超松弛迭代法解线性方程组

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计题目:超松弛迭代法解线性方程组

摘要

本文是在matlab环境下熟悉的运用计算机编程语言并结合超松弛变量超松弛迭代法的理论基础对方程组求解。

首先,本文以微分方程边值问题为例,导出了离散化后线性方程组即稀疏线性方程组,转化对稀疏线性方程组求解问题。其次,用超松弛( SOR) 迭代法编写matlab程序,对产生的稀疏线性方程组进行迭代法求解。然后,分别改变松弛因子ω和分段数n的值,分析其收敛性和收敛速度,做出各个方面的分析和比较得到相关结论。最后,将超松弛迭代算法在计算机上运用matlab语言实现, 得出了一组与精确解较接近的数值解,并画图比较,验证逐次超松弛( SOR) 迭代法的精确性。

关键词:稀疏线性方程组逐次超松弛迭代法松弛因子

matlab编程

一、问题提出

考虑两点边值问题

()()⎪⎩⎪⎨⎧==<<=+.

11,00,

10,22y y a a dx

dy dx y d ε 容易知道它的精确解为

.1111ax e e a y x +⎪⎪⎭

⎫ ⎝⎛

---=

--εε

为了把微分方程离散,把[]1,0区间n 等分,令n

h 1

=,ih x i =,,1,,2,1-=n i 得到差分方程

,212

11a h y y h

y y y i i i i i =-++-++-ε 简化为

()(),2211ah y y h y h i i i =++-+-+εεε

从而离散后得到的线性方程组的系数矩阵为

()()()()⎥⎥⎥⎥⎥

⎥⎦

⎢⎢

⎢⎢⎢⎢⎣⎡+-++-++-++-=h h h h h h h A εεεεεεεεεε2222

对1=ε,4.0=a ,200=n ,分别用1=ω、5.0=ω和5.1=ω的超松弛迭代法求解线性方程组,要求有4位有效数字,然后比较与精确解的误差,探讨使超松弛迭代法收敛较快的ω取值,对结果进行分析。改变n ,讨论同样问题。

二、超松弛迭代法产生的背景

对从实际问题中得到维数相当大的线性代数方程组的求解仍然十分困难, 以

至使人们不能在允许的时间用直接方法得到解, 因此, 客观上要求用新的方法来

解决大维数方程组的求解问题。

现有大多数迭代法不是对各类线性方程组都有收敛性, 在解题时, 要对原方程组矩阵作一根本的变换, 从而可能使条件数变坏, 也可能破坏了变换前后方程组的等价性, 以及丧失使原方程组的对称性等。探求新的有效的解题方法依然是迫切的任务。逐次超松弛(Successive Over Relaxation)迭代法是在高斯-赛德尔

(GS)迭代法基础上为提高收敛速度,采用加权平均而得到的新算法。

在求解过程中由于线性方程组的系数矩阵维数较大, 采用计算机编写算法来求解, 从而实现了对解析模型的计算机数值逼近的计算方法#本论文以逐次超松弛迭代法为主要的求解方法。

三、超松弛迭代法的理论基础

(一)逐次超松弛迭代法

逐次超松弛(Successive Over Relaxation)迭代法,简称SOR迭代法,它是在GS法基础上为提高收敛速度,采用加权平均而得到的新算法,设解方程

(7.1.3)的GS法记为

(1)

再由与加权平均得

这里ω>0称为松弛参数,将(1)代入则得

(2)

该法称为SOR迭代法,[WTBX]ω>0称为松弛因子,当ω=1时(2)式即为高斯-赛德尔迭代法,简记GS法,将(2)写成矩阵形式,则得

于是得SOR迭代的矩阵表示

(3)

其中

(4)

分解后,有.

(二)逐次超松弛迭代法的收敛性

根据迭代法收敛性定理,SOR法收敛的充分必要条件为,收敛的充分条件为,但要计算比较复杂,通常都不用此结论,而直接根据方程组的系数矩阵A 判断SOR迭代收敛性,下面先给出收敛必要条件.

定理1设,则解方程的SOR迭代法收敛的必要条件是0<ω<2.

该定理为SOR迭代法收敛的必要条件。

定理 2若对称正定,且0<ω<2,则解Ax=b的SOR迭代法对迭代收敛.

对于SOR迭代法,松弛因子的选择对收敛速度影响较大,关于最优松弛因子研究较为复杂,且已有不少理论结果.下面只给出一种简单且便于使用的结论。

定理3设为对称正定的三对角矩阵,是解方程的J法迭代矩阵,若,记,

则SOR法的最优松弛因子为

(5)

(6)

根据定理,,如图1所示.由(6)可知,当ω=1,时,收敛速度为

.

说明GS法比J法快一倍.

图1

定理4设,如果:

(1)A为严格对角占优矩阵;(2)0<ω<=1.

则解的SOR迭代法收敛。

四、实验容

1.自定义函数 sor(A, b, nm, e, w),以实现SOR方法求解线性方程组AX=B,其中

A——系数矩阵;

b ——常数列向量; w ——松弛因子; nm ——迭代的最大次数

e

——(1)

()k k X

X +∞

-达到的精度上限

由离散后的差分方程:

()(),2211ah y y h y h i i i =++-+-+εεε,1,,2,1-=n i

得到的线性方程组的系数矩阵为

()()()()⎥⎥⎥⎥⎥

⎥⎦

⎢⎢

⎢⎢⎢⎢⎣⎡+-++-++-++-=h h h h h h h A εεεεεεεεεε2222

常数列向量b=⎥⎥⎥

⎥⎥

⎥⎥

⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+--y ah

ah ah y ah h 2002

2

202

)(..

.εε 其中

1

=ε,

4

.0=a ,

200

=n ,

n

h 1

=

,则有

00001.0,005.1,005.2)2(2==+-=+-ah h h εε。A 为(a ij )200*200型矩阵,b 为(bij )200*1

型矩阵。

在本次试验中,由于所提供数据较小,当最大迭代次数nm 较小时,在nm 迭代次数围,不能判断该超松弛迭代法是否收敛,此次取nm=30000。迭代精度e 也应取较小值才能使误差更小,此次取e=0.00001。由定理1可知,本次试验中,ω的取值围为:0<ω<2才能保证迭代法收敛。

取T x )1,1,,1,1,1()0( =,为1200⨯的矩阵。用SOR 迭代公式得

相关文档
最新文档