征,以及注意二次根式的化简公式=|a|的运用.2.计算:=()A.B.C.D.【分析】根据每个加数的特点,推出一般规律为,将所得式子化简,分别取n=1,2,3,…,40,寻找抵消规律,得出结论.【解答】解:∵=()=()=()=(﹣)∴分别取n=1,2,3, (40)原式=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)=.故选:B.【点评】本题考查了二次根式的化简求值,观察式子的特点,得出一般规律,将一般规律化简代值,再观察抵消规律是解题的关键.3.的结果是()A.B.C.D.【分析】把每个加数分母有理化,然后通分计算即可.【解答】解:=()=.故选:D.【点评】主要考查二次根式的分母有理化.主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.4.的值是()A.B.C.1D.【分析】认真观察式子的特点,总结规律,可发现,,,据此作答.【解答】解:由题意可知第k项是∴原式=(++=1﹣=1﹣=.故选:B.【点评】此题考查二次根式的化简求值,关键是审清题意,找准规律答题.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6【分析】找到1000<5×x2<2000中符合x的整数值即可得出答案.【解答】解:由题意得:与=20,是同类二次根的被开方数一定为5,由此及题意可:1000<5×x2<2000,x可取15、16、17、18、19,共5个.故选:C.【点评】本题考查同类二次根式的知识,有一定难度,关键是根据同类二次根式的形式得出的同类二次根式应该满足.二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为3998000.【分析】由等式可知=x1,=x2,…解得x1=x2=x3=…=x1999=2,由此代入求得数值即可.【解答】解:∵,∴=x1,=x2,…∴x1=x2=x3=…=x1999=2,∴x1+2x2+3x3+…+1999x1999=2×(1+2+3+ (1999)=2×(1999+1)×1999÷2=3998000.故答案为:3998000.【点评】此题考查二次根式的化简求值,解答此题的关键是找出对应关系,求出x1、x2、x3、…、x1999的值.7.化简=2011.【分析】先根据平方差公式和二次根式的性质得到=,然后根据同样的方法由内到外依次化简即可得到答案.【解答】解:∵=,∴原式=======2011.故答案为2011.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了平方差公式.8.化简后2.【分析】由于===﹣1,其他根式也可以进行同样的化简,然后合并同类二次根式即可求解.【解答】解:=﹣1+﹣++++++=3﹣1=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,解题的关键是利用完全平方公式化简二次根式从而达到化简题目的目的.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为10.【分析】利用不等式≤,结合S1+S2+S3+…+S n >10,解不等式即可.【解答】解:∵S i表示第i个三角形的面积,由不等式≤n,得≤n=n,而S1+S2+S3+…+S n=,S1+S2+S3+…+S n>10,∴n>10,即n2(n+1)>800,n为正整数,n的最小值为9.但n=9时,代入S1+S2+S3+…+S n<10,不符合题意,故n=10.【点评】本题考查了二次根式的运用.利用均值不等式和不等式的传递性解题.10.方程的解是x=2011【分析】将各分式中的分母有理化,再通分,注意观察抵消规律.【解答】解:原方程化为:+++…+=,通分得=,解得x=2011.故答案为:2011.【点评】本题考查了二次根式的化简在解方程中的运用.关键是将各分式的分母有理化,寻找抵消规律.11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=﹣.【分析】首先将M式中各个分式进行分母有理化,再求出N式的值,代入代数式求值即可解答.【解答】解:将M分母有理化可得M=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1.N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994=(1﹣2)+(3﹣4)+(5﹣6)+┉+(1993﹣1994)=﹣1×997=﹣997,∴==﹣.故答案为﹣.【点评】本题主要考查分母有理化的方法,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.12.计算:=4(其中a>0)【分析】仔细观察会发现有以下规律:第1项加上第8项等于1,第2项加上第7项等于1,依此类推最后求得的结果4.【解答】解:第一项与最后一项相加得:+,=+,=,=1,同理可得:第二项与倒数第二项的和也是1;第三项与倒数第三项的和也是1;所以原式=1+1+1+1=4.故应填:4.【点评】本题考查了二次根式的加减运算,同时也考查了学生的逻辑思维能力,是一道不错的规律型问题.13.的值为1998999.5.【分析】本题涉及数字大且数字之间有联系,可用换元法解题,设k=2000,将所求算式转化为关于k的算式,将被开方数配成完全平方式,开平方,再将k的值代入即可.【解答】解:设k=2000,原式=====,当k=2000时,原式=1998999.5.故本题答案为:1998999.5.【点评】本题考查了二次根式的化简求值,当算式数字较大,并且数字之间有联系时,用换元法解题,可使运算简便.14.已知:对于正整数n,有,若某个正整数k满足,则k=8.【分析】读懂规律,按所得规律把左边所有的加数写成的形式,把互为相反数的项结合,可使运算简便.【解答】解:∵,∴+,即1﹣,∴,解得k=8.故答案为:8.【点评】解答此题的关键是读懂题意,总结规律答题.15.若n为整数,且是自然数,则n=﹣14或﹣7或﹣2或5.【分析】设=p,再把等式两边同时乘以4,利用平方差公式把等式左边化为两个因式积的形式,列出关于p、n的方程组,求出n 的值即可.【解答】解:∵设=p(P为非负整数),则n2+9n+30=p2,∴4n2+36n+120=4p2,∴(2n+9)2+39=4p2,∴(2p+2n+9)(2p﹣2n﹣9)=39,∴或或或,解得或或或,∴n=﹣14或﹣7或﹣2或5.故答案为:﹣14或﹣7或﹣2或5.【点评】本题考查的是二次根式的性质与化简,先根据题意把原式化为两个因式积的形式是解答此题的关键.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为2012.5.【分析】根据新定理得f()=,f()=,则f()+f()=1;f()=,f()=,则f()+f()=1,由此得到f()+f()=1(n≥2的整数),所以原式=+.【解答】解:f()=,∵f()==,f()=,则f()+f()=1,f()==,f()==,则f()+f()=1,∴f()+f()=1,∴=+=2012.5.故答案为2012.5.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了阅读理解能力.17.若u、v满足v=,则u2﹣uv+v2=.【分析】根号里面的式子大于等于0,从而可得≥0,﹣≥0,从而能得出u和v的值,继而可得出答案.【解答】解:由题意得:≥0,﹣≥0,从而=0,2u﹣v=0,u=v,又v=,∴u=,∴u2﹣uv+v2=.故答案为.【点评】本题考查二次根式有意义的条件,注意掌握根号里面的式子大于等于0这个知识点比较关键.18.已知a为实数,且与都是整数,则a的值是或.【分析】由是正整数可得,a是含﹣2的代数式;再由是整数,可得化简后为﹣2的代数式分母有理化后,是1或﹣1,据此确定a的值.【解答】解:∵是正整数,∴a是含﹣2的代数式;∵是整数,∴化简后为﹣2的代数式分母有理化后,是1或﹣1,∴a=或.故答案为:或.【点评】此题主要考查二次根式的混合运算,要熟练掌握合并同类二次根式和分母有理化.19.使得++=1的一组正整数(a,b,c)为:答案不唯一;如(288,8,8),(48,24,8).【分析】由于三个复合二次根式的和为1,则它们的被开方数为完全平方数,设任意一个复合二次根式的被开方数为()2(x,y为正整数,x>y),然后通过正整数的含义,得到x,y为两个相邻正整数,即每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后是﹣1,则第二个复合二次根式化简后必为﹣,第三个复合二次根式化简后必为,最后求的a,b,c的值.【解答】解:因为几个复合二次根式的和为1,则每个复合二次根式的被开方数一定为完全平方数.设==x+y﹣2,(x,y为正整数,x>y),所以有=x+y,﹣=﹣2.∴a+1=(x+y)2,a=4xy,∴(x﹣y)2=1,即x﹣y=1.则每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后为﹣1,而要消掉,则第二个复合二次根式化简后必为﹣,要消掉,则第三个复合二次根式化简后必为.最后正好为﹣=1.所以=(﹣1)2=3﹣=3﹣,则a=8,同理得b=24,c=48.故得到一组正整数(a,b,c)为:8,24,48.故答案为8,24,48.【点评】本题考查了二次根式的性质和二次根式的化简:.20.计算﹣20062的结果是2005.【分析】先把“2005×2006×2007×2008+1=(20052+3×2005+1)2”化为完全平方的形式,再开平方,然后再来求值.【解答】解:∵2005×2006×2007×2008+1=2005×(2005+3)×(2005+1)(2005+2)+1=(20052+3×2005)×(20052+3×2005+2)+1=(20052+3×2005)2+2(20052+3×2005)+1=(20052+3×2005+1)2∴=20052+3×2005+1;∴﹣20062=20052+3×2005+1﹣20062=(2005+2006)(2005﹣2006)+3×2005+1=2005;故答案为:2005.【点评】本题主要考查了二次根式的化简求值.解答此题的难点是化“2005×2006×2007×2008+1”为完全平方的形式,并开平方,然后再利用平方差公式求出20052﹣20062=(2005+2006)(2005﹣2006)的值.21.设=.【分析】把已知条件的左边相乘得,这样出现了所求代数式,设=z,代入变形所得的等式,逐步变形,消去x、y,即可求得z.【解答】解:据条件式令=z,则(1)式化为:z+xy+=9,即有9﹣z=xy+,平方得,81﹣18z+z2=x2y2+(x2+1)(y2+4)+2xy(2),又由z2==x2(y2+4)+y2(x2+1)+2xy,代入(2)得,81﹣18z=4,所以.即=,故答案为:.【点评】此题考查二次根式的化简求值,难度较大,多次利用已知条件求解.22.若,,则x6+y6的值是40.【分析】根据题意可求出x2+y2,x2﹣y2,利用平方差公式可求得x4﹣y4,(x2﹣y2)(x4﹣y4)=x6+y6﹣x2y4﹣y2x4,由此可得答案.【解答】解:由题意得:x2+y2=2++2﹣=4,x2﹣y2=2+﹣(2﹣)=2,x4﹣y4=(x2+y2)(x2﹣y2)=8,又(x2﹣y2)(x4﹣y4)=x6+y6+x2y4+y2x4,∴可得:x6+y6=32﹣x2y2(x2+y2)=32+2×4=40.故答案为:40.【点评】本题考查二次根式的乘除法运算,有一定难度,关键是熟练运用平方差及完全平方公式.23.当时,的值为.【分析】利用完全平方公式对代数式化简再把代入化简的结果计算即可.【解答】解:原式=﹣,∵,∴=2005,∴x<,∴原式=﹣+x,=x,当时,原式=.故答案为.【点评】本题考查的是二次根式的化简求值和二次根式的性质=a(a≥0)的应用.24.已知,,则k=﹣1.【分析】先从等式右边进行分母有理化,即原式=﹣2,然后依次循环即可求k的值.【解答】解:由原式可知=+2﹣4=﹣2,∴4+=+2,依此类推得:=+2,∴k=﹣1.故答案为﹣1.【点评】本题考查了分母有理化的知识,解题时可从等式右边进行分母有理化,那样会简便些.25.当1≤x≤2时,经化简等于2.【分析】先配成完全平方式,再根据二次根式的性质化简计算即可.【解答】解:∵1≤x≤2,∴=+=+1+1﹣=2.故答案为:2.【点评】考查了二次根式的性质,解题的关键是将根号内的式子配成完全平方式.26.计算=2010.【分析】因为=,=,=,…,可发现=1+=1+1﹣,=1+=1+﹣…,依此类推再把1+1﹣,1+﹣…相加可得问题答案.【解答】解:原式=++++…+,=1+1﹣+1+﹣+1+﹣+1+﹣…+1+﹣,=2010+(1﹣+﹣+﹣…+﹣),=2010+(1﹣),=2010.【点评】本题考查了二次根式的化简,在化简中注意有关数列的规律.27.已知x=,那么+1的值是2.【分析】先根据分母有理化得到x=﹣1,所以x+1=,然后将代数式化为含有(x+1)2的形式,把x+1的值代入求出代数式的值.【解答】解:∵x==﹣1,∴x+1=.原式=(3x3+10x2+5x+4)=[(3x3+6x2+3x)+3x2+(x2+2x+1)+3]=[3x(x+1)2+3x2+(x+1)2+3]=[3x•2+3x2+2+3]=[(3x2+6x+3)+2]=[3(x+1)2+2]=(3×2+2)=2.故答案是:2.【点评】本题考查的是二次根式的化简求值,先根据分母有理化把x的值化简,得到x+1=,再把代数式化成含有x+1的形式,然后代入代数式可以求出代数式的值.28.化简:,得到1.【分析】将被开方数的分子、分母提公因式,约分,再开平方,约分即可.【解答】解:原式=()1004=()1004()1004=1.【点评】本题考查了二次根式的化简求值,关键是将被开方数的分子、分母提公因式,约分.29.=﹣3.【分析】因为=,代入并通分计算即可.【解答】解:原式===﹣1﹣1﹣1=﹣3.故答案为:﹣3.【点评】此题考查二次根式的混合运算,关键是求=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).【分析】(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.(2)分别将各二次根式配方可得出答案.(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.(4)设=a,=b,=c,从而可将原式化简,继而可得出答案.【解答】解:(1)设n=1999,则原式===n2+3n+1,故原式=20002+1999;(2)原式=+++++++=﹣1+﹣+﹣+﹣+﹣+﹣+﹣+﹣,=﹣1,=3﹣1,=2;(3)原式=,=,=+,=﹣;(4)设=a,=b,=c,则原式=++,=,=0.【点评】本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.。
2019年全国中考数学真题《二次根式》分类汇编解析
2019 年全国中考数学真题《二次根式》分类汇编分析二次根式考点一、二次根式(初中数学基础,分值很大)1、二次根式式子 a (a 0) 叫做二次根式,二次根式一定知足:含有二次根号“”;被开方数 a 一定是非负数。
2、最简二次根式若二次根式知足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)假如被开方数是分数(包含小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,而后利用分母有理化进行化简。
(2)假如被开方数是整数或整式,先将他们分解因数或因式,而后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式此后,假如被开方数同样,这几个二次根式叫做同类二次根式。
4、二次根式的性质(1)( a )2a(a 0)a(a 0)(2) a 2aa(a0)(3)ab a ? b (a 0, b0)(4)aa (a 0,b 0)b b5、二次根式混淆运算二次根式的混淆运算与实数中的运算次序同样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
一、选择题1. (2017·福建龙岩·4分)与是同类二次根式的是()A.B.C.D.2. 计算 3﹣2的结果是()A.B.2C.3D.6 3.( 2017 河南 3 分)以下计算正确的选项是()A.﹣=B.(﹣3)2=6C.3a4﹣2a2=a2 D.(﹣a3)2=a54.(2017·重庆市B卷· 4 分)若二次根式存心义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠2 5.(2017·四川内江)在函数y=x 3 中,自变量x的取值范围是( )x 4A.x>3B.x≥3C.x>4D.x≥3且 x≠46.(2017·四川南充)以下计算正确的选项是()A.=2B.=C.=x D.=x7.(2017·黑龙江齐齐哈尔·3分)以下算式①=± 3;②632=9;③2÷2=4;④=2017;⑤a+a=a.运算结果正确的概率是()A.B.C.D.8.( 2017·湖北荆门·3分)要使式子存心义,则x的取值范围是()A.>1B.>﹣ 1C.≥1D.≥﹣x x x x19. (2017·内蒙古包头·3分)以下计算结果正确的选项是()A.2+=2B.=2C.(﹣2a2)3=﹣6a6 D.(a+1)2=a2+110.(2017·山东潍坊·3分)实数a,b在数轴上对应点的地点如下图,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b 11. (2017·四川眉山·3分)以下等式必定建立的是()2510B.3412D.A.a×a =a C.(﹣a)=a二、填空题1.(2017·广西桂林·3分)若式子x 1在实数范围内存心义,则x的取值范围是.2.(2017·贵州安顺·4分)在函数y 1 x中,自变量 x 的取值范围是.x 23.(2017·黑龙江哈尔滨·3分)计算212 -18 的结果是.4.( 2017 广西南宁 3 分)若二次根式存心义,则 x 的取值范围是.5.(2017·吉林·3分)化简:﹣=.6.(2017·内蒙古包头·3分)计算: 6﹣(+1)2=.7.(2017·青海西宁·2分)使式子存心义的 x 取值范围是.8.(2017·山东潍坊·3 分)计算:(+)=.三、解答题1.(2017·四川攀枝花)计算;+20170﹣|﹣2|+1.2.(2017·四川南充)计算:+(π+1)0﹣sin45°+|﹣2| 3.(2017·四川泸州)计算:(﹣1)0﹣× sin60°+(﹣2)2.4.(2017·四川内江) (7 分) 计算: | -3| +3·tan30°-38-( 2017-π) 0+( 12)-1.﹣ 220175. (2017·四 川宜宾)( 1)计算;( ) ﹣( ﹣ 1) ﹣ +( π ﹣6. (2017·广西桂林·8 分)已知随意三角形的三边长,怎样求三角形面积 古希腊的几何学家海伦解决了这个问题,在他的著作《胸怀论》一书中给出了计算公式﹣﹣海伦公式 s p( p a)( p b)( p c) (此中 a ,b ,c 是三角形的三边 长, p 2c ,S 为三角形的面积),并给出了证明 a b比如:在△ ABC 中, a =3,b =4,c =5,那么它的面积能够这样计算:∵a =3,b =4,c =5∴p ==6∴S ===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋期间数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ ABC 中, BC =5,AC = 6,AB =9(1)用海伦公式求△ ABC 的面积;(2)求△ ABC 的内切圆半径 r .答案二次根式一、选择题1. (2017·福建龙岩·4分)与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【剖析】依据化成最简二次根式后,被开方数同样的二次根式叫做同类二次根式.【解答】解: A、与﹣的被开方数不一样,故 A 错误;B、与﹣的被开方数不一样,故B 错误;C、与﹣的被开方数同样,故C正确;D、与﹣的被开方数不一样,故D错误;应选: C2. 计算 3﹣2的结果是()A.B.2C.3D.6【考点】二次根式的加减法.【剖析】直接利用二次根式的加减运算法例求出答案.【解答】解:原式=( 3﹣2)=.应选: A.3.( 2017 河南 3 分)以下计算正确的选项是()A.﹣=B.(﹣3)2=6C.3a4﹣2a2=a2 D.(﹣a3)2=a5【考点】二次根式的加减法;有理数的乘方;归并同类项;幂的乘方与积的乘方.【剖析】分别利用有理数的乘方运算法例以及积的乘方运算法例、二次根式的加减运算法例化简求出答案.【解答】解: A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,没法计算,故此选项错误;D、(﹣ a3)2=a6,故此选项错误;应选: A.【评论】本题主要考察了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题重点.4.(2017·重庆市B卷· 4 分)若二次根式存心义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠2【考点】二次根式存心义的条件.【专题】计算题;实数.【剖析】依据负数没有平方根列出对于 a 的不等式,求出不等式的解集确立出 a 的范围即可.【解答】解:∵二次根式存心义,∴a﹣2≥0,即 a≥2,则 a 的范围是 a≥2,应选 A【评论】本题考察了二次根式存心义的条件,二次根式性质为:二次根式中的被开方数一定是非负数,不然二次根式无心义.5.(2017·四川内江)在函数y=x 3 中,自变量x的取值范围是( )x 4A.x>3B.x≥3C.x>4D.x≥3且 x≠4[答案]D[ 考点 ] 二次根式与分式的意义。
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1.若在实数范围内有意义,则x的取值范围是【答案】x≤。
【解析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围。
根据题意得:1﹣3x≥0,解得:x≤。
【考点】二次根式有意义的条件。
2.函数中,自变量x的取值范围是.【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.若a<<b,且a,b为连续正整数,则b2﹣a2=.【答案】7【解析】∵32<13<42,∴3<<4,即a=3,b=4,所以a+b=7.【考点】估算4.二次根式有意义,则实数x的取值范围是()A.x≥﹣2B.x>﹣2C.x<2D.x≤2【答案】B.【解析】根据被开方数大于等于0,得﹣2x+4≥0,解得x≤2.故选B.【考点】二次根式有意义的条件.5.使有意义的的取值范围是()A.B.C.D.【答案】C.【解析】∵有意义∴3x-1≥0解得:.故选C.【考点】二次根式有意义的条件.6.在函数中,自变量a的取值范围是.【答案】a≥2.【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解.根据题意得:a-2≥0,解得a≥2,则自变量a的取值范围是a≥2.【考点】1.函数自变量的取值范围; 2.二次根式有意义的条件.7.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(7,3)所表示的数是;(5,2)与(20,17)表示的两数之积是.【答案】;3【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,第7排是奇数排,最中间的也就是这排的第4个数是1,那么第3个就是:;从图示中知道,(5,2)所表示的数是;∵第19排最后一个数的序号是:1+2+3+4+…+19=190,则(20,17)表示的是第190+17=207个数,207÷4=51…3,∴(20,17)表示的数是.∴(5,2)与(20,17)表示的两数之积是:×=3.故答案为:;3.8.已知实数a在数轴上的对应点,如图所示,则化简所得结果为【答案】2a+1.【解析】:由数轴表示数的方法得到a>0,然后利用二次根式的性质得到原式=|a|+|a+1|=a+a+1,再合并即可.试题解析:∵a>0,∴原式=|a|+|a+1|=a+a+1=2a+1.考点: 1.二次根式的性质与化简;2.实数与数轴.9.当1<x<3时,|1-x|+等于_________________【答案】2【解析】=|a|=当1<x<3时,1-x<0,x-3<0.∴原式=(x-1)+(3-x)=2.10.已知长方形的长是cm,宽是cm,求与此长方形面积相等的圆的半径.【答案】r=.【解析】利用面积公式列出方程·=πr2,解得r=.11.已知0<x<1,化简:-.【答案】2x.【解析】-=-=- ,因为0<x<1,所以原式=x+-(-x)=x+-+x=2x.12.计算:【答案】14.【解析】根据有理数的乘方、绝对值、零次幂、立方根、负整数指数幂的意义进行计算即可求出代数式的值.试题解析:.考点: 实数的混合运算.13.下列各式中计算正确的是()。
二次根式知识点归纳及题型总结-精华版
二次根式知识点归纳和题型归类
二、知识要点梳理 知识点一、二次根式的主要性质:
1.
; 2.
4. 积的算术平方根的性质:
; 3.
; ;
5. 商的算术平方根的性质:
.
6.若
,则
.
知识点二、二次根式的运算 1.二次根式的乘除运算
(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理;
1.估算 31-2 的值在哪两个数之间( )A.1~2 B.2~3
C. 3~4
D.4~5
2.若 3 的整数部分是 a,小数部分是 b,则 3a b
3.已知 9+ 13与9 13 的小数部分分别是 a 和 b,求 ab-3a+4b+8 的值
4.若 a,b 为有理数,且 8 + 18 + 1 =a+b 2 ,则 b a =
.
8
六.二次根式的比较大小(1) 1 200和2 3 5
(2)-5 6和 6 5
(3) 17 15和 15 13
(4)设 a= 3 2 , b 2 3 , c 5 2 , 则( )A. a b c B. a c b C. c b a D. b c a
1.下列各式中一定是二次根式的是(
)。 A、 3 ; B、 x ; C、 x2 1 ; D、 x 1
2.x 取何值时,下列各式在实数范围内有意义。
(1)
(2) 1 (3) 5 x (6)
2x 1
x4
(7)若 x(x 1) x x 1 ,则 x 的取值范围是
。
. (8)若 x 3 x 3 ,则 x 的取值范围是 x 1 x 1
(word完整版)二次根式知识点总结及常见题型,推荐文档
应用与书写规范:∵ A B 2 C 0 ,
A ≥0, B 2 ≥0, C ≥0
∴ A 0, B 0, C 0 . 该性质常与配方法结合求字母的值.
第1页
(2)
A B2
AB
A B
BA AA
B B;主要用于二次根式的化简.
(3) A
B
A2 B A 0
,其中 B ≥0;
A2 B A 0
(1)双重非负性: a ≥0, a ≥0;(主要用于字母的求值)
2
(2)回归性: a a ( a ≥0);(主要用于二次根式的计算)
(3)转化性:
a2
a
a(a a(a
0) 0)
.(主要用于二次根式的化简)
重要结论:
(1)若几个非负数的和为 0,则每个非负数分别等于 0.
若 A B 2 C 0 ,则 A 0, B 0, C 0 .
a2 三、二次根式的乘法
一般地,有: a b ab ( a ≥0, b ≥0)
(1)以上便是二次根式的乘法公式,注意公式成立的条件: a ≥0, b ≥0.即参与乘法运算的 每个二次根式的被开方数均为非负数; (2)二次根式的乘法公式用于二次根式的计算;
第9页
(3)两个带系数的二次根式的乘法为: m a n b mn ab ( a ≥0, b ≥0); (4)二次根式的乘法公式可逆用,即有:
第4页
例 6. 计算:
2
(1) 6 ;
2
(2) 2x 3 ;
(3) 3
2 3
2
.
2
分析:本题考查二次根式的性质: a a ( a ≥0).该性质主要用于二次根式的计算.
2
解:(1) 6 6 ;
专题42 二次根式 初中数学学科素养能力培优竞赛试题精选专练含解析卷
专题42 二次根式一、二次根式的性质与化简【学霸笔记】1. 二次根式的性质(1;(2.2. 二次根式运算法则(1;(2【典例】如果式子√(x −1)2+|x ﹣2|化简的结果为2x ﹣3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >0【解答】解:∵√(x −1)2+|x ﹣2|=|x ﹣1|+|x ﹣2|,又∵化简的结果为2x ﹣3,∴{x −1≥0x −2≥0, 解得x ≥2.故选:B .【巩固】实数a 、b 满足√a 2−2a +1+√25−10a +a 2=10﹣|b +4|﹣|b ﹣2|,则a 2+b 2的最大值为 .二、二次根式分母有理化【典例】已知x =√3+√2√3−√2,y =√3−√2√3+√2,则x y +y x = .【解答】解:把x 、y 进行分母有理化可得:x =√3+√2√3−√2=√3+√2)(√3+√2)(√3−√2)(√3+√2)=5+2√6, y =√3−√2√3+√2=√3−√2)(√3−√2)(√3−√2)(√3+√2)=5﹣2√6, ∴x y +y x =x 2+y 2xy =√6)2√6)2(5+2√6)(5−2√6)=98.故答案为:98.【巩固】已知x=√2020−√2019,则x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x−√2020的值为()A.0B.1C.√2019D.√2020三、二次根式中的整数和小数部分应用【典例】已知√5+2的整数部分为a,小数部分为b,求a2−4b2a2+4ab+4b2的值.【解答】解:∵4<5<9,∴2<√5<3,∴4<√5+2<5,∴a=4,b=√5−2;∴a2−4b2a2+4ab+4b2 =(a−2b)(a+2b)(a+2b)2=a−2ba+2b=4−2√5+44+2√5−4=45√5−1.【巩固】设a为√3+√5√3−√5的小数部分,b为√6+3√3√6−3√32 b −1a=.巩固练习1.若实数a,b,c满足等式2√a+3|b|=6,4√a−9|b|=6c,则c可能取的最大值为()A.0B.1C.2D.32√3+2√2−√3−2√2)A.√2B.−√2C.2D.﹣23.如果实数x,y满足(√x2+1+x)(√y2+1+y)=1,那么x+y值为()A.0B.﹣1C.1D.24.小明在解方程√24−x−√8−x=2时采用了下面的方法:由(√24−x−√8−x)(√24−x+√8−x)=(√24−x)2−(√8−x)2=(24﹣x)﹣(8﹣x)=16,又有√24−x−√8−x=2,可得√24−x+√8−x=8,将这两式相加可得{√24−x=5√8−x=3,将√24−x=5两边平方可解得x=﹣1,经检验x=﹣1是原方程的解.请你学习小明的方法,解决下列问题:(1)已知√22−a2−√10−a2=3√2,则√22−a2+√10−a2的值为.(2)解方程√4x2+6x−5+√4x2−2x−5=4x,得方程的解为.5.已知整数x、y满足:1<x<y<100,且x√y+y√x−√2009x−√2009y+√2009xy=2009则:√x+y+10=.6.已知x=b−√b2−4122(b>21),则x2﹣bx+103=.7.已知x=3+2√2,求:x2+1x2+6x+6x+7的值.8.计算:(1)2√5(4√20−3√45+2√5);(2)√3−1+√27−(√3−π)0+3﹣2(3)若a=√5+1,b=√5−1,求a2b+ab2的值.(4)已知a、b、c在数轴上的对应点如图所示,化简:√a2−|a+b|+√(c−a)2+|b+c|9.已知x﹣y=6,√x2−xy+√xy−y2=9,求√x2−xy−√xy−y2的值.10.若m满足关系√3x+5y−2−m+√2x+3y−m=√x−199+y⋅√199−x−y,试求m的值.11.已知x =√n+1−√n√n+1+√n y =√n+1+√n√n+1−√n (n 为自然数),问:是否存在自然数n ,使代数式19x 2+36xy +19y 2的值为1998?若存在,求出n ;若不存在,请说明理由.专题42 二次根式一、二次根式的性质与化简【学霸笔记】1. 二次根式的性质(1;(2.2. 二次根式运算法则(1;(2【典例】如果式子√(x −1)2+|x ﹣2|化简的结果为2x ﹣3,则x 的取值范围是( )A .x ≤1B .x ≥2C .1≤x ≤2D .x >0【解答】解:∵√(x −1)2+|x ﹣2|=|x ﹣1|+|x ﹣2|,又∵化简的结果为2x ﹣3,∴{x −1≥0x −2≥0, 解得x ≥2.故选:B .【巩固】实数a 、b 满足√a 2−2a +1+√25−10a +a 2=10﹣|b +4|﹣|b ﹣2|,则a 2+b 2的最大值为 .【解答】解:∵√a 2−2a +1+√25−10a +a 2=10﹣|b +4|﹣|b ﹣2|,∴|a ﹣1|+|a ﹣5|=10﹣|b +4|﹣|b ﹣2|,∴|a ﹣1|+|a ﹣5|+|b +4|+|b ﹣2|=10,∵|a ﹣1|+|a ﹣5|≥4,|b +4|+|b ﹣2|≥6,∴|a ﹣1|+|a ﹣5|=4,|b +4|+|b ﹣2|=6,∴1≤a≤5,﹣4≤b≤2,∴a2+b2的最大值为:52+(﹣4)2=41.故答案为:41.二、二次根式分母有理化【典例】已知x=√3+√2√3−√2,y=√3−√2√3+√2,则xy+yx=.【解答】解:把x、y进行分母有理化可得:x=√3+√2√3−√2=(√3+√2)(√3+√2)(√3−√2)(√3+√2)=5+2√6,y=√3−√2√3+√2=√3−√2)(√3−√2)(√3−√2)(√3+√2)=5﹣2√6,∴xy +yx=x2+y2xy=√6)2√6)2(5+2√6)(5−2√6)=98.故答案为:98.【巩固】已知x=√2020−√2019,则x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x−√2020的值为()A.0B.1C.√2019D.√2020【解答】解:∵x=√2020−√2019=√2020+√2019,∴x6﹣2√2019x5﹣x4+x3﹣2√2020x2+2x−√2020=x5(x﹣2√2019)﹣x4+x2(x﹣2√2020)+2x−√2020=x5(√2020+√2019−2√2019)﹣x4+x2(√2020+√2019−2√2020)+2x−√2020=x5(√2020−√2019)﹣x4+x2(√2019−√2020)+2x−√2020=x4[x(√2020−√2019)﹣1]+x2(√2019−√2020)+2x−√2020=0+x(√2020+√2019)(√2019−√2020)+2x−√2020=﹣x+2x−√2020=x−√2020=√2019.故选:C.三、二次根式中的整数和小数部分应用【典例】已知√5+2的整数部分为a,小数部分为b,求a2−4b2a2+4ab+4b2的值.【解答】解:∵4<5<9,∴2<√5<3,∴4<√5+2<5,∴a=4,b=√5−2;∴a2−4b2a2+4ab+4b2 =(a−2b)(a+2b)(a+2b)2=a−2ba+2b=4−2√5+44+2√5−4=45√5−1.【巩固】设a为√3+√5√3−√5的小数部分,b为√6+3√3√6−3√32 b −1a=.【解答】解:∵√3+√5−√3−√5=√6+2√52−√6−2√52=√5+1√2√5−1√2=√2,∴a的小数部分=√2−1;∵√6+3√3−√6−3√3=√12+6√32−√12−6√32=√3+3√23−√3√2=√6,∴b的小数部分=√6−2,∴2b −1a=√6−2−√2−1=√6+2−√2−1=√6−√2+1.故答案为:√6−√2+1.巩固练习1.若实数a,b,c满足等式2√a+3|b|=6,4√a−9|b|=6c,则c可能取的最大值为()A.0B.1C.2D.3【解答】解:由两个已知等式可得,√a=35(c+3),|b|=25(2−c),而|b|≥0,所以c≤2.当c =2时,可得a =9,b =0,满足已知等式.所以c 可能取的最大值为2.故选:C .2.化简√3+2√2√17+12√2−√3−2√2√17−12√2的结果是( ) A .√2 B .−√2C .2D .﹣2 【解答】解:3+2√2=(√2+1)2,3−2√2=(√2−1)2;17+12√2=(3+2√2)2,17−12√2=(3−2√2)2,因此,原式=√3+2√2√3−2√2=√2+1√2−1=−2. 故选:D .3.如果实数x ,y 满足(√x 2+1+x )(√y 2+1+y )=1,那么x +y 值为( )A .0B .﹣1C .1D .2 【解答】解:∵(√x 2+1+x )(√x 2+1−x )=x 2+1﹣x 2=1,(√y 2+1+y )(√y 2+1−y )=y 2+1﹣y 2=1又∵(√x 2+1+x )(√y 2+1+y )=1,∴{√x 2+1−x =√y 2+1+y①√y 2+1−y =√x 2+1+x②, ①+②得:﹣x ﹣y =x +y ,∴2(x +y )=0,∴x +y =0.故选:A .4.小明在解方程√24−x −√8−x =2时采用了下面的方法:由(√24−x −√8−x)(√24−x +√8−x)=(√24−x)2−(√8−x)2=(24﹣x )﹣(8﹣x )=16,又有√24−x −√8−x =2,可得√24−x +√8−x =8,将这两式相加可得{√24−x =5√8−x =3,将√24−x =5两边平方可解得x =﹣1,经检验x =﹣1是原方程的解. 请你学习小明的方法,解决下列问题: (1)已知√22−a 2−√10−a 2=3√2,则√22−a 2+√10−a 2的值为 .(2)解方程√4x 2+6x −5+√4x 2−2x −5=4x ,得方程的解为 .【解答】解:(1)(√22−a 2+√10−a 2)(√22−a 2−√10−a 2)=22﹣a 2﹣(10﹣a 2)=12,∵√22−a 2−√10−a 2=3√2,∴√22−a 2+√10−a 2=2√2,故答案为:2√2;(2)(√4x 2+6x −5+√4x 2−2x −5)(√4x 2+6x −5−√4x 2−2x −5)=(4x 2+6x ﹣5)﹣(4x 2﹣2x ﹣5)=8x ,∵√4x 2+6x −5+√4x 2−2x −5=4x ,∴√4x 2+6x −5−√4x 2−2x −5=2,将这两式相加可得√4x 2+6x −5=2x +1,解得x =3,经检验,x =3是原方程的解.∴原方程的解为:x =3,故答案为:x =3.5.已知整数x 、y 满足:1<x <y <100,且x √y +y √x −√2009x −√2009y +√2009xy =2009 则:√x +y +10= .【解答】解:∵x √y +y √x −√2009x −√2009y +√2009xy =2009 ∴√xy (√x +√y )−√2009(√x +√y )+√2009xy −√20092=0 (√x +√y +√2009)(√xy −√2009)=0∵1<x <y <100∴√xy −√2009=0∴xy =2009=7×7×41=49×41∵整数x 、y 满足:1<x <y <100∴x =41,y =49∴√x +y +10=√41+49+10=√100=10. 故本题答案为:10.6.已知x =b−√b 2−4122(b >21),则x 2﹣bx +103= . 【解答】解:将x =b−√b 2−4122代入x 2﹣bx +103, x 2﹣bx +103=(b−√b 2−4122)2﹣b •b−√b 2−4122+103 =b 2−2b √b 2−412+b 2−4124−b 2−2b √b 2−412+b 2−4124=0,故答案为0.7.已知x=3+2√2,求:x2+1x2+6x+6x+7的值.【解答】解:原式=x2+2+1x2+6(x+1x)+5=(x+1x)2+6(x+1x)+5=(x+1x+1)(x+1x+5),∵x=3+2√2,∴1x =3+2√2=3﹣2√2,∴x+1x=3+2√2+3﹣2√2=6.∴原式=(6+1)×(6+5)=77.8.计算:(1)2√5(4√20−3√45+2√5);(2)√3−1+√27−(√3−π)0+3﹣2(3)若a=√5+1,b=√5−1,求a2b+ab2的值.(4)已知a、b、c在数轴上的对应点如图所示,化简:√a2−|a+b|+√(c−a)2+|b+c|【解答】解:(1)原式=2√5(8√5−9√5+2√5)=2√5×√5=10;(2)原式=√3+1+3√3−1+1 9=4√3+1 9;(3)∵a=√5+1,b=√5−1,∴a+b=2√5,ab=4,∴a2b+ab2=ab(a+b)=4×2√5=8√5;(4)由图可知:a<0,a+b<0,c﹣a>0,b+c<0.∴√a2−|a+b|+√(c−a)2+|b+c|=﹣a+a+b+c﹣a﹣b﹣c=﹣a.9.已知x﹣y=6,√x2−xy+√xy−y2=9,求√x2−xy−√xy−y2的值.【解答】解:∵x ﹣y =6,∴(√x +√y)(√x −√y)=6,∴√x +√y =√x−√y , ∵√x 2−xy +√xy −y 2=√x •√x −y +√y •√x −y=√x −y (√x +√y )=9, ∴√6√x−√y =9, 即√x −√y =6√69, ∴√x 2−xy −√xy −y 2=√x −y (√x −√y )=√6×6√69 =4.10.若m 满足关系√3x +5y −2−m +√2x +3y −m =√x −199+y ⋅√199−x −y ,试求m 的值.【解答】解:根据题意得:{x −199+y ≥0199−x −y ≥0, 则x +y ﹣199=0,即√3x +5y −2−m +√2x +3y −m =0,则{x +y −199=03x +5y −2−m =02x +3y −m =0,解得{x =396y =−197m =201.故m =201.11.已知x =√n+1−√n √n+1+√n y =√n+1+√n√n+1−√n (n 为自然数),问:是否存在自然数n ,使代数式19x 2+36xy +19y 2的值为1 998?若存在,求出n ;若不存在,请说明理由. 【解答】解:不存在.∵x +y =√n+1−√n√n+1+√n √n+1+√n√n+1−√n =(√n +1−√n)2+(√n +1+√n)2=n +1﹣2√n(n +1)+n +n +1+n +2√n(n +1)=4n +2.xy =√n+1−√n√n+1+√n •√n+1+√n=1.假设存在n使代数式19x2+36xy+19y2的值为1998.即19x2+36xy+19y2=1998.19x2+19y2=1962,(x2+y2)=1962 19.(x+y)2=196219+3819=200019.x+y=√200019=20√9519.由已知条件,得x+y=2(2n+1).∵n为自然数,∴2(2n+1)为偶数,∴x+y=20√9519不为整数.∴不存在这样的自然数n.。
初中数学二次根式题归纳及答案分析
初中数学二次根式题归纳及答案分析初中数学二次根式题归纳及答案分析因式分解同步练习(解答题)解答题9.把下列各式分解因式:①a2+10a+25②m2-12mn+36n2③xy3-2x2y2+x3y④(x2+4y2)2-16x2y210.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.答案:9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2因式分解同步练习(填空题)同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。
因式分解同步练习(填空题)填空题5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)27.-4x2+4xy+(_______)=-(_______).8.已知a2+14a+49=25,则a的值是_________.答案:5.y26.-30ab7.-y2;2x-y8.-2或-12通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。
因式分解同步练习(选择题)同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。
因式分解同步练习(选择题)选择题1.已知y2+my+16是完全平方式,则m的值是()A.8B.4C.±8D.±42.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9B.a2-16a+32C.x2-2xy+4y2D.4a2-4a+13.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4B.(x2-y2)4C.[(x+y)(x-y)]2D.(x+y)2(x-y)2答案:1.C2.D3.B4.D以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。
竞赛中二次根式的计算技巧_于志洪
2 yz = 4 5 2 zx = 4 15 所以 º @ » @ ¼ , 得 xy z = 240 , 所以 xyz = 4 15. 用 ½ 分别除以 º 、 »、 ¼ ,得 x = 12 ,y = 4 ,z = 5 .
xy = 2 2 2 2 因为 (x + y ) = (x + y ) + 2xy = 9 , 又 x+ y > 0 , 所以 x + y = 3 , 即 3+ 2 2+ 6- 4 2 = 3 . 练习题 6 ( 2007 年扬州市初中数学竞赛 题 ) 化简 8- 2 8+ 2 10 + 2 5 +
2
63 +
. 提示 : 分子提取 2 , 分母提取 3 . 答案 : 6 . 3
因为 x > 0 , 所以 x = 3 2 . 故选 ( A ). ( 2006 年安徽省初中数学竞赛 3+ 24
3 的值是 (
)
八、 巧用待定系数法 例 8 ( 2008 年广东省湛江市初中数学竞 赛题 ) 化简 : 21 - 4 5 + 8 3 - 4 15.
初三数学二次根式试题答案及解析
初三数学二次根式试题答案及解析1. 2的算术平方根是.【答案】【解析】∵2的平方根是±,∴2的算术平方根是.故答案为:.【考点】算术平方根2.请写出一个比小的整数【答案】答案不唯一,小于或等于2的整数均可,如:2,1等【解析】首先找到所求的无理数在哪两个和它接近的整数之间,然后即可判断出所求的整数的范围.试题解析:∵2<<3,∴所有小于或等于2的整数都可以,包括任意负整数答案不唯一,小于或等于2的整数均可,如:2,1等【考点】估算无理数的大小.3.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+【答案】C.【解析】当n=时,n(n+1)=(+1)=2+<15;当n=2+时,n(n+1)=(2+)(3+)=6+5+2=8+5>15,则输出结果为8+5.故选C.【考点】实数的运算.4.在,0,3,这四个数中,最大的数是()A.B.C.D.【答案】C.【解析】根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小. 因此,∵,∴四个数中,最大的数是3.故选C.【考点】实数的大小比较.5.使二次根式有意义的x的取值范围是.【答案】x≥﹣3【解析】由二次根式的定义可知被开方数为非负数,则有x+3≥0所以x≥﹣3.【考点】二次根式有意义的条件6.计算:.【答案】-6【解析】先计算乘方和开方运算,再根据特殊角的三角函数值和平方差公式得到原式=,然后进行乘除运算后合并即可.原式==-6.【考点】二次根式的混合运算;特殊角的三角函数值.7.把下图折成正方体后,如果相对面所对应的值相等,那么x的平方根与y的算术平方根之积为.【答案】±【解析】由于x﹣y的相对面是1,x+y的相对面是3,所以x﹣y=1,x+y=3,由此即可解得x和y的值,然后即可求出x的平方根与y的算术平方根之积.解:依题意得x﹣y的相对面是1,x+y的相对面是3,∴x﹣y=1,x+y=3,∴x=2,y=1,∴x的平方根与y的算术平方根之积为±.故答案为:±.8.若a、b均为正整数,且a>,b<,则a+b的最小值是 ()A.3B.4C.5D.6【答案】B【解析】a、b均为正整数,且a>,b<,∴a的最小值是3,b的最小值是:1,则a+b 的最小值是4.9.使有意义的x的取值范围是()A.x>2B.x<-2C.x≤2D.x≥2【答案】D.【解析】依题意,得x-2≥0,解得,x≥2.故选:D.考点: 二次根式有意义的条件.10.下列二次根式是最简二次根式的是A.B.C.D.【答案】C.【解析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.A、被开方数中含有分母,不是最简二次根式,故本选项错误;B、被开方数中含有小数,不是最简二次根式,故本选项错误;C、是最简二次根式,故本选项正确;D、被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项错误;故选C.考点: 最简二次根式.11.已知为等腰三角形的两条边长,且满足,求此三角形的周长.【答案】10或11【解析】解:由题意可得即所以,.当腰长为3时,三角形的三边长为,周长为10;当腰长为4时,三角形的三边长为,周长为11.12.下列计算中,正确的是()A.B.C.=±2D.【答案】D.【解析】试题分析:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.考点:二次根式的混合运算.13.若式子在实数范围内有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1【答案】C.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选C.【考点】二次根式有意义的条件.14.计算:(1)+-2012+();(2)(1-)—【答案】(1);(2).【解析】(1)根据二次根式、绝对值、零次幂及负整数指数幂的意义进行计算即可求出答案;(2)根据完全平方公式及二次根式的除法进行计算即可.试题解析:(1)(2)考点: 实数的混合运算.15.计算:【答案】.【解析】根据二次根式及非零数的零次幂的意义进行计算即可得出答案.试题解析:原式=考点: 1.二次根式的混合运算;2.非零数的零次幂.16.计算:= 。
八年级数学竞赛讲座二次根式的运算附答案
八年级数学竞赛讲座二次根式的运算附答案第七讲:二次根式的运算二次根式是指形如a(a≥0)的式子,其运算基于以下几个法则:1) ac±bc=(a±b)c(c≥0);2) ab=a×b(a≥0,b≥0);3) a/b=a÷b(a≥0,b>0);4) (a)²=a²(a≥0)。
同类二次根式的合并是二次根式加减的实质,而二次根式除法和混合运算则常常用到有理化概念。
因此,有理化是二次根式中重要的概念。
二次根式的运算是在有理式(整式、分式)运算的基础上发展起来的,因此,解决二次根式问题时,常常需要用到有理式运算的方法和技巧,如换元、字母化、拆项相消、分解相约等。
例题求解:例1】已知y=(x²-2)/(x²-2-5x+4+5x/(4-5x)),求x²+y²=4-5x。
解析:由于等式中含有两个未知量,初看似乎条件不足,因此,我们从二次根式的定义入手。
通过二次根式的性质,我们可以通过平方去掉根号有理化,揭示与绝对值的内在一致性。
这样,我们就可以充分运用概念解题。
例2】化简1+1/n²+1/(n+1)²,所得的结果为()A.1+1/n+1/(n+1)B.1-1/n+1/(n+1)C.1+1/n-1/(n+1)D.1-1/n-1/(n+1)解析:待选项不再含根号,从而可预见被开方数通过配方运算后必为完全平方式形式。
特殊与一般是能相互转化的,而一般化是数学创造的基本形式,数学的根本目的就是要揭示更为普遍、更为深刻的事实和规律。
例3】计算:1)(6+4)/(3+2);2)10+14-15-21/10+14/15+21;3)75+57+…+5+23+1/(315-10-26+33-2+18)。
解析:若一开始就把分母有理化,则使计算复杂化。
因此,我们需要观察每题中分子与分母的数字特点,通过分拆、分解、一般化、配方等方法寻找它们的联系,以此为解题的突破口。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。
其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。
1) 二次根式有意义的条件是被开方数为非负数。
据此可以确定字母的取值范围。
2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。
若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。
3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。
4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。
二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。
(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。
(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。
应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。
该性质常与配方法结合求字母的值。
2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。