【最新】人教版初中数学知识点汇总(初中数学中考总复习)

合集下载

人教版【初中数学知识点大全】完整版(K12教育文档)

人教版【初中数学知识点大全】完整版(K12教育文档)
S正方形=a2,S环形=π(R2—r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥= πR2h。
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
18.混合运算法则:先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在.重点利用有理数的运算法则解决实际问题.
体验数学发展的一个重要原因是生活实际的需要。激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
10垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直.
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12。平行线的性质:
性质1:两直线平行,同位角相等。
5。近似数3.7x10的二次与近似数370的精确度一样.
1、错。前者精确到十分位(小数点后面一位),后者精确到个位数.
2、错。4千万精确到千万位,4000万精确到万位。
3、对。
4、错.值虽然相等,但是取之范围和精确度不同
5、错.3。7x10^2精确到十位,370精确到个位
相关概念:有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口).

最新人教版初中数学讲义大纲(适用于中考复习)

最新人教版初中数学讲义大纲(适用于中考复习)

人教版初中中考数学复习提纲 1第一章 有理数 2一、正数和负数 31、 正数、负数: 大于零的数叫做正数,小于零的数叫做负数。

4应用:生产收入,海拔高低,气温的冷热,方位的指向,比赛的胜负,比例的增长等等。

5二、有理数 61、概念:整数和分数统称为有理数。

7 2、分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负数零正分数正整数正数或⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 8注:分数和小数可以互化,所以小数可以归为分数类。

93、“0”表示的意义: 10(1)0既不是正数也不是负数(2)0是整数(3)0不是表示没有,有时表示一种趋于正负11的状态(4)0是最小的自然数,即是最小的非负整数(5)0不能作为分母(6)0等相反数是120(7)0的绝对值是0(8)0没有倒数(9)0乘以任何数都为0(10)0除以任何不为0的数13都为0. 144、数轴:通常用一条直线上的点表示数,这条直线叫做数轴。

数轴的三要素:原点,正方15向,单位长度。

16数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左17边的数小于右边的数。

185、相反数:只有符号不同的两个数叫做互为相反数。

与原点距离相等的两个数互为相反数。

19互为相反数的两个数相加得0(a ,b 互为相反数,则a+b=0) 206、绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a| 21 |a|=⎩⎨⎧<-≥)0()0(a a a a22 两个负数,绝对值大的反而小。

23 三、有理数的加减法24 1、有理数的加法:25 (1)加法法则:26 同号两数相加,取相同的符号,并把绝对值相加;27 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去28 较小的绝对值。

互为相反数的两个数相加得0.29 一个数同0相加,仍得这个数。

30 (2)运算律:加法交换律:a+b=b+a ;加法结合律:(a+b )+c=a+(b+c )31 2、有理数的减法:32 减法法则:减去一个数,等于加上这个数的相反数。

2024初中数学知识点中考总复习总结归纳

2024初中数学知识点中考总复习总结归纳

2024初中数学知识点中考总复习总结归纳一、整数和分数运算1.整数的四则运算:加法、减法、乘法、除法2.分数的四则运算:分数的加减法、乘法、除法3.整数与分数的混合运算:转化为同种形式进行运算二、多项式的运算1.单项式与多项式的加减法:同类项的合并2.多项式的乘法:使用分配律展开式相乘,并合并同类项3.多项式的除法:使用长除法进行整除或整除后的简化三、方程与不等式1.一元一次方程:基本概念、解方程的基本方法(逆运算、倒数、代入等)2.一元一次方程的应用:问题转化为方程、代入解的检验等3.一元二次方程的解:配方法、求根公式4.一元二次方程的应用:问题转化为方程、代入解的检验等5.一元一次不等式:基本概念、解不等式的基本方法(逆运算、倒数、代入等)6.一元一次不等式的应用:问题转化为不等式、代入解的检验等四、数形结合与图形的性质1.平面图形的拓展:几何图形的基本概念、性质和判定方法(例如多边形、平行四边形、正方形等)2.三角形与四边形的面积:基本公式的推导和应用3.三角形的相似与全等:判断相似与全等的条件及应用4.圆的性质与关系:圆心角、弧长、扇形和面积的计算5.空间几何体的计算:体积和表面积的计算五、几何与运动的关系1.几何与坐标系:点的坐标及其在平面直角坐标系中的性质2.直线与圆的方程:点斜式、斜截式和截距式的互相转换及应用3.运动方程:速度、时间、距离之间的关系及其应用六、数据与概率1.数据的整理与处理:频数、频率、中位数、众数、范围等的计算和应用2.统计图的绘制与分析:条形图、折线图、扇形图等的绘制和分析3.概率的计算:事件的排列组合、概率的计算公式以上是2024初中数学中考的一些重要知识点的总结归纳,希望对您的复习有帮助。

初中数学知识点汇总

初中数学知识点汇总

数学中考知识点系统总结专题一 数与式考点1.1、实数的概念及分类1、 实数的分类有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无理数:无限不环循小数叫做无理数如:π,-,0.1010010001…(两个1之间依次多1个0).实数:有理数和无理数统称为实数.2、无理数在理解无理数时,要抓住“无限不循环”这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:“神似”或“形似”都不能作为判断的标准.3、非负数:正实数与零的统称。

(表为:x ≥0)常见的非负数有:实数负数整数 分数无理数 有理数 正数 整数 分数 无理数有理数 实数无理数(无限不循环小数)有理数 正分数 负分数正整数 0负整数 (有限或无限循环性数) 整数分数正无理数 负无理数│a │2a a (a ≥0)(a 为一切实数)性质:若干个非负数的和为0,则每个非负担数均为0。

4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(“三要素”) ②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

人教版中考数学知识点总结

人教版中考数学知识点总结

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

新人教版初中数学——定义、命题、定理-知识点归纳及中考典型题解析

新人教版初中数学——定义、命题、定理-知识点归纳及中考典型题解析

新人教版初中数学——定义、命题、定理知识点归纳及中考题型解析一、定义与命题1.一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.2.判断一件事情的语句叫做命题.3.命题的组成:命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.4.命题的表达形式:命题可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.二、真命题、假命题1.正确的命题叫做真命题.2.要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明(推理、证明).3.要说明一个命题是假命题,只需举一个反例即可.三、逆命题1.把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题.2.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个命题就叫做它的逆命题.3.正确写出一个命题的逆命题的关键是能够正确区分这个命题的题设和结论.4.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.四、公理与定理1.如果一个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫做公理.2.如果一个命题可以从公理或其他命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫做定理.3.公理和定理都是真命题,都可作为证明其他命题是否为真命题的依据.4.由定理直接推出的结论,并且和定理一样可作为进一步推理依据的真命题叫做推论.五、互逆命题1.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.2.任何一个命题都有逆命题,而一个定理并不一定有逆定理.3.角平分线性质定理及其逆定理、线段的垂直平分线性质定理及其逆定理、勾股定理及其逆定理等都是互逆定理.六、反证法1.定义:假设命题的结论不成立,即命题结论的反面成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明方法叫做反证法.2.反证法的步骤:①假设命题结论的反面正确;②从假设出发,经过逻辑推理,推出与公理、定理、定义或已知条件相矛盾的结论;③说明假设不成立,从而得出原命题正确.考向一命题的改写每一个命题都是由题设和结论两部分组成的,所以找出一个命题的题设和结论是十分重要的.但有些命题的题设和结论不明显,它不是以“如果……那么……”的形式给出的.区分这类命题的题设和结论的具体方法:添上省去的词语后再进行分析.典例1把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_________.【答案】如果作两个邻补角的角平分线,那么这两条角平分线互相垂直【解析】如果的后面是条件,那么的后面是结论,注意语句的通顺,表达的准确.故答案为如果作两个邻补角的角平分线,那么这两条角平分线互相垂直.1.【浙江省绍兴市浣江教育集团2018–2019学年八年级上学期期中数学试题】把命题“同角的余角相等”改写成“如果…那么…”的形式_________.考向二真命题、假命题1.判断语句是否为命题要抓住两条:①命题必须是一个完整的带有判断性的句子,通常是陈述句(包括肯定句和否定句),而疑问句和命令性语句都不是命题;②命题必须对某件事作出肯定或否定的判断.2.辨别命题的真假时,对命题的正确性理解一定要准确,进行辨别时要熟练掌握相关的定理、公理、定义.要说明一个命题是假命题,通常可以通过举反例的方法解决.命题的反例是具备命题的条件,但不具备命题的结论的实例.典例2下列命题是真命题的是A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形【答案】C【解析】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选C.2.下列命题中,假命题的是A.直角三角形斜边上的高等于斜边的一半B.圆既是轴对称图形,又是中心对称图形C.一组邻边相等的矩形是正方形D.菱形对角线互相垂直平分考向三互逆命题与互逆定理1.如果两个命题的题设和结论正好相反,那么这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,则称这两个定理互为逆定理,其中一个定理叫做另一个定理的逆定理.3.“题设与结论正好相反”可理解为第一个命题的题设是第二个命题的结论,第一个命题的结论是第二个命题的题设.典例3下列命题中,逆命题为真命题的是A.对顶角相等B.若a=b,则|a|=|b|C.同位角相等,两直线平行D.若ac2<bc2,则a<b【答案】C【解析】A、对顶角相等的逆命题是两个相等的角是对顶角,假命题;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,假命题;C、同位角相等,两直线平行的逆命题是两直线平行,两直线平行,真命题;D、若ac2<bc2,则a<b的逆命题是若a<b,则ac2<bc2,假命题;故选C.3.“内错角相等,两直线平行”的逆命题是__________.4.有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端点的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是A.1个B.2个C.3个D.4个考向四反证法①当命题的结论涉及“否定”“至多”“至少”“无限”“无数”“唯一”时常用反证法.②矛盾的类型:a.与已知定义、定理、公理相矛盾;b.与已知条件相矛盾;c.推出自相矛盾的结果.③用反证法证明问题的关键是清楚结论的反面是什么,有哪些情况,不要遗漏;利用反证法证明时,每一步都要有依据,直到推出矛盾.典例4【福建省福州市仓山区福州时代中学2019–2020学年九年级上学期10月月考数学试题】用反证法证明命题“三角形中最多有一个角是直角”时,下列假设正确的是A.三角形中最少有一个角是直角B.三角形中没有一个角是直角C.三角形中三个角全是直角D.三角形中有两个或三个角是直角【答案】D【解析】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选D.【名师点睛】本题考查反证法,判断命题的反面是解题的关键.∥”,第一步应假设:5.用反证法证明“若a c,b c∥,则a b∥B.a与b垂直A.a bC.a与b不一定平行D.a与b相交6.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_________.1.下列命题为真命题的是A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为1802.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是A.120°,60°B.95°,105°C.30°,60°D.90°,90°3.下列命题的逆命题是真命题的是A.若a>0,b>0,则a+b>0 B.直角都相等C.同位角相等,两直线平行D.若a=b,则|a|=|b|4.下列命题:①长度相等的弧是等弧;②任意三点确定一个圆;③相等的圆心角所对的弦相等;④外心在三角形的一条边上的三角形是直角三角形,其中真命题有A.0个B.1个C.2个D.3个5.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是A.a=3,b=2 B.a=3,b=–2C.a=–3,b=–2 D.a=–2,b=–36.写出一个能说明命题:“若22a b>,则a b>”是假命题的反例:__________.7.请写出“四条边相等的四边形是菱形”的逆命题:__________.8.命题“同位角相等,两直线平行”的逆命题是:_____.9.已知命题“关于x的一元二次方程x2+bx+14=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是__________.10.若命题“12xy=⎧⎨=-⎩不是方程ax–2y=1的解”为假命题,则实数a满足:__________.11.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.12.定理:直角三角形斜边上的中线等于斜边的一半.(1)写出这个定理的逆命题;(2)判断逆命题的真假并说明你的理由.13.写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果0a =,0b =,那么0ab =. (2)对顶角相等.13.如图,点D ,E 在△ABC 的边BC 上,连接AD ,AE .①AB =AC ;②AD =AE ;③BD =CE .以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题: A :①②⇒③;B :①③⇒②;C :②③⇒①.(1)以上三个命题是真命题的为__________(直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).14.阅读以下证明过程:已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.请用类似的方法证明以下问题:已知:关于x的一元二次方程x2-(m+1)x+2m-3=0有两个实根x1和x2.求证:x1≠x2.1.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为A .﹣2B .﹣12C .0D .122.下列命题是真命题的是 A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是矩形 C .对角线互相垂直的矩形是正方形 D .四边相等的平行四边形是正方形3.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是 A .1B .2C .3D .44.下列命题是假命题的是A .到线段两端点距离相等的点在线段的垂直平分线上B .等边三角形既是轴对称图形,又是中心对称图形C .n 边形(3)n ≥的内角和是180360n ︒︒-D .旋转不改变图形的形状和大小 5.下列命题正确的是 A .矩形对角线互相垂直 B .方程214x x =的解为14x = C .六边形内角和为540°D .一条斜边和一条直角边分别相等的两个直角三角形全等 6.下列命题中假命题是 A .对顶角相等B .直线5y x =-不经过第二象限C .五边形的内角和为540︒D .因式分解()322x x x x x x ++=+7.下列命题是真命题的是A .两边及其中一边的对角分别相等的两个三角形全等B .平分弦的直径垂直于弦C .对边平行且一组对角相等的四边形是平行四边形D .两条直线被第三条直线所截,内错角相等 8.下列说法正确的是①函数y =x 的取值范围是13x .②若等腰三角形的两边长分别为3和7,则第三边长是3或7. ③一个正六边形的内角和是其外角和的2倍. ④同旁内角互补是真命题.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根.A .①②③B .①④⑤C .②④D .③⑤9.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是 A .①②③④B .①③④C .①③D .①10.下列说法正确的是A .有两边和一角分别相等的两个三角形全等B .有一组对边平行,且对角线相等的四边形是矩形C .如果一个角的补角等于它本身,那么这个角等于45°D .点到直线的距离就是该点到该直线的垂线段的长度 11.下列命题是真命题的是A .同旁内角相等,两直线平行B .对角线互相平分的四边形是平行四边形C .相等的两个角是对顶角D .圆内接四边形对角相等 12.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等; ③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等; ⑤在同一平面内,过一点有且只有一条直线与已知直线垂直; 其中真命题的个数有 A .1个B .2个C .3个D .4个13.下列命题是假命题的是A .n 边形(3n ≥)的外角和是360︒B .线段垂直平分线上的点到线段两个端点的距离相等C .相等的角是对顶角D .矩形的对角线互相平分且相等14.下列命题是假命题的是A .平行四边形既是轴对称图形,又是中心对称图形B .同角(或等角)的余角相等C .线段垂直平分线上的点到线段两端的距离相等D .正方形的对角线相等,且互相垂直平分15.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为A .0B .1C .2D .316.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为A .1m =-B .0m =C .4m =D .5m =17.下列命题是假命题的是A .函数35y x =+的图象可以看作由函数31y x=﹣的图象向上平移6个单位长度而得到 B .抛物线234y x x =﹣﹣与x 轴有两个交点C .对角线互相垂直且相等的四边形是正方形D .垂直于弦的直径平分这条弦18.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).19.【安徽省2019年中考数学试题】命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为____________________________.1.【答案】如果两个角是同一个角的余角,那么这两个角相等.【解析】根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.2.【答案】A【解析】直角三角形斜边上的中线等于斜边的一半,A是假命题;圆既是轴对称图形,又是中心对称图形,B是真命题;一组邻边相等的矩形是正方形,C是真命题;菱形对角线互相垂直平分,D是真命题;故选A.3.【答案】两直线平行,内错角相等【解析】“内错角相等,两直线平行”的条件是:内错角相等,结论是:两直线平行.将条件和结论互换得逆命题为:两直线平行,内错角相等.故答案为:两直线平行,内错角相等.4.【答案】A【解析】若x2=x,则x=1或x=0,所以原命题错误;若x=1,则x2=x,所以原命题的逆命题正确;若a2=b2,则a=±b,所以原命题错误;若a=b,则a2=b2,所以原命题的逆命题正确;线段垂直平分线上的点到线段两端点的距离相等,所以原命题正确;到线段两端点的距离相等的点在线段的垂直平分线上,所以原命题的逆命题正确;相等的弧所对的圆周角相等,所以原命题正确;相等的圆周角所对弧不一定相等,所以原命题的逆命题错误.故选A.5.【答案】D【解析】∵反证法证明“若a∥c,b∥c,则a∥b”,∴一步应假设a与b不平行,即:a,b相交.故选D.【名师点睛】此题主要考查了用反证法证明的基本步骤,在中考中经常以这种题型出现.【名师点睛】本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.6.等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.故答案是:等腰三角形的两底都是直角或钝角.1.【答案】A【解析】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【名师点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.【答案】D【解析】∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选D.考点:本题考查的是两角互补的定义【名师点睛】解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.3.【答案】C【解析】A、若a>0,b>0,则a+b>0的逆命题为若a+b>0,则a>0,b>0,错误,为假命题;B、直角都相等的逆命题为相等的角都是直角,错误,为假命题;C、同位角相等,两直线平行的逆命题为两直线平行,同位角相等,为真命题;D、若a=b,则|a|=|b|的逆命题为若|a|=|b|,则a=b,错误,为假命题,故选C.【名师点睛】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、直角的定义、平行线的性质及绝对值的意义,难度不大.4.【答案】B【解析】①等弧必须同圆中长度相等的弧,故本选项错误.②不在同一直线上任意三点确定一个圆,故本选项错误.③在等圆中相等的圆心角所对的弦相等,故本选项错误.④外心在三角形的一条边上的三角形是直角三角形,故本选项正确.所以只有④一项正确.故选B.5.【答案】C【解析】当a=3,b=2时,a2>b2,而a>b成立,故A选项不符合题意;当a=3,b=–2时,a2>b2,而a>b成立,故B选项不符合题意;当a =–3,b =–2时,a 2>b 2,但a >b 不成立,故C 选项符合题意;当a =–2,b =–3时,a 2>b 2不成立,故D 选项不符合题意;故选C .6.【答案】2,1a b =-=(注:答案不唯一)【解析】当2,1a b =-=时,222(2)4,1a b =-==根据有理数的大小比较法则可知:41,21>-<则此时满足22a b >,但不满足a b >因此,“若22a b >,则a b >”是假命题故答案为:2,1a b =-=.(注:答案不唯一)【名师点睛】本题考查了假命题的证明方法,掌握反例中题设与结论的特点是解题关键. 7.【答案】菱形的四条边相等【解析】“四条边相等的四边形是菱形”的逆命题为“菱形的四条边相等”.故答案为:菱形的四条边相等.8.【答案】两直线平行,同位角相等【解析】命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为“两直线平行,同位角相等”.9.【答案】当b =–12,方程没有实数解 【解析】∵b =–12时,Δ=(–12)2–4×14<0,∴方程没有实数解.∴当b =–12,方程没有实数解可作为说明这个命题是假命题的一个反例.故答案为:当b =–12,方程没有实数解. 10.【答案】a =–3【解析】当x =1、y =–2时,a +4=1,解得a =–3,故当a =–3时,12x y =⎧⎨=-⎩是方程ax –2y =1的解,则a =–3时,可以说明命题“12x y =⎧⎨=-⎩不是方程ax –2y =1的解”为假命题,故答案为:a =–3. 11.【解析】已知:∠1=∠2,∠B =∠C ;求证:∠A =∠D .证明:如图,∵∠1=∠3,∠1=∠2,∴∠3=∠2,∴EC ∥BF ,∴∠AEC =∠B .又∵∠B =∠C ,∴∠AEC =∠C ,∴AB ∥CD ,∴∠A =∠D .12.【解析】(1)直角三角形斜边上的中线等于斜边的一半的逆命题为:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(2)真命题.证明如下:已知:如图,在△ABC 中,点D 是AB 的中点,连接CD ,且CD =12A B .求证:△ABC 是直角三角形.证明:∵点D 是AB 的中点∴AD =BD∵CD =12AB , ∴AD =BD =CD ,∴∠DAC =∠ACD ,∠DCB =∠DBC∵∠DAC +∠ACD +∠DCB +∠DBC =180°∴∠ACD +∠DCB =90°,即∠ACB =90°∴△ABC 是直角三角形.【名师点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.13.【解析】(1)逆命题:如果0ab =,那么0a =,0b =;假命题.(2)逆命题:如果两个角相等,那么这两个角是对顶角;假命题.【名师点睛】此题考查命题与定理,解题关键在于掌握判定定理.14.【解析】假设x 1=x 2,则[-(m +1)]2-4(2m -3)=0,整理得:m2-6m+13=0,而m2-6m+13=(m-3)2+4>0,与m2-6m+13=0矛盾,故假设不成立,所以x1≠x2.1.【答案】A【解析】当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选A.【名师点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2.【答案】C【解析】A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直的矩形是正方形,所以C选项正确;D、四边相等的菱形是正方形,所以D选项错误.故选C.【名师点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.【答案】A【解析】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选A.【名师点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.【答案】B【解析】A 、到线段两端点距离相等的点在线段的垂直平分线上,正确,是真命题;B 、等边三角形是轴对称图形,但不是中心对称图形,错误,是假命题;C 、n 边形(3)n ≥的内角和是180360n ︒︒-,正确,是真命题;D 、旋转不改变图形的形状和大小,正确,是真命题,故选B .【名师点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【答案】D【解析】A .矩形对角线互相垂直,不正确;B .方程x 2=14x 的解为x =14,不正确;C .六边形内角和为540°,不正确;D .一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D .【名师点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.6.【答案】D【解析】A .对顶角相等;真命题;B .直线5y x =-不经过第二象限;真命题;C .五边形的内角和为540︒;真命题;D .因式分解()322+1++=+x x x x x x ;假命题;故选D .【名师点睛】本题考查了命题与定理、真命题和假命题的定义:正确的命题是真命题,错误的命题是假命题;属于基础题.7.【答案】C【解析】A 、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A 错误,是假命题; B 、平分弦(非直径)的直径垂直于弦,故B 错误,是假命题;C 、一组对边平行且一组对角相等的四边形是平行四边形,故C 正确,是真命题;D 、两条平行线被第三条直线所截,内错角相等,故D 错误,是假命题;故选C .【名师点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.【答案】D【解析】①函数y =x 的取值范围是13x >-,故错误. ②若等腰三角形的两边长分别为3和7,则第三边长是7,故错误.③一个正六边形的内角和是其外角和的2倍,正确.④两直线平行,同旁内角互补是真命题,故错误.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根,正确, 故选D .【名师点睛】此类题的知识综合性非常强.要求对每一个知识点都要非常熟悉.注意:二次根式有意义的条件是被开方数是非负数,分式有意义的条件是分母不等于0,弄清等腰三角形的三线合一指的是哪三条线段,熟悉多边形的内角和公式和外角和公式,熟练配方法的步骤;理解正多边形内角和外角关系;熟记根判别式.9.【答案】C【解析】①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题; ②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题; ④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题;故选C .【名师点睛】本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.10.【答案】D【解析】A .有两边和一角分别相等的两个三角形全等;不正确;B .有一组对边平行,且对角线相等的四边形是矩形;不正确;C .如果一个角的补角等于它本身,那么这个角等于45°;不正确;。

新人教版初中数学[中考总复习:数与式综合复习--知识点整理及重点题型梳理](基础)

新人教版初中数学[中考总复习:数与式综合复习--知识点整理及重点题型梳理](基础)

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:数与式综合复习—知识讲解(基础)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c =a+(b+c); 乘法交换律 ab =ba ;乘法结合律 (ab)c =a(bc); 分 配 律 a(b+c)=ab+ac .(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减. 算式里如果有括号,先进行括号内的运算. 如果只有同一级运算,从左到右依次运算. 7.平方根如果x 2=a ,那么x 就叫做a 的平方根(也叫做二次方根). 要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根. 8.算术平方根正数a 的正的平方根,叫做a 的算术平方根.零的算术平方根是零. 要点诠释:从算术平方根的概念可以知道,算术平方根是非负数. 9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字. 10.科学记数法把一个数记成±a ×10n的形式(其中n 是整数,a 是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质 1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式:(1(2)a a +-互为有理化因式;一般地a a +-(3. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a aa b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m mm ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1pp a a-=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,172,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(33256、、,…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数, 故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题. 举一反三:【课程名称:数与式综合复习 402392 :例1—2】【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭;【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭21.50.4 1.4 1.5 1.42.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2, ∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义? (1)32x -; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围.【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0,∴ 当12x ≤,且x ≠-5时,125x x -+有意义.【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【课程名称:数与式综合复习 402392 :例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7… 黑白两种瓷砖的总块数 15 25… (2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下:图形 (1) (2) (3)… 黑色瓷砖的块数 4 7 10… 黑白两种瓷砖的总块数 15 25 35 …(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,精品文档 用心整理资料来源于网络 仅供免费交流使用 解得:n=503答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=22(35)7113++=(cm). 113。

中考总复习初中数学复习资料大全(精华版)

中考总复习初中数学复习资料大全(精华版)

中考总复习初中数学复习资料大全(精华版)第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义: 实数 无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

2023初中数学总复习知识点总结

2023初中数学总复习知识点总结

2023初中数学总复习知识点总结一、第一轮复习1、第一轮复习的形式:“梳理知识脉络,构建知识体系”----理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,换元法,判别式法(韦达定理),待定系数法,构造法,反证法等。

③过基本技能关。

应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为3个大单元:几何基本概念(线与角),平面图形,立体图形③统计与概率分为2个大单元:统计与概率2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本按中考试卷的设计原则,基础题都是送分的题,有不少基础题都是课本上的原题或改造。

(3)掌握基础知识,一定要从理解角度出发数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

二、第二轮复习1、第二轮复习的形式:“突出重点,综合提高”----练习专题化,专题规律化(1)目的:融会贯通考纲上的所有知识点①进行专题化训练将所有考纲上要求的知识点分为为多个专题,按专题进行复习,进行有针对性的、典型性、层次性、切中要害的强化练习。

②突出重点,难点和热点的内容第1页在专题训练的基础上,要突出重点,抓住热点,突破难点。

按照中考的出题规律,每年的重点、难点和热点内容都大同小异。

人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)

人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)
2.平行四边形的性质:
(1) 平行四边形的对边平行且相等. (2) 平行四边形的邻角互补,对角相.等.
推论:夹在两条平行线间的 平行线段 相等. (3) 平行四边形的对角线互相平分 .
(4)若一直线过平行四边形两对角线的交点, 则: 则二等这分条此直平线行被四一边组形对的边面截积下的线段以对角线的交点为中点,并且这两条直.线
是 中心 对称图形.②正n边形有 n 条对称轴 .
3.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全 覆盖 ,叫做用多边形
覆盖平面(或平面镶嵌).平面镶嵌的条件:当围绕一点拼在一起的几个多边形的内
角和为 360° 时,可以平面镶嵌.
知识点梳理——平行四边形
1.平行四边形的概念: 两组对边分别平行的四边形叫做平行.四边形
【解答】证明:∵DE=DC,∴∠DEC=∠C. ∵∠B=∠C, ∴∠B=∠DEC, ∴ AB∥BE, ∵AD∥BC, ∴四边形ABED是平行四边形. ∴AD=BE.
14.(10分)(2021•怀化)已知:如图,四边形ABCD为平行四边形,点E、 A、C、F在同一直线上,AE=CF. 求证:(1)△ADE≌△CBF;
C ∠D=58°,则∠AEC的大小是( )
A.61° B.109° C.119° D.122°
典型例题
7.(2021•恩施州)如图,在▱ABCD中,AB=13,AD=5,
AC⊥BC,则▱ABCD的面积为( B )
A.30 B.60
C.65 D.
典型例题
8.(2021·安顺、贵阳) 如图,在▱ABCD中,∠ABC的平分线交AD于点E,
形的边数是

2.(2020•陕西12/25)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD ,则∠BDM的度数是 .

人教版初中数学中考几何知识点大全

人教版初中数学中考几何知识点大全

⼈教版初中数学中考⼏何知识点⼤全直线:没有端点,没有长度射线:⼀个端点,另⼀端⽆限延长,没有长度线段:两个端点,有长度⼀、图形的认知1、我们把从实物中抽象出的各种图形统称为⼏何图形2、有些⼏何图形的各部分不都在同⼀平⾯内,它们是⽴体图形3、有些⼏何图形的各部分都在同⼀平⾯内,它们是平⾯图形4、有些⽴体图形是由⼀些平⾯图形转成的,将它们的表⾯适当展开,可以展开成平⾯图形。

这样的平⾯图形称为相应⽴体图形的展开图5、长⽅体、正⽂体、圆柱、圆锥、球等都是⼏何体,简称体6、包围着体的是⾯,⾯有平⾯和曲⾯两种。

由若⼲个多边形所围成的⼏何体,叫做多⾯体。

围成多⾯体的各个多边形叫做多⾯体的⾯,两个⾯的公共边叫做多⾯体的棱,若⼲个⾯的公共顶点叫做多⾯体的顶点。

注意:各⾯都是平⾯的⽴体图形称为多⾯体。

像圆锥、圆台因为有的⾯是曲⾯,⽽不被称为“多⾯体”。

圆锥、圆柱、圆台统称为旋转体。

⽴体图形的各个⾯都是平的⾯,这样的⽴体图形称为多⾯体。

7、经过两点有⼀条直线,并且只有⼀条直线。

简述为:两点确定⼀条直线8、当两条不同的直线有⼀个公共点时,我们就称这两条直线相交。

这个公共点叫做它们的交点9、两点的所有连线中,线段最短。

简单说成:两点之间,线段最短10、连接两点间的线段的长度,叫做这两点的距离11、⾓:有公共端点的两条射线组成的图形叫做⾓,这个公共端点是⾓的顶点,这两条射线是⾓的两条边12、⾓的平分线:从⼀个⾓的顶点出发,把这个⾓分成相等的两个⾓的射线,叫做这个⾓的平分线13、余⾓和补⾓:如果两个⾓加起来为90,则⼀个⾓是另⼀个⾓的余⾓如果两个⾓加起来为180,则⼀个⾓是另⼀个⾓的补⾓邻补⾓:相邻的补⾓14、同⾓的余⾓相等,等⾓的余⾓相等同⾓的补⾓相等,等⾓的补⾓相等⼆、平⾏线知识点1、对顶⾓性质:对顶⾓相等。

注意:对顶⾓的判断⼀个⾓的两边分别是另⼀个⾓两边的反向延长线,这两个⾓是对顶⾓。

两条直线相交后所得的只有⼀个公共顶点且两个⾓的两边互为反向延长线,这样的两个⾓叫做互为对顶⾓。

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如3?5a3b2c是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

(完整版)人教版初中数学总复习资料doc

(完整版)人教版初中数学总复习资料doc

(完整版)人教版初中数学总复习资料doc①已知三边作三角形②已知两边及其夹角作三角形③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆⑶中心对称图形:矩形、圆、⑷图形的平移和旋转⑸图形的相似:(三)概率与统计⒈统计⑴重要概念①总体:考察对象的全体。

②个体:总体中每一个考察对象。

③样本:从总体中抽出的一部分个体。

④样本容量:样本中个体的数目。

⑤众数:一组数据中,出现次数最多的数据。

⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。

⑵扇形统计图、条形统计图、折线统计图⑶计算方法①平均数:某1(某1某2某n)n某②加权平均数:kfk某某1f1某2f2f1f2fnkn)③样本方差:⑴s1[(某1某)2(某2某)2(某n某)2]n④样本标准差:ss2⑤极差:最大的数减去最小的数⒉概率①列表法、画树状图法93同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合1042定理1关于条直线对称的两个图形是全等形43定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)某180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a某b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形1177角相等的梯形是等腰梯形78平行等分段定理如果一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79推1梯形一腰的中点与底平行的直,必平分另一腰80推2三角形一的中点与另一平行的直,必平分第三81三角形中位定理三角形的中位平行于第三,并且等于它的一半82梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h83 (1) 比例的基本性如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2) 合比性如果 a/ b=c/ d,那么(a ±b)/b=(c ±d)/d85(3)等比性如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b86平行分段成比例定理三条平行截两条直,所得的段成比例87推平行于三角形一的直截其他两(或两的延),所得的段成比例88定理如果一条直截三角形的两(或两的延)所得的段成比例,那么条直平行于三角形的第三89平行于三角形的一,并且和其他两相交的直,所截得的三角形的三与原三角形三成比例90定理平行于三角形一的直和其他两(或两的延)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角相等,两三角形相似(ASA)92直角三角形被斜上的高分成的两个直角三角形和原三角形相似93判定定理2两成比例且角相等,两三角形相似(SAS)94判定定理3三成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜和一条直角与另一个直角三角形的斜和一条直角成比例,那么两个直角三角形相似96性定理1相似三角形高的比,中的比与角平分的比都等于相似比97性定理2相似三角形周的比等于相似比98性定理3相似三角形面的比等于相似比的平方99任意角的正弦等于它的余角的余弦,任意角的余弦等于它的余角的正弦100任意角的正切等于它的余角的余切,任意角的余切等于它的余角的正切101是定点的距离等于定的点的集合102的内部可以看作是心的距离小于半径的点的集合12103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

人教版新课标初中数学总复习知识点总结

人教版新课标初中数学总复习知识点总结

初中数学总复习知识点总结实数一、重要概念1.数的分类及概念 数系表:说明:“分类〞的原那么:1〕相称〔不重、不漏〕2〕有标准2.非负数:正实数与零的统称。

〔表为:x ≥0〕 常见的非负数有:性质:假设干个非负数的和为0,那么每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a 〔a ≠±1〕;B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义〔“三要素〞〕②作用:A.直观地比拟实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数〔正整数—自然数〕定义及表示:奇数:2n-1实数 无理数(无限不循环小数)正分数 负分数正整数负整数 (有限或无限循环性数) 整数分数 0 实数 负数整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)偶数:2n 〔n 为自然数〕7.绝对值:①定义〔两种〕:代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││〞是“非负数〞的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││〞出现,其关键一步是去掉“││〞符号。

二、实数的运算1. 运算法那么〔加、减、乘、除、乘方、开方〕2. 运算定律〔五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律〕3. 运算顺序:A.高级运算到低级运算;B.〔同级运算〕从“左〞 到“右〞〔如5÷51×5〕;C.(有括号时)由“小〞到“中〞到“大〞。

三、应用举例〔略〕附:典型例题1. :a 、b 、x 在数轴上的位置如下列图,求证:│x-a │+│x-b │ =b-a.2.:a-b=-2且ab<0,〔a ≠0,b ≠0〕,判断a 、b 的符号。

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。

人教版初中数学知识点总结(精华)(最新最全)

人教版初中数学知识点总结(精华)(最新最全)

初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

人教版初中数学知识点总结【完整版】

人教版初中数学知识点总结【完整版】

人教版初中数学知识点总结【完整版】人教版初中数学知识点全总结第一章有理数1.有理数包括整数和分数,不包括无限不循环小数和开根开不尽的数。

有理数包括零、负整数、负分数、正分数和正整数。

需要注意的是,-a不一定是负数,+a也不一定是正数。

2.数轴是一条直线,规定了原点、正方向和单位长度。

3.相反数是指符号相反的两个数,其中一个是另一个的相反数。

相反数的和为0,即a+b=0,a和b互为相反数。

4.绝对值是一种运算,用||表示。

一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。

一个数的绝对值是非负数。

在数轴上,一个数的绝对值表示为代表这个数的点到原点的距离。

5.有理数比大小的规则是:(1)正数的绝对值越大,这个数越大;(2)正数永远比负数大,负数永远比正数小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数减小数大于0,小数减大数小于0.6.互为倒数的两个数乘积为1,若a≠0,那么a的倒数是1/a,若ab=1,则a和b互为倒数。

7.有理数加法的法则是:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。

8.有理数加法的运算律包括加法的交换律(a+b=b+a)和加法的结合律((a+b)+c=a+(b+c))。

9.有理数减法的法则是:减去一个数,等于加上这个数的相反数,即a-b=a+(-b)。

10.有理数乘法的法则是:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同0相乘都得0;(3)几个数相乘,有一个因式为0,积为0;各个因式都不为0,积的符号由负因式的个数决定。

11.有理数乘法的运算律包括乘法的交换律(ab=ba)、乘法的结合律((ab)c=a(bc))和乘法的分配律(a(b+c)=ab+ac)。

12.有理数除法的法则是:除以一个数等于乘以这个数的倒数。

(2021年整理)人教版【初中数学知识点大全】完整版

(2021年整理)人教版【初中数学知识点大全】完整版
2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3。图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
举几个例子:3一共有1个有效数字,0.0003有一个有效数字,0。1500有4个有效数字,1.9*10^3有两个有效数字(不要被10^3迷惑,只需要看1。9的有效数字就可以了,10^n看作是一个单位)。
精确度:即数字末尾数字的单位。比如说:9800。8精确到十分位(又叫做小数点后面一位),80万精确到万位。9*10^5精确到10万位(总共就9一个数字,10^n看作是一个单位,就和多少万是一个概念).
七年级数学(下)知识点
人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。
第五章 相交线与平行线
一、知识框架
二、知识概念
1。邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2。对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
第三章 一元一次方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学知识点(中考总复习)侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:(ΛΛ如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:(Λ如负分数分数)8.3,3.5,31,21:(Λ如正分数人教版初中数学定理知识点汇总七年级上册第一章 丰富的图形世界¤1.¤2.¤3. 球体:由球面围成的(球面是曲面) ¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面; ②面与面相交得到线; ③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形…… ¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章 有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

※任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数) ※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

¤数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

※绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作|a|。

※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a ※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。

※绝对值的性质:①对任何有理数a ,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

※加法的交换律、结合律在有理数运算中同样适用。

¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。

※有理数减法法则: 减去一个数,等于加上这个数的相反数。

¤有理数减法运算时注意两“变”:①改变运算符号; ②改变减数的性质符号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。

¤有理数的加减法混合运算的步骤:①写成省略加号的代数和。

在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。

) ※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

※如果两个数互为倒数,则它们的乘积为1。

(如:-2与21 、 3553与…等) ※乘法的交换律、结合律、分配律在有理数运算中同样适用。

¤有理数乘法运算步骤:①先确定积的符号; ②求出各因数的绝对值的积。

¤乘积为1的两个有理数互为倒数。

注意: ①零没有倒数越来越大②求分数的倒数,就是把分数的分子分母颠倒位置。

一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②0除以任何非0的数都得0。

0不可作为除数,否则无意义。

※有理数的乘方 ※注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

※有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

②如果有括号,先算括号里面的。

第三章 字母表示数※代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式...。

单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。

等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米※代数式的系数:代数式中的数字中的数字因数叫做代数式的系数......。

如3x,4y 的系数分别为3,4。

注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。

a 3b 的系数是1 ※代数式的项:代数式7262--x x 表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项 注意:在交待某一项时,应与前面的符号一起交待。

=⨯⨯⨯⨯444844476K K a n a a a a 个※同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关; ③几个常数项也是同类项。

※合差同类项:把代数式中的同类项合并成一项,叫做合并同类项。

①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

注意:①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。

※根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。

※根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

※注意:①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;③改变符号时,各项都变号;不改变符号时,各项都不变号。

第四章 平面图形及位置关系一. 线段、射线、直线※1. 正确理解直线、射线、线段的概念以及它们的区别:※2. 二.比较线段的长短※1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.※2. 比较线段长短的两种方法:①圆规截取比较法; ②刻度尺度量比较法.※3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍. 三.角的度量与表示※1. 角:有公共端点的两条射线组成的图形叫做角; A O B图1 b 图2图613β 图4这个公共端点叫做角的顶点; 这两条射线叫做角的边.※2. 角的表示法:角的符号为“∠”①用三个字母表示,如图1所示∠AOB ②用一个字母表示,如图2所示∠b ③用一个数字表示,如图3所示∠1 ④用希腊字母表示,如图4所示∠β※经过两点有且只有一条直线。

※两点之间的所有连线中,线段最短。

※两点之间线段的长度,叫做这两点之间的距离........。

1º=60’ 1’=60”※角也可以看成是由一条射线绕着它的端点旋转而成的。

如图5所示:※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角..。

如图6所示: ※终边继续旋转,当它又和始边重合时,所成的角叫做周角..。

如图7所示: ※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.....。

※经过直线外一点,有且只有一条直线与这条直线平行。

※如果两条直线都与第三条直线平行,那么这两条直线互相平行。

※互相垂直的两条直线的交点叫做垂足..。

※平面内,过一点有且只有一条直线与已知直线垂直。

※如图8所示,过点C 作直线AB 的垂线,垂足为O 点,线段CO 的长度叫做点.C .到直线...AB ..的距离...。

相关文档
最新文档