泵与风机的运行

合集下载

泵与风机运行检修项目4泵与风机的运行

泵与风机运行检修项目4泵与风机的运行
• 1.串联运行特点
下一页 返回
任务4.2泵与风机联合运行
• 串联运行的整体性能特点是:输出总流量等于通过每台泵或风机的流 量,输出总能头为每台泵或风机的能头之和。若有n台泵或风机串联 ,则有:
• 2.串联运行的工况特性分析 • 泵与风机串联联合运行合成性能曲线应按泵与风机流量相同、扬程叠
加的原则绘制。
• 2.并联运行的工况特性分析 • 如图4-8(b) 所示,两台性能相同的泵并联运行时的合成性能
曲线Ⅲ是个体性能曲线Ⅰ与Ⅱ在若干同扬程下,将两并联泵的流量相 叠加描点连接而成的。
上一页 下一页 返回
任务4.2泵与风机联合运行
• 合成性能曲线Ⅲ与CM曲线的交点M即为两泵并联运行的工作点。 • 由图可知,与一台泵单独运行相比,并联运行时的总流量并非成倍增
• 火电厂热力系统是由热力设备、管道及各种附件按照热力循环的顺序 和要求连接而成,生产过程及工质的输送都要通过管道来完成。管子 、管件及阀门组成管道系统。火电厂主要管道系统有主蒸汽管道系统 、除氧给水系统、再环蒸汽系统、旁路系统、给水回热加热系统、 疏放水、风烟煤系统等,这些不同功能的系统会影响管路特性曲线。 此外,管长、管路截面的几何特征、管壁粗糙度、积垢、积灰、结焦 、堵塞、泄漏及管路系统中局部装置的个数、种类和阀门开度等因素 也会影响管路特性曲线,进而影响泵与风机的工况。
• 对于经常处于串联运行的泵,为了提高泵的运行经济性和安全性,应 按B点选择泵,并由B点的流量决定泵的几何安装高度或倒灌高度, 以保证串联运行时每台泵都在高效区工作并不发生汽蚀。
上一页 下一页 返回
任务4.2泵与风机联合运行
• 而为了保证泵运行时驱动电机不致过载,对于离心泵,应按B点选择 驱动电动机的配套功率;对于轴流泵,则应按C点选择驱动电动机的 配套功率。

泵与风机-运行工况及调节

泵与风机-运行工况及调节

第五章 泵与风机的运行
江山入画 3
第二节 泵与风机运行工况的调节
三、入口导流器调节 1. 方法:调节装在风机入口处的导流器角度来调节工作 点; 2. 实质:改变风机性能曲线,因此而改变工作点; 3. 原理:(见P119图5-14,5-15,5-16)
可使v1u>0。 若转动导流器叶片角度,是外流体在进入叶轮前有一旋转运 动,即使v1u>0,1<90,由 上式可知,pT↓,同时由于w方向 不变,故v1↓,qv↓,从而达到了调节的目的。
第五章 泵与风机的运行
江山入画 3
第二节 泵与风机运行工况的调节
五、变速调节 2. 变速调节
6). 调速方法:
1) 汽轮机拖动(国内多用,钢厂原有) 2) 直流电机(价格高、功率小,实验室中用) 3) 双速电机(国外多用,国内较少) 4) 交流变频电机(价格高,但现在已降到可接受的价位,不过 有电磁波污染) 5)定速电机+液力变矩器(变速范围大,可无级变速,并能随 负荷的变化而自动调节,跟深的效率高(98%),但成本较高, 大型泵与风机用)
第五章 泵与风机的运行
江山入画 3
第一节 管路特性曲线及工作点
HC 一、管路特性曲线 前两项与所输送的流体的 流量没有关系,表示为 静能头Hst 阻力而与流量的平方成正比 所以:
pB p A

( H j H g ) hw
HC H st q
pC q
2 v
第五章 泵与风机的运行
江山入画 3
第二节 泵与风机运行工况的调节
五、变速调节 1. 相似抛物线 前面已提到过相似抛物线的概念:当两泵或风机相似时
qvp qvm Dp n p H p Dp D n H m Dm m m

第六章 泵与风机的调节与运行

第六章  泵与风机的调节与运行
第六章 泵与风机的调节与运行
第一节 管路性能曲线和泵与风机工作点 第二节 泵与风机的调节 第四节 液力偶合器 第五节 泵与风机的联合运行 第六节 泵与风机的启动、运行和维护 第七节 泵与风机的不稳定工况
第一节 管路性能曲线和泵与风机的工作点
泵与风机的性能曲线,只能说明泵与风机自身的性能,但泵与 风机在管路中工作时,不仅取决于其本身的性能,而且还取决 于管路系统的性能,即管路特性曲线。由这两条曲线的交点来 决定泵与风机在管路系统中的运行工况。 一、管路性能曲线 管路性能曲线就是流体在管路系统中通过的 流量与所需要的能量之间的关系曲线。
驼峰状性能曲线与管路性能曲线交点 可能有两个,其中在泵与风机性能曲 线的下降段的交点为稳定工作点。 为什么K点不稳定?
图6-4 泵与风机的不稳定工作区
思考:某台可变速运行的离心泵在转速n0下的运行工况点
为M (qVM,pM ),如下图所示。当降转速后,流量减小到qVA, 试定性确定这时的转速。
第二节 泵与风机的调节
一、液力偶合器传动原理
循环圆:泵轮与涡轮所组成的轴面腔室; 勺管:可以在旋转内套与涡轮间的腔室中移动,以调节循环 圆内的工作油量。
由动量矩方程得泵轮作 用于工作油的力矩为:
M po qV (v2uP r2 v1uP r1 )
工作油作用于涡轮上的 力矩为:
M oT qV (v1uT r2 v2uT r1 )
qV 2 qV 1 H 2 H1 ( n2 900 qV 1 0.91875 qV 1 ( L / s) n1 960 n2 2 900 2 ) H1 ( ) 0.86410 H1 n1 960
(3)作H2-qv2性能曲线,得交点B,求得流量减少16.3%。

第十五章泵与风机运行与调节讲述课件

第十五章泵与风机运行与调节讲述课件
保持泵与风机的清洁,防 止杂物和污垢对设备造成 损害。
泵与风机的定期检修
定期检查
根据设备运行情况和厂家 推荐,定期对泵与风机进 行检查,包括轴承、密封 件、润滑系统等。
性能测试
定期对泵与风机进行性能 测试,确保设备性能稳定 、符合设计要求。
预防性维护
根据设备运行情况和厂家 推荐,进行预防性的维护 和保养,如更换密封件、 清洗滤网等。
第十五章泵与风机运行与调节讲述课件
$number {01}
目录
• 泵与风机的概述 • 泵与风机的运行 • 泵与风机的维护与检修 • 泵与风机的节能技术 • 案例分析
01
泵与风机的概述
泵与风机的基本概念
01
泵与风机是流体机械中的重要设 备,用于输送流体,如水、空气 等。
02
泵主要用来输送液体,将机械能 转化为液体的压能;风机则主要 用于输送气体,将机械能转化为 气体的动能。
THANKS
、低排放的泵。采用高效泵技术可以提高泵的运行效率,减少能源消耗
和运行成本。
02
变速调节技术
变速调节技术是指通过改变泵的转速来调节泵的流量和扬程,以达到节
能的目的。变速调节技术可以根据实际需求进行精确调节,避免能源浪
费。
03
智能化控制技术
智能化控制技术是指通过智能化控制系统对泵的运行状态进行实时监测
和调控,实现泵的高效运行和节能。智能化控制技术可以提高泵的运行
案例二:某大厦风机维护与检修
总结词
大厦风机维护与检修
详细描述
某大厦的通风 system需要使用风机来提供空气流通。 为了确保风机的正常运行和延长使用寿命,需要进行定 期的维护与检修。首先,需要制定维护计划,定期检查 风机的运行状态,包括振动、声音、温度等参数。发现 异常情况时,需要及时进行检修。在检修过程中,需要 拆卸风机部件,检查磨损和损坏情况,并进行相应的修 复或更换。同时,还需要对风机的控制系统进行检查和 调试,确保其正常运行。

泵与风机的运行与调节

泵与风机的运行与调节

第六章 泵与风机的运行与调节主要内容(一)管网特性及泵与风机运行 (二)泵与风机的联合运行 (三)泵与风机运行工况的控制调节 (四)泵与风机的叶片切割和加长 (五)泵与风机运行中的几个问题(一)管网特性及泵与风机运行 1、管网特性曲线及其影响因素 2、泵与风机的稳定运行1、管网特性及其影响因素所谓管网特性,就是管网中的流量Q 与所需要消耗的压头H C 之间的关系。

管网特性主要与哪些因素相关?首先,根据水泵的管网特性方程讨论其影响因素,如P111,图5-1示,列伯努利方程:A-1:2-B :式中H w g 与H w j 为进、出管阻损。

两式相减,并整理后可以得到该水泵管网所需要消耗压头的表达式:式中,管网阻力特性系数:管路的静扬程:H s t 为抛物线的截距,H s t 与流量Q 无关,第二项φ与流量Q 呈平方关系,说明管网特性曲线为二次抛物线,则其管网特性曲线如P112,图5-2中上方的二次曲线。

同理可得风机管网特性曲线。

类似前述E q 的形式(推导略):H H VP VP g w g AAgggg .211222+++=+ρρH H VP VP jw j BBgg gg .222222+++=+ρρQFH V H V H H P P H VV V V H H H H P P PP Hg d lg d l g g gg g g g g g g t s t s w t AB C A B j w g w j g A B C22.2.2222212..122)(2)()2()()2222()(ζλζλρρρρρ∑+∑+=∑+∑+=+∑++-=--++++++-=-=显然,对于风机管网来说,由于空气密度较小,管网特性曲线方程的第一项中,p t 的值很小,可近似忽略不计,说明风机管网特性曲线的截距比水泵小得多,而对于那些从大气吸入和排至大气等情况来说,式中第一项(p B —p A )也近似为零,∴图5-2中下方过原点的二次曲线。

第五章 泵与风机运行与调节

第五章  泵与风机运行与调节

调节方法称为出口端节流调节。当改变阀门或挡板开 度时,其局部阻力系数发生变化,改变了管路特性常 数,进而改变了管路特性曲线,使泵或风机的工作点 发生变化。 出口端节流调节有较大的节流损失,是经济性较差的 调节方法,但是这种调节方法简单可靠,投资少,所 以在中小型离心泵中仍然得到广泛应用。而对于轴流 式泵与风机,由于随着流量的减小,其轴功率在增大, 所以不采用这种调节方法;至于离心式风机由于有简 单可靠的且经济性较好的其它调节方法(如入口导流 器调节等),所以也较少采用出口端节流调节。
第五章 泵与风机的运行与调节
泵与风机所在的生产过程一般不可能始终在一
个工况下运行,特别是从我国电力系统的现状 和发展形势来看,热力发电机组负荷不可避免 地存在着较大的、较频繁的波动,作为生产过 程的辅机,泵与风机就必然需要改变运行工况, 这就涉及到泵与风机运行和调节的问题。 本章以泵与风机的工作点为基础,着重讨论了 泵与风机的主要调节方法、原理和特点,对泵 与风机的联合运行、运行工况的稳定性、叶轮 的车削工作和泵与风机的选型进行了论述。
说明
a)由于串联运行时处于后面的泵或风机
必须具有足够的强度。 b)一般来说,串联中的每台泵或风机需 设置旁路,以防其停用时,其它泵或风 机仍能运行,使管路系统复杂。 c)串联运行又可分为同性能泵(或风机) 串联、不同性能泵(或风机)串联,工 程上应尽量采用同性能串联。
1)同性能泵或风机串联
(4)直流电动机驱动,直流电动机变速
简单,但造价高,且需要直流电源。所 以一般情况下很少使用。 (5)交流变速电动机驱动,采用电动机 变频调速,从改变电动机电源频率来实 现泵与风机的无级变速,主要应用于电 厂的疏水泵、工业水泵、消防水泵等 400V电动机拖动的泵与风机。

泵与风机的并联,串联工作原理探讨

泵与风机的并联,串联工作原理探讨

泵与风机的并联,串联工作原理探讨和风机是工业中常用的气体分解设备,它们可以利用机械能或电能将气体分解成混合气体。

泵和风机的主要特点在于高效率、高灵敏度和可调性,并有着良好的通用性、耐久性、可靠性和可控性。

由于它们的灵敏性,可以用来控制传动机构的工作载荷,这也是它们在日常工作中得到广泛应用的原因之一。

泵和风机的另一个重要的应用就是它们能够提供给系统流体循环的压力。

泵和风机可分为串联和并联工作模式。

一、泵与风机的并联工作原理联工作的原理是通过加压后的流体压力平均分配到每一系统,使每个系统都能获得充足的压力。

在并联工作模式中,同一个压力源把气体压力分配到多个系统。

泵和风机组合在一起,可以提供给每一系统需要的压力平均分布,并且可以满足每一系统最大的需求。

二、泵与风机的串联工作原理串联工作模式是连续利用多台泵和风机,最终能满足系统压力的要求。

在这种模式下,多台泵和风机的输出力量将联合起来,以达到最终的输出压力。

串联工作的方式有利于把每一台泵和风机的工作负荷平均分到多个系统,从而提高效率,节约能源,降低设备及系统的维护成本。

通常,多台泵和风机需要同时工作在同一个系统,以共同提供系统所需的压力。

三、泵与风机的并联与串联的比较联工作模式和串联工作模式在设备容量投资、系统负荷、系统安全性和过载能力等方面有显著的差别。

并联工作模式的优点在于可以有效地提高系统的灵活性,并可以充分考虑每个系统的实际需求,从而降低系统的运行成本。

而串联工作模式在节能方面有明显的优势,可以有效地降低系统的能耗,提高设备的工作效率。

四、结论之,泵和风机的并联和串联工作模式都有着自己的优势和缺点,因此要根据实际的需要和情况,灵活地用这两种工作模式配合使用。

另外,在安装、调试和使用这两种工作模式时,也应当注意一些要点,以确保设备和系统正常运行。

泵与风机的运行调节及选择

泵与风机的运行调节及选择

注意:排汽量→泵内汽蚀。为使长期处于低负荷下的凝结 水泵安全运行,在设计制造方面应采用耐汽蚀材料;在运行中, 可考虑同时应用分流调节。 仅在风机上使用。
(三)分流调节
前提条件:n≡C 阀1 qVP2 实施方法: B HP 阀2 改变分流管路阀 水泵 门开度。 A D 工作原理:图解 O 阀1全开、阀2全关阀2全开、阀1全关
前提条件: n≡C 实施方法:改变节流部件的开度。 分
gqVN ( H N h) H h P j K N N PshN gqVN H N / N HN
h
(一)口端和进口端节流。 1.出口端节流调节 工作原理: 运行效率:

N
M
qV
qVN qVM
4、并联运行工况点
H
M B C
Hc-qV
H-qV O
qVB qVC qVM qV
5、并联运行时应注意的问题 1 宜适场合:Hc-qV较平坦,H-qV 较陡。
2 安全性:经常并联运行的泵, 应由qVmaxHg(或Hd) 防 止汽蚀;对于离心泵和轴流泵, 应按 Pshmax Pgr 驱动电机不 致过载。
H Hi
i 1 n
(若将H 改为p,则适用于风机) (忽略泄漏流量)
qV qVi
泵串联后的性能曲线的作法:把串联各泵的性能曲线H-qV 上同一流量点的扬程值相加。
4、串联运行工况点
H Hc-qV
M C
H-qV
O qV
5、串联运行时应注意的问题 1 宜适场合:Hc-qV 较陡,H-qV 较平坦。
C
1
2 M Ⅱ 1 Ⅰ
经 济 性:比出口端节流经济。 适用场合: 仅在风机上使用。
h
2

《泵与风机的运行》课件

《泵与风机的运行》课件
案例总结
通过该案例,我们可以了解到节能技术在泵和风机上的应用以及其对降低生产成本和提高能源利用效率 的作用。同时也可以认识到维护和保养对于设备正常并联技术
智能控制技术
与泵的串联和并联技术类似,通过多台风 机的串联或并联运行,实现流量和压力的 叠加,提高风机运行效率。
通过智能控制系统,实时监测风机的运行 状态,自动调节风机的运行参数,实现节 能。
泵与风机节能技术的发展趋势
智能化
随着物联网、大数据等技术的发 展,泵与风机的智能控制将成为
案例总结
通过该案例,我们可以了解到泵和风机的运行与维护对于工厂生产的重 要性,以及定期检查、保养和维修对于设备正常运行的关键作用。
某工厂风机的运行与维护案例
案例概述
某工厂的风机在运行过程中出现了故障,导致生产线的停产。为了解决这个问题,该工厂 采取了一系列措施。
案例细节
该工厂的风机在运行过程中出现了轴承磨损、振动过大等问题。为了解决这些问题,该工 厂采取了更换轴承、调整动平衡等措施,并加强了设备的日常维护和保养。
ERA
泵的启动与关闭
启动
在启动泵之前,应确保泵的入口和出口管道已经安装好,并且所有的阀门都已经打开。然后,启动电 机,观察泵的转动方向是否正确,如果方向错误,应立即切断电源,将电机接线反过来再试。在启动 后,应检查泵的出口压力和流量是否正常,如果异常应及时处理。
关闭
在关闭泵之前,应先逐渐关闭泵的出口阀门,然后停电机。如果泵的出口有止回阀,则可以同时关闭 出口和进口阀门。在关闭后,应清理泵的周围环境,保持清洁。
,也应进行相应的检查和保养。
04
泵与风机的节能技术
BIG DATA EMPOWERS TO CREATE A NEW

泵与风机的运行和调节

泵与风机的运行和调节

之与汽轮机排汽量达到自动
H A


M1 M2
Hc-qV M
H-qV
qVM1 qVM2
qVM qV
平衡。
适用场合:汽蚀调节方式一般多在中小型火力发电厂的凝结水泵上采 用,而大型机组则不宜采用汽蚀调节。H-qV和Hc-qV→平坦→流量调节 范围↑。注意:排汽量↓→泵内汽蚀↓。为使长期处于低负荷下的凝 结水泵安全运行,在设计制造方面应采用耐汽蚀材料;在运行中,可 考虑同时应用分流调节。
续向右移动,直到M点。若向左移动,泵与风机产生的能量小于管路
需要的能量,流速减小,流量降低,工作点继续向左移动,直到流量
为零。
§3-2 泵与风机的串、并联工作
• 一、泵与风机的并联工作(以泵为例说明)
1、什么是并联工作:两台或两台以上的泵向同一压力管路输送流体 的运行方式。 2、并联运行的目的:一般来说,并联运行的主要目的包括:增大流 量;台数调节;一台设备故障时,启动备用设备。 3、并联运行的特点 并联各泵所产生的扬程均相等;而并联后的 总流量为并联各泵所输送的流量之和。即:
§3-2 泵与风机的串、并联工作
• 二、泵与风机的串联工作(以泵为例说明) • 4、串联运行工作点
H C
O
M
Hc-qV
H-qV qV
§3-2 泵与风机的串、并联工作
二、泵与风机的串联工作(以泵为例说明)
5、串联运行中应注意的问题: (1)适宜场合:Hc-qV较陡,H-qV较平坦。 (2)安全性:经常并联运行的泵, 应由qVmax Hg(或Hd) 防
二、变速调节 • 变速调节分类:
§3-3 运行工况的调节
二、变速调节 • 液力耦合器
§3-4 叶片的切割与加长

泵与风机的运行

泵与风机的运行

第十章泵与风机的运行1.本章教学提纲:一、管路特性曲线及工作点: 泵与风机的性能曲线,只能说明泵与风机自身的性能,但泵与风机在管路中工作时,不仅取决于其本身的性能,而且还取决于管路系统的性能,即管路特性曲线.二、泵与风机的联合工作:当采用一台泵或风机不能满足流量或能头要求时,往往要用两台或两台以上的泵与风机联合工作。

泵与风机联合工作可以分为并联和串联两种。

三、运行工况的调节:泵与风机运行时,由于外界负荷的变化而要求改变其工况,用人为的方法改变工况点则称为调节。

工况点的调节就是流量的调节,而流量的大小取决于工作点的位置,因此,工况调节就是改变工作点的位置。

通常有以下方法,一是改变泵与风机本身性能曲线;二是改变管路特性曲线;三是两条曲线同时改变。

四、运行中的主要问题:(1)泵与风机的振动:汽蚀引起振动,旋转失速(旋转脱流)引起振动,机械引起的振动(2)噪声(3)磨损2.本章基本概念:一、管路特性曲线:管路中通过的流量与所需要消耗的能头之间的关系曲线二、工作点:将泵本身的性能曲线与管路特性曲线按同一比例绘在同一张图上,则这两条曲线相交于某一点,该点即泵在管路中的工作点。

三、泵与风机的并联工作:并联系指两台或两台以上的泵或风机向同一压力管路输送流体的工作方式,并联的目的是在压头相同时增加流量。

四、泵与风机的串联工作:串联是指前一台泵或风机的出口向另一台泵或风机的人口输送流体的工作方式,串联的目的是在流量相同时增加压头。

3.本章教学内容:第一节管路特性曲线及工作点泵与风机的性能曲线,只能说明泵与风机自身的性能,但泵与风机在管路中工作时,不仅取决于其本身的性能,而且还取决于管路系统的性能,即管路特性曲线。

由这两条曲线的交点来决定泵与风机在管路系统中的运行工况。

一、管路特性曲线现以水泵装置为例,如右图所示,泵从吸人容器水面A—A处抽水,经泵输送至压力容器B—B,其中需经过吸水管路和压水管路。

下面讨论管路特性曲线。

流体机械8-泵与风机的运行调节讲解

流体机械8-泵与风机的运行调节讲解

泵的工作范围
2019/6/10
38
叶轮的切割方式
2019/6/10
39
练习
转速为n1=2900r/min的离心水泵,流量与扬
q m / s 程 为 采性 用HC能 变曲 速60线调 9如节00图,0q所离V2(示心,泵qVV管向路管单性路位能供m给曲3 /的线s)流方3。程若式
量 qV 200m3 / h
2019/6/10
28
2019/6/10
29
动叶调节机构
1、动叶调节方式:
(1)停机调节方式:在泵与风机停机时, 改变动叶安装角,而在运行中不能调节。 设备造价低,结构较简单,可靠性也高。
(2)运行调节方式:在泵与风机在运行中, 通过传动装置随时改变动叶安装角进行调 节。
2、其传动方式:有机械式和液压式两种。 机械式传动装置靠转换器实现转动与移动 转换,液压式靠活塞与伺服油缸之间实现 转动与移动转换。
,这时转速n2为多少?
2019/6/10
40
H (m)
n1=2900r/min
120
HC 60 9000qV2
qV 单位m3 / s 80
qV 2 200m3 / h
求n2?
40
qV H
0
80
160
240
qV (m3 / h)
2019/6/10
41
对泵与风机进行改造,一个重要方法就是 切割或加长叶轮叶片。
切割叶轮叶片外径将使泵与风机的流量、 扬程(全压)及功率降低;加长叶轮外径 则使流量、扬程(全压)及功率增加。
2019/6/10
33
2019/6/10
34
qV ( D2 )2 qV D2

《泵与风机》课件——第八章 泵与风机的运行

《泵与风机》课件——第八章  泵与风机的运行

稳定工作点
流体在管路中流动时,都是依靠静压来克服管道
阻力,因此风机的工作点由静压性能曲线与管路系统
特性曲线的交点M来决定。
图中竖线是动压
10
泵和风机的工作点及运行稳定性
二、泵和风机工作的不稳定性
1.不稳定工作点
具有驼峰形性能曲线的泵和风机
会出现两个工作点,M1和M2。
11
泵和风机的工作点及运行稳定性
2.喘振现象及其预防措施
当泵和风机具有驼峰性能曲线,又配有大容量的管路系统时,可能
会出现流量、能头的大幅度波动,引起泵或风机及其管路系统的周期性剧
烈震动,并伴有强烈的噪声,这种现象称为喘振或飞动现象。
13
泵和风机的工作点及运行稳定性
2.喘振现象及其预防措施
当系统需要的流量小于qvk时,关小阀门,
管路特性曲线变陡,工作点应移至B点,但管路
当泵和风机在M2左侧工作时,泵所
产生的能量小于管路所需,这时流量就会减
小。当泵和风机在M2右侧工作时,泵所产
生的能量大于管路所需,这时流量就会增大。
这也就是说。一遇到扰动,泵和风机就会离
开原来的工作点,不能自动回到原来位置。
故M2称为不稳定工作点。
试分析M1是否为稳定工作点。
12
泵和风机的工作点及运行稳定性
➢ 并联工作后的总流量大于每
台泵单独工作时的流量,但
并联工作时每台泵的流量比
单独工作时减少了。
➢ 两台泵并联后的总流量小于
两台泵单独工作时流量之和。
锅炉给水泵的调节方式
扬程
>
并联后的总扬程比每台泵单独
工作时高。这是因为输送的管路仍
是原有的,而管路的阻力损失随流

第五章--泵与风机的运行

第五章--泵与风机的运行
QK1 QK2 QM1 QK1 QK2 QM 2
QM1 QK1 QM 2 QK 2 PM1 PK1 PM 2 PK 2
第五节 通风机联合工作 38
P
( P ~ Q) II
( P ~ Q) I
( P ~ Q)网
K1 K2 M1 M2
K
( P ~ Q)等
Q
等效风机法
P
K
第五节 通风机联合工作 42
在同一坐标系中作出风(机)I、
风(机)II、网路的全(静)压特性
曲线。
P
( P ~ Q) I
( P ~ Q)网
( P ~ Q) II
Q
第五节 通风机联合工作
43
求等效网路(网路+风机I)的全(静) 压特性曲线,等压力下流量相减。 P等=P网=PI, Q等=Q网-QI
( P ~ Q) I
q 'V D '2 b '2 v '2 m D '2 v '2 m D '2 qV D2b2v2 m D2v2 m D2 H ' u '2 v '2u D '2 H uv2u D2
2 2
p ' D '2 p D2

' Hx
p a pv NPSH hx g
设计或使用的吸水高度:
' Hx Hx
二、风机的正常工作条件 1、稳定工作条件: ▲轴流风机工况点在最高压头右侧,避免工况 点进入最大压头点左侧,即 p≤pmax 2、经济性工作条件。同泵 特别注意,离心风机前导叶调节时效率下 降比较大的问题。
4.3 1、节流调节
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•应用:两台50%给水泵、送、引风机并联使用 •前置泵、给水泵串联;长距离渣浆管线冲水泵串联
11
串联运行时应注意的问题
1 宜适场合:管路性能曲线较陡,泵性能曲线较平坦。
2 安全性:经常串联运行的泵, 应由qVmaxHg(或Hd) 防止汽蚀; 应按Pshmax Pgr 驱动电机不致过载。
3 经济性:对经常串联运行的泵,应使各泵最佳工况点的流量相等或 接近。
容积式泵与风机所提供的压头完全取决于 管路情况(正位移特性),在泵出口安装 调节阀不能调节流量,压头且随阀门开启 度减小而增大。若出口阀完全关闭则会使 泵的压头剧增,一旦超过泵的机械强度或 发动机的功率限制,设备将受到损坏。必 须 采用旁通调节。
•经济性比节流调节还差,而且会干扰泵与风机入口的流体流动, 影响效率。但锅炉给水泵为了防止在小流量区可能发生汽蚀而设置 再循环管,进行旁通调节。
侧才能正常工作,G左侧,只有II
工作,流量无法增加,甚至还能通
过I倒流, I起并联分流作用。
H
• 并联运行的经济性,需要根据各机 II
的效率曲线而定,如图CE改成CE’, I 对机II效率提高有利,而不利于I机。H并
• 具有驼峰曲线的泵和一台稳定的泵 H
G I+II
d1 D1 d2 D2
并联后,合成曲线也不稳定.
• 总扬程比每台泵单独运行时的 扬程提高了。因为管路流量增
加,阻力增加,所需要的扬程 必然增加。
• 单台并联功率比单独运行的时 候减小,因为功率随着流量上 升而增加。
• 泵(管路)性能曲线越平坦, 并联后的总流量增加得越多。
H
B
A H并
H
C
Q
0
Q
Q
qV


7
不同性能泵并联运行
• 并联后合成性能曲线只有在G点右
I+II
H II
HB2 I HB1
D
A D2
D1
A2
C
A1
0
Q单= Q串
9
E’ E qV
串联并联比较
10
10
对于低阻输送管路a,并联 组合泵流量的增大幅度大于 串联组合泵;
对于高阻输送管路b,串联 组合泵的流量增大幅度大于 并联组合泵。
低阻输送管路(平坦)---并联优于串联;
高阻输送管路(陡峭)---串联优于并联。
优点:构造简单、装置尺寸小、运行可靠 和维护管理简便、初投资低。
20
适用场合:目前,离心式风机普遍采用这种调节方式。对于 大型机组离心式送、引风机,由于调节范围大,可采用入口导叶 和双速电机的联合调节方式,以使得在整个调节范围内都具有较 高的调节经济性。
2、轴流式和混流式风机的入口静叶调节
入口静叶结构:
4 并联台数:从并联数量来看,台数愈多并联后所能增加 的流量越少,即每台泵输送的流量减少,故并联台数过多并不 经济。
13
13
第三节 泵与风机的工况调节
一.改变管路性能曲线
h
1.节流调节
出口端节流调节增加管路阻力,管路 H 曲线变陡,工作点流量减小。泵与风 C 机的输送功率不变,多余的损失发生
η
0
qVB qVA qVD qV 流体减速,流量减小 流体能量不足
两条相互独立的性能曲线(泵与风机性能曲线&管路性能曲线) 的交点A即为工作点。
由于只有静压才能真正克服管路阻力,因此,风机用静压工作点 来表示。
工作点应该选择在既能满足工程要求,而又处在泵或风机的高效 率范围内。
3
3
三.泵与风机的稳定工作条件
M’
Q2 Q1 Q
Q’ Q
特点:操作简便、经济性很差, 减小主管的流量反而使泵的流 量和轴功率增加。
16
16
二.改变泵和风机的性能曲线
1.变速调节
• 水泵节能(有一定初始阻力):
P P1 P2 gqV1H /
• 风机节能:流量、全压、功率分别与 转速的一、二、三次方成正比。
• Q2/Q1=n2/n1 • H2/H1=(n2/n1)2
12
并联运行时应注意的问题
1 宜适场合:管路性能曲线较平坦,泵性能曲线较陡。
2 安全性:并联运行的泵, 流量比单独运行的时候要小,汽 蚀情况变好;要注意从Pshmax Pgr 驱动电机不致过载。
3 经济性:对经常并联运行的泵,为保证并联泵运行时都 在高效区工作,应使各泵最佳工况点的流量相等或接近。
流量平衡:总流量和串联后单台 泵的流量相同。 扬程叠加:总扬程等于串联后单 台泵的扬程之和。 和串联前比:总流量和扬程都增 加,每台泵的扬程比单独运行时 低。串联台数越多,扬程下降越 多。 管路配合:管路性能越陡峭,扬 程增加越明显。 扬程逐级提高:要求末级泵的强 度高,以免受损。
H HL
H串V
H2
C
η1
A1 η2 A2
• 所以,不同性能的泵并联运行,它 们的性能曲线差异不要太大,否则 0
Q
QI
QII
并联后泵输送的流量差别太大。
E’ AE
Q qV 并
8
8
二.串联运行
相同型号泵或风机串联,则每台泵的压头和流量各自相同。因此
同一流量下,两台串联泵的压头为单台泵的两倍,H串=2H单。 总性能曲线由两台泵的性能曲线在同一流量下叠加而成。
23
3、离心泵的叶轮切割
切割定律:根据比转速的不同, 分成高、低比转速的切割定律
H
R
b2= b’2
D2b2= D’2b’2
H’
P
P’
D2
PA
D’2
PB
qV qV
D2 D2
2
qV D2 qV D2
η
H H
D2 D2
2
H H
D2 D2
2
Δhr
Q’
Q
Psh Psh
D2 D2
4
Psh Psh
5
5
风机的不稳定工作不仅表现在风机的流量为零,而且可能出现负值 (倒流),称为喘振。
轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行 有时会出现风机的流量、压头、和功率的大幅度脉动等不正常工况, 一般称为“喘振”,这一不稳定工况区称为喘振区。
实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域 内必然要出现不正常的空气动力工况则是旋转脱流或称旋转失速。
15
打开旁通阀并调节其开度,实际改变了管路特性曲线。 打开旁通阀,管路阻力减小,管路特性曲线变平,工作点由M→M’ 点,泵流量增大,主管流量变小,旁通管有液流。
Q1
H
R’2新增旁通管路的
Q2
特性 (全开)
M
R1旁通阀全关 时管路特性
R旁通阀全开
时管路特性
Q’
} 旁通管流量0~Q2
主管流量Q~Q1
Q~Q’泵出 口流量
在调节阀的节流损失上。
0
--损失大,简单,轴流式不用该方式
E’ E
E’’
η1
Q1 Q Q2
qV
• 入口端节流调节减少了进入风机的流量,改变风机的性能曲线, 能减少节流损失。但是入口端节流使得当地压强降低,水泵容易 产生气蚀,因此,水泵不能使用入口节流调节。
14
2.旁通调节
将泵或风机出口的部分流量旁通回泵或 风机的入口。
N2/N1=(n2/n1)3
• 流量减少一半,轴功率可以减少87.5%!而采用节流调节,即使 阀门全关,轴功率也大约只能减少到全开时的45%~65%。
17
【例】 试定性比较泵出口节流调节与变速调节的经济性。
【解】 变速后的运行工况点为A;节流后的运行工况点为B 点; 过A点的相似抛物线OAC交泵的性能曲线于C ( A ∽C )。
变为零。
•水池水面开始下降,但即使管道性能曲线与泵的 性能曲线相交于两点,此时泵的流量仍为零,泵的
qV 工况停留在最左端。
直至水池液面降低到II曲线以下,如I曲线所示,此时泵所能提供的扬程比管路 所需的要大,泵重新开始送水,流量突升为qVB 。 当风机向压力容器(或密闭的房间)或容量很大的管道送风时,也可能发生此 种不稳定的运行。 泵或风机的驼峰形性能曲线是产生不稳定运行的内在因素,但是否发生还要看 管路性能曲线的外在影响。
入口静叶 出口静叶
动叶
入口静叶 调节机构
21
2)轴流式和混流式风机的入口静叶调节 工作原理:
与离心式风机轴向导流 器相似。
调节特性:
1 双向: 正预旋→减 小流量。
2 MCR点选在max点, TB点选择在max点的大流量侧。
100%机组额定负 荷流量工况点
安全流量的 最大流量点
负预旋调节
22
2)轴流式和混流式风机的入口静叶调节 经济性及其适用场合: 比只能作正预旋调节的 离心风机入口导流器调节具 有更高的运行经济性。 故国内火力发电厂的锅 炉引风机有不少均采用了入 口静叶调节的子午加速轴流 式风机。
0
1
2
3
4
5
6
7
8
9 10 11
33.8 34.7 35 34.6 33.4 31.7 29.8 27.4 24.8 21.8 18.5 15
1)离心式风机的入口导叶调节
常用导流器结构:
(a)轴向导流器
(b)简易导流器
(c)斜叶式导流器
19
19
工作原理: pT=(u22u-u11u)
导流器的作用:
正预旋→1u 和2u→ pT
节流→风机内部局部阻力损失和冲击损失
经济性:和出口节流相比,分析计算表 明:4-73型锅炉送、引风机, 当调节流 量在60%~90%qV max时, 功率节约:轴 向导流器约15%~24%;简易导流器约 8%~13%。
相关文档
最新文档