中考数学锐角三角函数提高练习题压轴题训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62

23

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt△EFK中,tan∠3

∴∠FEK=30°,∠EKF=60°,

∴EK=2FK=4,OF=1

2

EK=2,

∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,

在Rt△PHF中,PH=1

2

PF=1,3OH=23

∴()2

2

12362

+-=

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,

∴∠BOP=90°,

∴OP=33OE=233

, 综上所述:OP 的长为62 或

233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

2.已知Rt △ABC 中,∠ACB=90°,点D 、E 分别在BC 、AC 边上,连结BE 、AD 交于点P ,设AC=kBD ,CD=kAE ,k 为常数,试探究∠APE 的度数:

(1)如图1,若k=1,则∠APE 的度数为 ;

(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE 的度数.

(3)如图3,若k=3,且D 、E 分别在CB 、CA 的延长线上,(2)中的结论是否成立,请说明理由.

【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.

【解析】

分析:(1)先判断出四边形ADBF 是平行四边形,得出BD=AF ,BF=AD ,进而判断出△FAE ≌△ACD ,得出EF=AD=BF ,再判断出∠EFB=90°,即可得出结论;

(2)先判断出四边形ADBF 是平行四边形,得出BD=AF ,BF=AD ,进而判断出△FAE ∽△ACD ,再判断出∠EFB=90°,即可得出结论;

(3)先判断出四边形ADBF 是平行四边形,得出BD=AF ,BF=AD ,进而判断出

△ACD ∽△HEA ,再判断出∠EFB=90°,即可得出结论;

详解:(1)如图1,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,

∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,

∴BD=AF ,BF=AD .

∵AC=BD ,CD=AE ,

∴AF=AC .

∵∠FAC=∠C=90°,

∴△FAE ≌△ACD ,

∴EF=AD=BF ,∠FEA=∠ADC .

∵∠ADC+∠CAD=90°,

∴∠FEA+∠CAD=90°=∠EHD .

∵AD ∥BF ,

∴∠EFB=90°.

∵EF=BF ,

∴∠FBE=45°,

∴∠APE=45°.

(2)(1)中结论不成立,理由如下:

如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,

∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,

∴BD=AF ,BF=AD .

∵3BD ,3AE , ∴

3AC CD BD AE

==. ∵BD=AF , ∴3AC CD AF AE

==.

∵∠FAC=∠C=90°,

∴△FAE ∽△ACD , ∴3AC AD BF AF EF EF

===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,

∴∠FEA+∠CAD=90°=∠EMD .

∵AD ∥BF , ∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=

3EF BF =, ∴∠FBE=30°,

∴∠APE=30°,

(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,

∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,

∴BE=DH ,EH=BD .

∵3BD ,3AE ,

3AC CD BD AE

==. ∵∠HEA=∠C=90°,

∴△ACD ∽△HEA , ∴

3AD AC AH EH

==∠ADC=∠HAE . ∵∠CAD+∠ADC=90°,

∴∠HAE+∠CAD=90°,

∴∠HAD=90°. 在Rt △DAH 中,tan ∠ADH=

3AH AD

= ∴∠ADH=30°,

∴∠APE=30°.

点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.

相关文档
最新文档