湖北省咸宁市中考数学试卷

合集下载

2023年咸宁中考数学试卷

2023年咸宁中考数学试卷

2023年咸宁中考数学试卷(时间:120分钟总分:120分)一、选择题(本大题共8小题,共24分)1.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2|C.﹣22D.(﹣2)22.2019年被称为中国的5G元年,如果运用5G技术下载一个4.8M的短视频,大约只需要0.000096秒,将数字0.000096用科学记数法表示应为()A.0.96×10﹣4B.9.6×10﹣3C.9.6×10﹣5D.96×10﹣6 3.如图所示的几何体的俯视图是()A.B.C.D.4.下列运算正确的是()A.a+2a=3a2B.a2⋅a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6 5.如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是()A.不存在B.等腰三角形C.直角三角形D.等腰三角形或直角三角形6.如图所示,在⊙O中,线段AB是直径,点D是弧AB上一点.延长AB至点C,使得AB=2BC,连接AD,OD,CD.若∠C=30°,则∠ADO的余弦值是()A.B.C.D.7.如图,在矩形ABCD中,BC=12,点E为AD的中点,点F为CD边上一点,DF=2,将线段EF绕点E顺时针旋转90°得到EH,点H恰好在线段BF上,过H作直线HM⊥AD于点M,交BC于点N,则CF的长为()A.2B.5C.6D.88.如图,已知四边形OABC是平行四边形,OC:OA=4:3,CD⊥x轴,垂足为D,函数y=的图象经过点C,且与AB交于点E.若OD=2,则△BCE的面积为()A.B.2C.D.二、填空题(本大题共8小题,共24分)9.使得二次根式有意义的x的取值范围是.10.不等式组的所有整数解的和为.11.把m2﹣(2m+3)2分解因式,结果是.12.如图,一块含30°角的直角三角板ABC绕点C顺时针旋转到三角形A′B′C′,当B,C,A′在一条直线上时,三角板ABC的旋转角度为.13.如图所示:用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为cm.14.如图,在Rt△ABC中,∠ACB=90°,BC=4,AC=10,点D是AC上的一个动点,以CD为直径作圆O,连接BD交圆O于点E,则AE的最小值为.15.如图,长方形ABCD的两边BC,CD分别在x轴、y轴上,点C与原点重合,点A(﹣1,2),将长方形ABCD沿x轴无滑动向右翻滚,经过一次翻滚,点A对应点记为A1;经过第二次翻滚,点A对应点记为A2;…;依此类推,经过第2020次翻滚,点A对应点A203坐标为.16.如图1,点P从△ABC的顶点A出发,沿A—B—C匀速运动,到点C停止运动.点P 运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是.四、解答题(本大题共8小题,共72分)17.(6分)先化简,再求值,其中x=2.18.(8分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低,马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元.A,B 两种产品原来的运费和现在的运费(单位:元/件)如下表所示:品种A B原运费4525现运费3020(1)求每次运输的农产品中A,B产品各有多少件?(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的产品总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元?19.(8分)一个不透明的口袋中装有3张卡片,卡片上分别标有数字1、﹣2、﹣3,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.20.(9分)如图,反比例函数y=x3的图象和一次函数的图象交于A 、B 两点,点A 的横坐标和点B 的纵坐标都是1.(1)求一次函数的表达式;(2)在第一象限内,写出关于x 的不等式kx+b ≥x3的解集;(3)若点P(m,n)在反比例函数图象上,且关于y 轴对称的点Q 恰好落在一次函数的图象上,求m 2+n 2的值.21.(9分)如图,在Rt △ABC 中,∠BAC =90°,∠C =30°,以边AC 上一点O 为圆心,OA 为半径作圆,恰好经过边BC 的中点D ,并与边AC 相交于另一点F .(1)求证:BD 是⊙O 的切线;(2)若,点E 是半圆AmF 上一动点,连接AE 、AD 、DE ,填空:①当的长度是时,四边形ABDE 是菱形;②当的长度是时,△ADE 是直角三角形.22.(10分)某水果经销商以19元/千克的价格新进一批芒果进行销售,因为芒果不耐储存,在运输储存过程损耗率为5%.为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)2025303540日销售量y(千克)4003002001000(1)这批芒果的实际成本为______元千克;[实际成本=进价损耗率)](2)①请你根据表中的数据直接出写出y与x之间的函数表达式,标出x的取值范围;②该水果经销商应该如何确定这批芒果的销售价格,才能使日销售利润W1最大?(3)该水果经销商参与电商平台助农活动,开展网上直销,可以完全避免运输储存过程中的损耗成本,但每销售1千克芒果需支出a元的相关费用,销售量与销售价格之间关系不变.当25≤x≤29,该水果经销商日获利W2的最大值为2090元,求a的值.23.(10分)【模型构建】如图所示,在边长为1的正方形ABCD中,△DEF的顶点E,F 分别在AB,BC上(可与点A,B,C重合),且满足∠EDF=45°.△DEF的高线DG交线段EF于点G(可与E,F重合),设=k.(1)求k的值.【模型拓展】在【模型构建】的基础上,将条件“边长为1的正方形ABCD”改为“长AB=8、宽AD=6的矩形ABCD”(其他条件不变).(2)判断k的值是否改变.若改变,请求出k的取值范围;若不改变,请证明.【深入探究】在【模型构建】的基础上,设△DEF的面积为S.(3)①求S的最小值;②当S取到最小值时,直接写出DG与GB的数量关系.24.(12分)如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,∠ABC=45°.(1)求抛物线的解析式.(2)过抛物线的顶点D作DH⊥x轴于E,点P为直线DH上一动点,当△PHC是等腰三角形时,求出点P的坐标.(3)如图2,点E为第二象限抛物线上一动点,EF⊥x轴与BC交于F,求EF的最大值,并说明此时△BCE的面积是否最大.图1图2。

【数学】湖北省咸宁市中考真题(解析版)

 【数学】湖北省咸宁市中考真题(解析版)

答案第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】C.试题分析:观察表格可得﹣2<﹣1<0<2,即可得隐水洞的气温最低,故选C.考点:有理数的大小比较.2.【答案】D.试题分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,所以1210000=1.21×106.故选D.考点:科学记数法.3.【答案】B.考点:整式的运算.4.【答案】A.试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.5.【答案】D .考点:列代数式.6.【答案】B .试题分析:已知点P (a ,c )在第二象限,可得a <0,c >0,所以ac <0,即可判定△=b 2﹣4ac >0,所以方程有两个不相等的实数根.故选B .考点:根的判别式;点的坐标.7.【答案】C .考点:弧长的计算;圆内接四边形的性质.8.【答案】C.试题分析:过点B 作BD ⊥x 轴于点D ,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD ,在△ACO 与△BCD 中,OAC BCD AOC BDC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO ≌△BCD (AAS )∴OC=BD ,OA=CD ,考点:实数的运算;解分式方程.18.【答案】详见解析.试题分析:(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,∵AB=DF,∴四边形ABDF是平行四边形.考点:全等三角形的判定与性质;平行四边形的判定.考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.20.【答案】(1)任意实数;(2)2;(3)详见解析;(4)函数的最小值为0(答案不唯一).(3)如图所示;润不低于640元的天数,再根据点D 的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.试题解析:根据题意得:线段DE 所表示的y 与x 之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得,205450y x y x =⎧⎨=-+⎩18360x y =⎧⎨=⎩∴交点D 的坐标为(18,360),∴y 与x 之间的函数关系式为y=.20(018)5450(1830)y x x y x x =≤≤⎧⎨=-+≤⎩ (3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:轴上,考点:二次函数综合题.。

咸宁中考数学试卷真题

咸宁中考数学试卷真题

咸宁中考数学试卷真题第一部分:选择题(共70分)1. 已知函数f(f)=3f+2,求当f=5时,函数f(f)的值。

(),(),(),()A. 17B. 16C. 15D. 142. 下列计算错误的是()A. 3 × 4 = 12B. 20 ÷ 5 = 15C. 9 + 5 - 4 = 10D. 12 × 2 - 8 = 163. 在图中,小黄圆圈的田字格中填上4位数,其中个位数为3,百位、十位、千位数中的一个为2、6或8,那么这个数最接近的十位数是()A. 20B. 30C. 40D. 504. 下列各组数中,有一个不符合规律的是()A. 4,9,14,19,24B. 3,8,15,24,35C. 2,5,10,13,18D. 6,15,28,45,665. 有4张正方形卡片,如图所示。

其中画有圆、三角形、方形、菱形的卡片分别标有相应的英文字母。

现在从中任选2张,按规定组成一个词,如"Circular"表示两张都是圆形。

那么至少需要选出多少张卡片才能组成一个意义明确的词?(),(),(),()A. 1B. 2C. 3D. 46. 下列计算过程错误的是()A. 8 ÷ (2 + 3) = 1B. 9 ÷ 3 × 6 = 18C. 16 × 5 ÷ 8 = 10D. 50 ÷ (8 × 3) = 27. 如图所示,长方体ABCD-A′B′C′D′四棱柱为正方体ABCD的棱柱,已知A′C′=8cm,下列各式中正确的是()。

A. BD=ACB. BD=AA′C. A′C′//AA′D. BD⊥AC8. 如图,在平面直角坐标系中,点A(1,2),B(3,4),C(5,6),D(7,8)依次是圆心在y=-x上的四个圆内有且只有一个整数点的圆弧所对应的圆心,那么C、D两点所在的圆弧对应的圆心坐标为()。

咸宁市重点中学2024届中考联考数学试卷含解析

咸宁市重点中学2024届中考联考数学试卷含解析

咸宁市重点中学2024年中考联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示几何体的主视图是( )A .B .C .D .2.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <.则k 的取值范围为( ) A .1k < B .1k C .1k > D .1k <3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A .5sin αB .5sin αC .5cosαD .5cos α4.下列分式中,最简分式是( )A .2211x x -+ B .211x x +- C .2222x xy y x xy -+- D .236212x x -+ 5.若代数式11x x +-有意义,则实数x 的取值范围是( ) A .x≠1 B .x≥0 C .x≠0 D .x≥0且x≠16.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .7.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是()A.①②B.①③C.①④D.①③④8.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=9.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上10.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( ) A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.点 C 在射线AB上,若AB=3,BC=2,则AC为_____.12.如图,在△OAB中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.13.若m、n 是方程x2+2018x﹣1=0 的两个根,则m2n+mn2﹣mn=_________.14.正六边形的每个内角等于______________°.15.比较大小:4 17“>”或“<”号)161x-有意义,则x的取值范围是_____17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.三、解答题(共7小题,满分69分)18.(10分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为AD 的中点,O 的半径为2,求AB 的长.19.(5分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.20.(8分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?21.(10分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.22.(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.23.(12分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.24.(14分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】从正面看几何体,确定出主视图即可.【题目详解】解:几何体的主视图为故选C.【题目点拨】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.2、B【解题分析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【题目详解】解:解不等式组29611x xx k+>+⎧⎨-<⎩,得21xx k<⎧⎨<+⎩.∵不等式组29611x xx k+>+⎧⎨-<⎩的解集为x<2,∴k+1≥2,解得k≥1.故选:B.【题目点拨】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.3、D【解题分析】利用所给的角的余弦值求解即可.【题目详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【题目点拨】本题主要考查学生对坡度、坡角的理解及运用.4、A【解题分析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.5、D【解题分析】试题分析:∵代数式11x x+-∴10 {xx-≠≥,解得x≥0且x≠1.故选D.考点:二次根式,分式有意义的条件.6、B【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选B.【题目点拨】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【解题分析】根据倒数的定义,分别进行判断即可得出答案.【题目详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【题目点拨】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8、A【解题分析】根据应用题的题目条件建立方程即可.【题目详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【题目点拨】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.9、C【解题分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【题目详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【题目点拨】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.10、A【解题分析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A.“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(共7小题,每小题3分,满分21分)11、2或2.【解题分析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.12、4【解题分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,最后根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【题目详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图点C 为AB 的中点,∴CN 为AMB 的中位线,∴MN NB a ==,CN b =,2AM b =,OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷==,∴2ab =,∴224k a b ab =⋅==.故答案为:4.【题目点拨】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k ,且保持不变.13、1【解题分析】根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m 2n+mm 2﹣mn 分解因式得到 mn (m+n ﹣1),然后利用整体代入的方法计算.【题目详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【题目点拨】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.14、120【解题分析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.15、>【解题分析】1617∴417考点:实数的大小比较.【题目详解】请在此输入详解!16、x≤1且x≠﹣1.【解题分析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.17、132.【解题分析】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案为.考点:旋转的性质.三、解答题(共7小题,满分69分)18、(1)∠B=40°;(2)AB= 6.【解题分析】(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案. 【题目详解】解:(1)如解图①,连接OD,∵BC切⊙O于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°, ∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°; (2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO +OB=2+4=6.【题目点拨】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF 为等边三角形是解(2)的关键.19、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解题分析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==。

2022咸宁中考数学

2022咸宁中考数学

2022咸宁中考数学【一】:湖北省咸宁市2022年中考数学试题(图片版,含答案)【三】:湖北省咸宁市2022年中考数学试卷试题解析湖北省咸宁市2022年中考数学试卷一、精心选一选(本大题共8小题,每小题3分,共24分。

在每小题给出的四个选项中只有一项是符合题目要求的。

请在答题卷上把正确答案的代号涂黑)1、冰箱冷藏室的温度零上5°C,记着+5°C,保鲜室的温度零下7°C,记着()A。

7°CB。

-7°CC。

2°CD。

-12°C【考点】正负数表示的意义及应用.【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可得:温度零上的记为+,所以温度零下的记为:﹣,因此,保鲜室的温度零下7°C,记着-7°C.故选B。

【点评】本题考查了正负数表示的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2、如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为()A。

50°B。

45°C。

40°D。

30°(第2题)【考点】平行线的性质,垂直的性质,三角形的内角和定理.【解析】由直线l1∥l2,根据两直线平行,内错角相等,可得∠ABC=50°;由CD⊥AB,可知∠CDB=90°,由三角形的内角和定理,可求得∠BCD的度数。

【解答】解:∵l1∥l2,∴∠ABC=∠1=50°;又∵CD⊥AB,∴∠CDB=90°;在△BCD中,∠BCD=180°-∠CDB-∠ABC=180°-90°-50°=40°故选C.【点评】本题考查了平行线的性质,垂直的性质,三角形的内角和定理.解题的关键是要注意掌握两质一个定理的应用:①两直线平行,内错角相等;②垂直的性质:如果两直线互相垂直,则它们相交所组成的角为直角;③三角形的内角和定理:三角形三个内角的和为180°。

咸宁市中考数学试卷及答案解析

咸宁市中考数学试卷及答案解析

湖北省咸宁市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.考点:正数和负数.分析:求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.解答:解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.点评:本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2.(3分)(•咸宁)方程2x﹣1=3的解是()A.﹣1 B.﹣2 C.1D.2考点:解一元一次方程.专题:计算题.分析:方程移项合并,把x系数化为1,即可求出解.解答:解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.(3分)(•咸宁)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体考点:由三视图判断几何体.分主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.析:解答:解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.4.(3分)(•咸宁)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()A.50°B.40°C.30°D.25°考点:平行线的性质.分析:由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.解答:解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.5.(3分)(•咸宁)下列运算正确的是()A.a6÷a2=a3B.(a+b)2=a2+b2C.2﹣3=﹣6 D.=﹣3考点:同底数幂的除法;立方根;完全平方公式;负整数指数幂.专题:计算题.分析:A、原式利用同底数幂的除法法则计算得到结果,即可做出判断;B、原式利用完全平方公式化简得到结果,即可做出判断;C、原式利用负整数指数幂法则计算得到结果,即可做出判断;D、原式利用立方根定义计算得到结果,即可做出判断.解答:解:A、原式=a4,错误;B、原式=a2+b2+2ab,错误;C、原式=,错误;D、原式=﹣3,正确,故选D点此题考查了同底数幂的除法,立方根,完全平方公式,以及负整数指数幂,熟练掌评:握公式及法则是解本题的关键.6.(3分)(•咸宁)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6考点:位似变换.分析:利用位似图形的性质首先得出位似比,进而得出面积比.解答:解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.点评:此题主要考查了位似图形的性质,得出位似比是解题关键.7.(3分)(•咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小考点:扇形面积的计算.分析:作DM⊥AC于M,DN⊥BC于N,构造正方形DMCN,利用正方形和等腰直角三角形的性质,通过证明△DMG≌△DNH,把△DHN补到△DNG的位置,得到四边形DGCH的面积=正方形DMCN的面积,于是得到阴影部分的面积=扇形的面积﹣正方形DMCN的面积,即为定值.解答:解:作DM⊥AC于M,DN⊥BC于N,连接DC,∵CA=CB,∠ACB=90°,∴∠A=∠B=45°,DM=AD=AB,DN=BD=AB,∴DM=DN,∴四边形DNCN是正方形,∴∠MDN=90°,∴∠MDG=90°﹣∠GDN,∵∠EDF=90°,∴∠NDH=90°﹣∠GDN,∴∠MDG=∠NDH,在△DMG和△DNH中,,∴△DMG≌△DNH,∴四边形DGCH的面积=正方形DMCN的面积,∵正方形DMCN的面积=DM2=AB2,∴四边形DGCH的面积=,∵扇形FDE的面积==,∴阴影部分的面积=扇形面积﹣四边形DGCH的面积=(定值),故选C.点评:本题主要考查了等腰直角三角形斜边中线的性质,正方形的性质,全等三角形的判定和性质,能正确作出辅助线构造全等三角形是解题的关键.8.(3分)(•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个考点:二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).分析:①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答:解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评:本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.二、细心填一填(本大题共有8小题,每小题3分,共24分)9.(3分)(•咸宁)﹣6的倒数是.考点:倒数.分析:根据倒数的定义求解.解答:解:因为(﹣6)×(﹣)=1,所以﹣6的倒数是﹣.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(3分)(•咸宁)端午节期间,“惠民超市”销售的粽子打8折后卖a元,则粽子的原价卖a元.考点:列代数式.分8折=80%,把原价当作单位“1”,则现价是原价的80%,根据分数除法的意义原价析:是:a÷80%=,得结果.解答:解:8折=80%,a÷80%=,故答案为:.点评:本题主要考查了打折问题,找准单位“1”,弄清各种量的关系是解答此题的关键.11.(3分)(•咸宁)将x2+6x+3配方成(x+m)2+n的形式,则m=3.考点:配方法的应用.专题:计算题.分析:原式配方得到结果,即可求出m的值.解答:解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(x+m)2+n,则m=3,故答案为:3点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.12.(3分)(•咸宁)如果实数x,y满足方程组,则x2﹣y2的值为﹣.考点:解二元一次方程组;平方差公式.专题:计算题.分析:方程组第二个方程变形求出x+y的值,原式利用平方差公式化简,将各自的值代入计算即可求出值.解答:解:方程组第二个方程变形得:2(x+y)=5,即x+y=,∵x﹣y=﹣,∴原式=(x+y)(x﹣y)=﹣,故答案为:﹣点评:此题考查了解二元一次方程组,以及平方差公式,熟练掌握运算法则是解本题的关键.13.(3分)(•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360人.考点:扇形统计图.分析:根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.解答:解:喜爱科普常识的学生所占的百分比为:1﹣40%﹣20%﹣10%=30%,1200×30%=360,故答案为:360.点评:本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.14.(3分)(•咸宁)如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB 沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为8.考点:一次函数图象上点的坐标特征;坐标与图形变化-平移.分析:根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.解答:解:由题意可知,点A移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,﹣x=6,解得x=﹣8,∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′间的距离为8,故答案为:8.点本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的评:距离是解题的关键.15.(3分)(•咸宁)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…由此推算a399+a400= 1.6×105或160000.考点:规律型:数字的变化类.分析:首先计算a1+a2,a2+a3,a3+a4的值,然后总结规律,根据规律可以得出结论.解答:解:∵;;;…∴;∴.故答案为:1.6×105或160000.点评:本题考查的是规律发现,根据计算a1+a2,a2+a3,a3+a4的值可以发现规律为,发现规律是解决本题的关键.16.(3分)(•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是②③.(把你认为正确的说法的序号都填上)考点:四边形综合题.分析:根据正方形对角线的性质可得出当E移动到与C重合时,AG=GE,故①错误;求得∠BAE=∠CBF,根据正方形的性质可得AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应角相等可得AE=BF,判断出②正确;根据题意,G点的轨迹是以A为圆心以AB长为半径的圆弧BD的长,然后求出弧BD的长度,判断出③正确;正方形的对角线减去圆弧的半径就是CG的最小值,通过计算从而判断出④错误.解答:解:∵在正方形ABCD中,AE、BD垂直平分,∴当E移动到与C重合时,AG=GE,故①错误;∵BF⊥AE,∴∠AEB+∠CBF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴故②正确;根据题意,G点的轨迹是以A为圆心以AB长为半径的圆弧BD的长,∴圆弧BD的长==π,故③正确;CG的最小值为AC﹣AB=4﹣2,故④错误;综上所述,正确的结论有②③.故答案为②③.点评:本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出△ABE和△BCF全等是解题的关键,用阿拉伯数字加弧线表示角更形象直观.三、专心解一解(本大题共8小题,满分72分)17.(8分)(•咸宁)(1)计算:|1﹣|++(﹣2)0;(2)化简:(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用零指数幂法则计算即可得到结果;(2)原式第一项利用多项式除以单项式法则计算,第二项利用完全平方公式化简,去括号合并即可得到结果.解答:解:(1)原式=﹣1+2+1=3;(2)原式=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(•咸宁)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.考点:相似三角形的判定;全等三角形的判定.分析:(1)利用相似三角形的性质以及全等三角形的性质得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.解答:解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.点评:此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.19.(8分)(•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.考点:根的判别式;解一元二次方程-公式法.分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值.解答:解:(1)△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.点评:本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.20.(9分)(•咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100 m 93 93 12九(2)班99 95 n 93 8.4(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.考点:列表法与树状图法;加权平均数;中位数;众数;方差.专题:计算题.分析:(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)画树状图得出所有等可能的情况数,找出另外两个决赛名额落在同一个班的情况数,即可求出所求的概率.解答:解:(1)m=(88+91+92+93+93+93+94+98+98+100)=94;把九(2)班成绩排列为:89,93,93,93,95,96,96,98,98,99,则中位数n=(95+96)=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)(•咸宁)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.解答:(1)证明:如图1,连接OD、OE、ED.∵BC与⊙O相切于一点D,∴OD⊥BC,∴∠ODB=90°=∠C,∴OD∥AC,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AOE是等边三角形,∴AE=AO=0D,∴四边形AODE是平行四边形,∵OA=OD,∴四边形AODE是菱形.(2)解:设⊙O的半径为r.∵OD∥AC,∴△OBD∽△ABC.∴,即8r=6(8﹣r).解得r=,∴⊙O的半径为.如图2,连接OD、DF.∵OD∥AC,∴∠DAC=∠ADO,∵OA=OD,∴∠ADO=∠DAO,∴∠DAC=∠DAO,∵AF是⊙O的直径,∴∠ADF=90°=∠C,∴△ADC∽△AFD,∴,∴AD2=AC•AF,∵AC=6,AF=,∴AD2=×6=45,∴AD==3.点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.22.(10分)(•咸宁)在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.考点:一次函数的应用;分式方程的应用.分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.解答:解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)根据题意,得:100x+50y=1800,整理得:y=36﹣2x,∴y与x的函数解析式为:y=36﹣2x.(3)∵甲乙两队施工的总天数不超过26天,∴x+y≤26,∴x+36﹣2x≤26,解得:x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,∵k=0.1>0,∴w随x减小而减小,∴当x=10时,w有最小值,最小值为0.1×10+9=10,此时y=36﹣20=16.答:安排甲队施工10天,乙队施工16天时,施工总费用最低.点评:本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.23.(10分)(•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.考点:四边形综合题.分析:(1)根据对等四边形的定义,进行画图即可;(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;(3)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.解答:解:(1)如图1所示(画2个即可).(2)如图2,连接AC,BD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,在Rt△ADB和Rt△ACB中,∴Rt△ADB≌Rt△ACB,∴AD=BC,又∵AB是⊙O的直径,∴AB≠CD,∴四边形ABCD是对等四边形.(3)如图3,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵tan∠PBC=,∴AE=,在Rt△ABE中,AE2+BE2=AB2,即,解得:x1=5,x2﹣5(舍去),∴BE=5,AE=12,∴CE=BC﹣BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,,∴,,综上所述,CD的长度为13、12﹣或12+.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用.24.(12分)(•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D 的坐标;若不能,请说明理由.考点:反比例函数综合题.分析:(1)根据一次函数的性质,结合函数图象可写出新函数的两条性质;求新函数的解析式,可分两种情况进行讨论:①x≥﹣3时,显然y=x+3;②当x<﹣3时,利用待定系数法求解;(2)①先把点C(1,a)代入y=x+3,求出C(1,4),再利用待定系数法求出反比例函数解析式为y=.由点D是线段AC上一动点(不包括端点),可设点D的坐标为(m,m+3),且﹣3<m<1,那么P(,m+3),PD=﹣m,再根据三角形的面积公式得出△PAD的面积为S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,然后利用二次函数的性质即可求解;②先利用中点坐标公式求出AC的中点D的坐标,再计算DP,DE的长度,如果DP=DE,那么根据对角线互相平分的四边形是平行四边形可得四边形PAEC为平行四边形;如果DP≠DE,那么不是平行四边形.解答:解:(1)如图1,均是正整数新函数的两条性质:①函数的最小值为0;②函数图象的对称轴为直线x=﹣3;由题意得A点坐标为(﹣3,0).分两种情况:①x≥﹣3时,显然y=x+3;②当x<﹣3时,设其解析式为y=kx+b.在直线y=x+3中,当x=﹣4时,y=﹣1,则点(﹣4,﹣1)关于x轴的对称点为(﹣4,1).把(﹣4,1),(﹣3,0)代入y=kx+b,得,解得,∴y=﹣x﹣3.综上所述,新函数的解析式为y=;(2)如图2,①∵点C(1,a)在直线y=x+3上,∴a=1+3=4.∵点C(1,4)在双曲线y=上,∴k=1×4=4,y=.∵点D是线段AC上一动点(不包括端点),∴可设点D的坐标为(m,m+3),且﹣3<m<1.∵DP∥x轴,且点P在双曲线上,∴P(,m+3),∴PD=﹣m,∴△PAD的面积为S=(﹣m)×(m+3)=﹣m2﹣m+2=﹣(m+)2+,∵a=﹣<0,∴当m=﹣时,S有最大值,为,又∵﹣3<﹣<1,∴△PAD的面积的最大值为;②在点D运动的过程中,四边形PAEC不能为平行四边形.理由如下:当点D为AC的中点时,其坐标为(﹣1,2),此时P点的坐标为(2,2),E点的坐标为(﹣5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.点本题是反比例函数综合题,其中涉及到利用待定系数法求反比例函数、一次函数的评:解析式,反比例函数、一次函数图象上点的坐标特征,三角形的面积,二次函数最值的求法,平行四边形的判定等知识,综合性较强,难度适中.利用数形结合、分类讨论是解题的关键.。

湖北省咸宁市2022年中考数学真题试题(含解析)

湖北省咸宁市2022年中考数学真题试题(含解析)

湖北省咸宁市 2022年中考数学真题试题第一卷〔共24分〕一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 下表是我市四个景区今年2月份某天6时气温,其中气温最低的景区是( ) 景区 潜山公园陆水湖隐水洞三湖连江气温C 1- C 0 C 2- C 2A .潜山公园B .陆水湖C .隐水洞D .三湖连江 【答案】C.试题分析:观察表格可得﹣2<﹣1<0<2,即可得隐水洞的气温最低,应选C . 考点:有理数的大小比拟.2. 在绿满鄂南行动中,咸宁市方案2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学计数法表示为〔〕A .410121⨯B .5101.12⨯C .51021.1⨯D .61021.1⨯ 【答案】D .试题分析:用科学记数法表示较大的数时,一般形式为a ×10n,其中1≤|a|<10,n 为整数, 所以1210000=1.21×106.应选D . 考点:科学记数法.3.以下算式中,结果等于5a 的是〔〕A .32a a +B .32a a ⋅C .a a ÷5D . 32)(a【答案】B .考点:整式的运算.4. 如图是某个几何体的三视图,该几何体是〔 〕A .三棱柱B .三棱锥 C.圆柱 D .圆锥 【答案】A .试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,应选A .考点:由三视图判定几何体.5. 由于受97N H 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,那么〔〕A .%)%1(24b a m --=B .%%)1(24b a m -= C. %%24b a m --= D .%)1%)(1(24b a m --= 【答案】D .考点:列代数式.6. c b a ,,为常数,点),(c a P 在第二象限,那么关于x 的方程02=++c bx ax 根的情况是〔〕A .有两个相等的实数根B .有两个不相等的实数根 C.没有实数根 D .无法判断 【答案】B .试题分析:点P 〔a ,c 〕在第二象限,可得a <0,c >0,所以ac <0,即可判定△=b 2﹣4ac >0,所以方程有两个不相等的实数根.应选B . 考点:根的判别式;点的坐标.7. 如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OD OB ,,假设BCD BOD ∠=∠,那么⋂BD 的长为〔〕A .πB .π23C. π2 D .π3 【答案】C .考点:弧长的计算;圆内接四边形的性质.8. 在平面直接坐标系xOy 中,将一块含义45角的直角三角板如图放置,直角顶点C 的坐标为)0,1(,顶点A 的坐标为)2,0(,顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,那么此点C 的对应点C '的坐标为〔〕A .)0,23(B .)0,2( C. )0,25( D .)0,3( 【答案】C.试题分析:过点B 作BD ⊥x 轴于点D , ∵∠ACO+∠BCD=90°, ∠OAC+ACO=90°, ∴∠OAC=∠BCD , 在△ACO 与△BCD 中,OAC BCD AOC BDC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO ≌△BCD 〔AAS 〕 ∴OC=BD ,OA=CD , ∵A 〔0,2〕,C 〔1,0〕 ∴OD=3,BD=1, ∴B 〔3,1〕,∴设反比例函数的解析式为y=k x,应选C.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.第二卷〔共96分〕二、填空题〔每题8分,总分值24分,将答案填在答题纸上〕 9. 8的立方根是 . 【答案】2.试题分析:利用立方根的定义可得8的立方根为2. 考点:立方根.10. 化简:xx x x 112++- .【答案】x+1.试题分析:原式=2211(1)1x x x x x x x x x x-++++===+. 考点:分式的乘除法.11. 分解因式:=+-2422a a . 【答案】2〔a ﹣1〕2.试题分析:先提取2,再利用完全平方公式分解即可,即原式=2〔a 2﹣2a+1〕=2〔a ﹣1〕2. 考点:提公因式法与公式法的综合运用.12. 如图,直线n mx y +=与抛物线c bx ax y ++=2交于),4(),,1(q B p A -两点,那么关于x 的不等式c bx ax n mx ++>+2的解集是 .【答案】x <﹣1或x >4.考点:二次函数与不等式〔组〕.13. 小明的爸爸是个“健步走〞运动爱好者,他用 软件记录了某个月〔30天〕每天健步走的步数,并将记录结果绘制成了如下统计表: 步数〔万步〕 1.1 2.1 3.1 4.1 5.1 天数 3 75123在每天所走的步数这组数据中,众数和中位数分别是 . 【答案】1.4;1.35.试题分析:把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数是〔1.3+1.4〕÷2=1.35,,在这组数据中出现次数最多的是1.4,得到这组数据的众数是1.4. 考点:众数;中位数.14. 如图,点O 的矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合,假设3=BE ,那么折痕AE 的长为 .【答案】6.试题分析:由题意得:AB=AO=CO ,即AC=2AB ,且OE 垂直平分AC ,那么AE=6考点:矩形的性质;翻折变换〔折叠问题〕.15. 如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,x AF //轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60,当2017=n 时,顶点A 的坐标为 .【答案】〔2,3〕试题分析: 2022×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连接OF ,过点F 作FH ⊥x 轴,垂足为H ;由EF=4,∠FOE=60°〔正六边形的性质〕,∴△OEF 是等边三角形,∴OF=EF=4, ∴F 〔2,3〕,即旋转 2022后点A 的坐标是〔2,3〕.考点:坐标与图形变化﹣旋转;规律型:点的坐标.16. 如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,以下结论:①假设O C 、两点关于AB 对称,那么32=OA ; ②O C 、两点距离的最大值为4;③假设AB 平分CO ,那么CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的选项是 .【答案】①②③.∵∠AOB=∠ACB=90°, ∴OE=CE=12AB=2, 当OC 经过点E 时,OC 最大,那么C 、O 两点距离的最大值为4;综上所述,此题正确的有:①②③;考点:三角形综合题.三、解答题 〔本大题共8小题,共72分.解容许写出文字说明、证明过程或演算步骤.〕17. ⑴计算:0201748|3|+--;⑵解方程:3121-=x x . 【答案】〔1〕1﹣3〔2〕x=﹣1.试题分析:〔1〕根据实数的运算法那么,零指数幂的性质计算即可;〔2〕根据分式方程的解法即可得到结论. 试题解析:〔1〕原式33+1=1﹣3〔2〕方程两边通乘以2x 〔x ﹣3〕得,x ﹣3=4x , 解得:x=﹣1,检验:当x=﹣1时,2x 〔x ﹣3〕≠0,∴原方程的根是x=﹣1. 考点:实数的运算;解分式方程.18. 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形. 【答案】详见解析.试题分析:〔1〕由SSS 证明△ABC ≌△DFE 即可;〔2〕连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,∵AB=DF ,∴四边形ABDF 是平行四边形.考点:全等三角形的判定与性质;平行四边形的判定.19. 咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了局部学生进行问卷调查,根据调查结果绘制了如以下图所示的两幅不完整统计图,请你根据图中信息解答以下问题:⑴补全条形统计图,“体育〞对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐〞的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,假设从这4人中随机抽取2人去参加“新闻小记者〞培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率【答案】〔1〕72;〔2〕700;〔3〕23.补全条形图如下:“体育〞对应扇形的圆心角是360°×40200=72°;考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.20. 小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1|-=x y 的自变量x 的取值范围是 ; ⑵列表,找出y 与x 的几组对应值.x1- 0 1 2 3yb1 01 2其中,=b ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .【答案】〔1〕任意实数;〔2〕2;〔3〕详见解析;〔4〕函数的最小值为0〔答案不唯一〕.〔3〕如下图;〔4〕由函数图象可知,函数的最小值为0. 故答案为:函数的最小值为0〔答案不唯一〕. 考点:一次函数的性质;一次函数的图象.21. 如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F .⑴求证:DF 是⊙O 的切线; ⑵假设52cos ,4==A AE ,求DF 的长 【答案】〔1〕详见解析;〔2〕21.∵OB=OD,∴∠ODB=∠B,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴21考点:圆的综合题.22. 某公司开发出一款新的节能产品,该产品的本钱价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月〔30天〕的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y〔件〕与销售时间x〔天〕之间的函数关系,线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案】〔1〕330,660;〔2〕y=20(018)5450(1830)y x xy x x=≤≤⎧⎨=-+≤⎩;〔3〕720元.试题分析:〔1〕根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;〔2〕根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;〔3〕分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.试题解析:根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5〔x﹣22〕=﹣5x+450.联立两线段所表示的函数关系式成方程组,得205450y x y x =⎧⎨=-+⎩,解得18360x y =⎧⎨=⎩,∴交点D 的坐标为〔18,360〕, ∴y 与x 之间的函数关系式为y=20(018)5450(1830)y x x y x x =≤≤⎧⎨=-+≤⎩.〔3〕当0≤x ≤18时,根据题意得:〔8﹣6〕×20x ≥640, 解得:x ≥16;考点:一次函数的应用. 23.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形〞.理解:⑴如图1,B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使ABC ∆为“智慧三角形〞〔画出点C 的位置,保存作图痕迹〕;⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形〞,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,假设在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形〞,当其面积取得最小值时,直接写出此时点P 的坐标.【答案】〔1〕详见解析;〔2〕详见解析;〔3〕P 的坐标〔﹣223,13〕,〔223,13〕. 试题分析:〔1〕连结AO 并且延长交圆于C1,连结BO 并且延长交圆于C2,即可求解;〔2〕设正方形的边长为4a ,表示出DF=CF 以及EC 、BE 的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF 是直角三角形,由直角三角形的性质可得△AEF 为“智慧三角形〞;〔3〕根据“智慧三角形〞的定义可得△OPQ 为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,那么面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P 的横坐标,再根据勾股定理可求点P 的纵坐标,从而求解.∵E 是DC 的中点, ∴DE=CE=2a , ∵BC :FC=4:1, ∴FC=a ,BF=4a ﹣a=3a ,在Rt △ADE 中,AE 2=〔4a 〕2+〔2a 〕2=20a 2, 在Rt △ECF 中,EF 2=〔2a 〕2+a 2=5a 2,在Rt △ABF 中,AF 2=〔4a 〕2+〔3a 〕2=25a 2, ∴AE 2+EF 2=AF 2,∴△AEF 是直角三角形,∵斜边AF 上的中线等于AF 的一半, ∴△AEF 为“智慧三角形〞; 〔3〕如图3所示:故点P 的坐标〔﹣223,13〕,〔223,13〕.考点:圆的综合题. 24.如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,6==OC OB .⑴求抛物线的解析式及点D 的坐标;⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长. 【答案】〔1〕y=12x 2﹣2x ﹣6,D 〔2,﹣8〕;〔2〕F 点的坐标为〔7,92〕或〔5,﹣72〕;〔3〕菱形对角线MN 的长为65+1或65﹣1.试题分析:〔1〕由条件可求得B 、C 坐标,利用待定系数法可求得抛物线解析式,进一步可求得D 点坐标;〔2〕过F 作FG ⊥x 轴于点G ,可设出F 点坐标,利用△FAG ∽△BDE ,由相似三角形的性质可得到关于F 点坐标的方程,可求得F 点的坐标;〔3〕可求得P 点坐标,设T 为菱形对角线的交点,设出PT 的长为n ,从而可表示出M 点的坐标,代入抛物线解析式可得到n 的方程,可求得n 的值,从而可求得MN 的长. 试题解析:〔2〕如图1,过F 作FG ⊥x 轴于点G ,设F〔x,12x2﹣2x﹣6〕,那么FG=|12x2﹣2x﹣6|,在y=12x2﹣2x﹣6中,令y=0可得12x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A〔﹣2,0〕,∴OA=2,那么AG=x+2,综上可知F点的坐标为〔7,92〕或〔5,﹣72〕;〔3〕∵点P在x轴上,∴由菱形的对称性可知P〔2,0〕,如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=12 MN,考点:二次函数综合题.21。

2022年初中数学中考咸宁试题解析

2022年初中数学中考咸宁试题解析

湖北省咸宁市中考2022年数学试卷一、选择题〔共8小题,每题3分,总分值24分〕在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.〔3分〕〔2022•咸宁〕如果温泉河的水位升高0.8m时水位变化记作+0.8m,那么水位下降0.5m时水位变化记作〔〕A.0m B.0.5m C.﹣0.8m D.﹣0.5m考点:正数和负数.分析:首先根据题意,明确“正〞和“负〞所表示的意义,再根据题意作答即可.解答:解:∵水位升高0.8m时水位变化记作+0.8m,∴水位下降0.5m时水位变化记作﹣05m;应选D.点评:此题考查了正数和负数,解题关键是理解“正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.2.〔3分〕〔2022•咸宁〕2022年,咸宁全面推进“省级战略,咸宁实施〞,经济持续增长,全市人均GDP再攀新高,到达约24000元.将24000用科学记数法表示为〔〕A.2.4×104B.2.4×103C.0.24×105D.2.4×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将24000用科学记数法表示为2.4×104.应选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔3分〕〔2022•咸宁〕以下学习用具中,不是轴对称图形的是〔〕A .B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.解答:解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;应选C.点此题考查了轴对称图形的知识,属于根底题,判断轴对称图形的关键是寻找对称轴.评:4.〔3分〕〔2022•咸宁〕以下运算正确的选项是〔〕A.a6÷a2=a3B.3a2b﹣a2b=2 C.〔﹣2a3〕2=4a6D.〔a+b〕2=a2+b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.分析:根据同底数幂的除法、合并同类项、幂的乘方及完全平方公式,结合各选项进行判断即可.解答:解:A、a6÷a2=a4,原式计算错误,故本选线错误;B、3a2b﹣a2b=2a2b,原式计算错误,故本选线错误;C、〔﹣2a3〕2=4a6,计算正确,故本选线正确;D、〔a+b〕2=a2+2ab+b2,计算错误,故本选线错误;应选C.点评:此题考查了同底数幂的除法、合并同类项、幂的乘方运算,属于根底题,掌握各局部的运算法那么是关键.5.〔3分〕〔2022•咸宁〕如图,过正五边形ABCDE的顶点A作直线l∥BE,那么∠1的度数为〔〕A.30°B.36°C.38°D.45°考点:平行线的性质;等腰三角形的性质;多边形内角与外角.分析:首先根据多边形内角和计算公式计算出每一个内角的度数,再根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.解答:解:∵ABCDE是正五边形,∴∠BAE=〔5﹣2〕×180°÷5=108°,∴∠AEB=〔180°﹣108°〕÷2=36°,∵l∥BE,∴∠1=36°,应选:B.点评:此题主要考查了正多边形的内角和定理,以及三角形内角和定理,平行线的性质,关键是掌握多边形内角和定理:〔n﹣2〕.180°〔n≥3〕且n为整数〕.6.〔3分〕〔2022•咸宁〕关于x的一元二次方程〔a﹣1〕x2﹣2x+3=0有实数根,那么整数a的最大值是〔〕A.2B.1C.0D.﹣1考点:根的判别式.分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解答:解:根据题意得:△=4﹣12〔a﹣1〕≥0,且a﹣1≠0,解得:a≤,a≠1,那么整数a的最大值为0.应选C.点评:此题考查了根的判别式,一元二次方程的定义,弄清题意是解此题的关键.7.〔3分〕〔2022•咸宁〕如图,正方形ABCD是一块绿化带,其中阴影局部EOFB,GHMN 都是正方形的花圃.自由飞翔的小鸟,将随机落在这块绿化带上,那么小鸟在花圃上的概率为〔〕A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.分析:求得阴影局部的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,那么BF=BC=,AN=NM=MC=a,∴阴影局部的面积为〔〕2+〔a〕2=a2,∴小鸟在花圃上的概率为=应选C.点评:此题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.8.〔3分〕〔2022•咸宁〕如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.假设点P的坐标为〔2a,b+1〕,那么a与b的数量关系为〔〕A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1考点:作图—根本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解答:解:根据作图方法可得点P在第二象限角平分线上,那么P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,应选:B.点评:此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.二、填空题〔共8小题,每题3分,总分值24分〕9.〔3分〕〔2022•咸宁〕﹣3的倒数为﹣.考点:倒数.分析:根据倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵〔﹣3〕×〔﹣〕=1,∴﹣3的倒数是﹣.故答案为﹣.点评:此题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.10.〔3分〕〔2022•咸宁〕化简+的结果为x.考点:分式的加减法.分析:先把两分数化为同分母的分数,再把分母不变,分子相加减即可.解答:解:原式=﹣==x.故答案为:x.点评:此题考查的是分式的加减法,即把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.11.〔3分〕〔2022•咸宁〕如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的外表上,与汉字“香〞相对的面上的汉字是泉.考点:专题:正方体相对两个面上的文字.分析:正方体的外表展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“力〞与“城〞是相对面,“香〞与“泉〞是相对面,“魅〞与“都〞是相对面.故答案为泉.点评:此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.〔3分〕〔2022•咸宁〕是二元一次方程组的解,那么m+3n的立方根为2.考点:二元一次方程组的解;立方根.分析:将代入方程组,可得关于m、n的二元一次方程组,解出m、n的值,代入代数式即可得出m+3n的值,再根据立方根的定义即可求解.解答:解:把代入方程组,得:,解得,那么m+3n=+3×=8,所以==2.故答案为2.点评:此题考查了二元一次方程组的解,解二元一次方程组及立方根的定义等知识,属于根底题,注意“消元法〞的运用.13.〔3分〕〔2022•咸宁〕在数轴上,点A〔表示整数a〕在原点的左侧,点B〔表示整数b〕在原点的右侧.假设|a﹣b|=2022,且AO=2BO,那么a+b的值为﹣671.考点:数轴;绝对值;两点间的距离.分析:根据条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b﹣a=2022,a=﹣2b,那么易求b=671.所以a+b=﹣2b+b=﹣b=﹣671.解答:解:如图,a<0<b.∵|a﹣b|=2022,且AO=2BO,∴b﹣a=2022,①a=﹣2b,②由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671.故答案是:﹣671.点评:此题考查了数轴、绝对值以及两点间的距离.根据条件得到a<0<b是解题的关键.14.〔3分〕〔2022•咸宁〕跳远运发动李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.〔单位:m〕这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.那么李刚这8次跳远成绩的方差变大〔填“变大〞、“不变〞或“变小〞〕.考点:方差.分析:根据平均数的定义先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.解答:解:∵李刚再跳两次,成绩分别为7.7,7.9,∴这组数据的平均数是=7.8,∴这8次跳远成绩的方差是:S2=[〔7.6﹣7.8〕2+〔7.8﹣7.8〕2+2×〔7.7﹣7.8〕2+〔7.8﹣7.8〕2+〔8.0﹣7.8〕2+2×〔7.9﹣7.8〕2]=,,∴方差变大;故答案为:变大.点评:此题考查方差的定义,一般地设n个数据,x1,x2,…x n的平均数为,那么方差S2=[〔x1﹣〕2+〔x2﹣〕2+…+〔x n﹣〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.〔3分〕〔2022•咸宁〕如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P 是AB边上的动点,过点P作⊙O的一条切线PQ〔点Q为切点〕,那么切线PQ的最小值为2.考点:切线的性质;等腰直角三角形.分析:首先连接OP、OQ,根据勾股定理知PQ2=OP2﹣OQ2,可得当OP⊥AB时,线段OP 最短,即线段PQ最短,然后由勾股定理即可求得答案.解答:解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3,∴AB=OA=6,∴OP==3,∴PQ===2.故答案为:2.点评:此题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意得到当PO⊥AB时,线段PQ最短是关键.16.〔3分〕〔2022•咸宁〕“龟兔首次赛跑〞之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑〞的故事〔x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程〕.有以下说法:①“龟兔再次赛跑〞的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是①③④.〔把你认为正确说法的序号都填上〕考点:函数的图象.分析:结合函数图象及选项说法进行判断即可.解答:解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200〔40≤x≤60〕,y2=100x﹣4000〔40≤x≤50〕,当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.点评:此题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题表达的过程,有一定难度.三、解答题〔共8小题,总分值72分〕17.〔10分〕〔2022•咸宁〕〔1〕计算:+|2﹣|﹣〔〕﹣1〔2〕解不等式组:.考点:解一元一次不等式组;实数的运算;负整数指数幂.分析:〔1〕此题涉及到二次根式的化简、绝对值、负整数指数幂,根据各知识点计算后,再计算有理数的加减即可;〔2〕分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.解答:解:〔1〕原式=2+2﹣﹣2=.〔2〕解不等式x+6≤3x+4,得;x≥1.解不等式>x﹣1,得:x<4.原不等式组的解集为:1≤x<4.点评:此题主要考查了二次根式的化简、绝对值、负整数指数幂,以及解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.〔7分〕〔2022•咸宁〕在咸宁创立〞国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树〞的力度,平均每天比原方案多植5棵,现在植60棵所需的时间与原方案植45棵所需的时间相同,问现在平均每天植多少棵树考点:分式方程的应用.分析:设现在平均每天植树x棵,那么原方案平均每天植树〔x﹣5〕棵.根据现在植60棵所需的时间与原方案植45棵所需的时间相同建立方程求出其解即可.解答:解:设现在平均每天植树x棵,那么原方案平均每天植树〔x﹣5〕棵.依题意得:,解得:x=20,经检验,x=20是方程的解,且符合题意.答:现在平均每天植树20棵.点评:此题是一道工程问题的运用题,考查了工作总量÷工作效率=工作时间的运用,列分式方程解实际问题的运用,解答时根据植60棵所需的时间与原方案植45棵所需的时间相同建立方程是关键.19.〔8分〕〔2022•咸宁〕如图,在平面直角坐标系中,直线y=2x+b〔b<0〕与坐标轴交于A,B两点,与双曲线y=〔x>0〕交于D点,过点D作DC⊥x轴,垂足为G,连接OD.△AOB≌△ACD.〔1〕如果b=﹣2,求k的值;〔2〕试探究k与b的数量关系,并写出直线OD的解析式.考点:反比例函数综合题.分析:〔1〕首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,由点D在双曲线y=〔x>0〕的图象上求出k的值;〔2〕首先直线y=2x+b与坐标轴交点的坐标为A〔﹣,0〕,B〔0,b〕,再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b之间的关系,进而也可以求出直线OD的解析式.解答:解:〔1〕当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A〔1,0〕,B〔0,﹣2〕.∵△AOB≌△ACD,∴CD=DB,AO=AC,∴点D的坐标为〔2,2〕.∵点D在双曲线y=〔x>0〕的图象上,∴k=2×2=4.〔2〕直线y=2x+b与坐标轴交点的坐标为A〔﹣,0〕,B〔0,b〕.∵△AOB≌△ACD,∴CD=OB,AO=AC,∴点D的坐标为〔﹣b,﹣b〕.∵点D在双曲线y=〔x>0〕的图象上,∴k=〔﹣b〕•〔﹣b〕=b2.即k与b的数量关系为:k=b2.直线OD的解析式为:y=x.点评:此题主要考查反比例函数的综合题的知识点,解答此题的关键是熟练掌握反比例函数的性质以及反比例函数图象的特征,此题难度不大,是一道不错的中考试题.20.〔8分〕〔2022•咸宁〕如图,△ABC内接于⊙O,OC和AB相交于点E,点D在OC 的延长线上,且∠B=∠D=∠BAC=30°.〔1〕试判断直线AD与⊙O的位置关系,并说明理由;〔2〕AB=6,求⊙O的半径.考点:切线的判定;解直角三角形.分析:〔1〕连接OA,求出∠AOC=2∠B=60°,根据三角形内角和定理求出∠OAD,根据切线判定推出即可;〔2〕求出∠AEC=90°,根据垂径定理求出AE,根据锐角三角函数的定义即可求出AC,根据等边三角形的性质推出即可.解答:解:〔1〕直线AD与⊙O相切.理由如下:如图,连接OA.∵∠B=30°,∴∠AOC=2∠B=60°,∴∠OAD=180°﹣∠AOD﹣∠D=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.〔2〕∵OA=OC,∠AOC=60°,∴△ACO是等边三角形,∴∠ACO=60°,AC=OA,∴∠AEC=180°﹣∠EAC﹣∠ACE=90°,∴OC⊥AB,又∵OC是⊙O的半径,∴AE=AB=6=3,在Rt△ACE中,sin∠ACE==sin 60°,∴AC=6,∴⊙O的半径为6.点评:此题考查了切线的判定,含30度角的直角三角形,锐角三角函数的定义,等边三角形的性质和判定的应用,主要考查了学生综合运用性质进行推理的能力.21.〔8分〕〔2022•咸宁〕在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩〔单位:厘米〕如下:11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2〔1〕通过计算,样本数据〔10名学生的成绩〕的平均数是10.9,中位数是11.2,众数是11.4;〔2〕一个学生的成绩是11.3厘米,你认为他的成绩如何说明理由;〔3〕研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀〞等级,如果全市有一半左右的学生能够到达“优秀〞等级,你认为标准成绩定为多少说明理由.考点:用样本估计总体;加权平均数;中位数;众数.分析:〔1〕利用中位数、众数的定义进行解答即可;〔2〕将其成绩与中位数比较即可得到答案;〔3〕用中位数作为一个标准即可衡量是否有一半学生到达优秀等级.解答:解:〔1〕中位数是11.2,众数是11.4.〔2〕方法1:根据〔1〕中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于11.2厘米,有一半学生的成绩小于11.2厘米,这位学生的成绩是11.3厘米,大于中位数11.2厘米,可以推测他的成绩比一半以上学生的成绩好.〔5分〕方法2:根据〔1〕中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市学生的平均成绩是10.9厘米,这位学生的成绩是11.3厘米,大于平均成绩10.9厘米,可以推测他的成绩比全市学生的平均成绩好.〔5分〕〔3〕如果全市有一半左右的学生评定为“优秀〞等级,标准成绩应定为11.2厘米〔中位数〕.因为从样本情况看,成绩在11.2厘米以上〔含11.2厘米〕的学生占总人数的一半左右.可以估计,如果标准成绩定为11.2厘米,全市将有一半左右的学生能够评定为“优秀〞等级.〔8分〕点评:此题考查了加权平均数、中位数及众数的定义,属于统计中的基此题型,需重点掌握.22.〔9分〕〔2022•咸宁〕为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按本钱价提供产品给大学毕业生自主销售,本钱价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.这种节能灯的本钱价为每件10元,出厂价为每件12元,每月销售量y〔件〕与销售单价x〔元〕之间的关系近似满足一次函数:y=﹣10x+500.〔1〕李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元〔2〕设李明获得的利润为w〔元〕,当销售单价定为多少元时,每月可获得最大利润〔3〕物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价最少为多少元考点:二次函数的应用.分析:〔1〕把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的本钱价与出厂价之间的差价;〔2〕由利润=销售价﹣本钱价,得w=〔x﹣10〕〔﹣10x+500〕,把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;〔3〕令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.解答:解:〔1〕当x=20时,y=﹣10x+500=﹣10×20+500=300,300×〔12﹣10〕=300×2=600,即政府这个月为他承担的总差价为600元.〔2〕依题意得,w=〔x﹣10〕〔﹣10x+500〕=﹣10x2+600x﹣5000=﹣10〔x﹣30〕2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000.〔3〕由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=〔12﹣10〕×〔﹣10x+500〕=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.点评:此题主要考查了二次函数的应用的知识点,解答此题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.23.〔10分〕〔2022•咸宁〕阅读理解:如图1,在四边形ABCD的边AB上任取一点E〔点E不与点A、点B重合〕,分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E 叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:〔1〕如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;〔2〕如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格〔网格中每个小正方形的边长为1〕的格点〔即每个小正方形的顶点〕上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;拓展探究:〔3〕如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.假设点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.考点:相似形综合题.分析:〔1〕要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.〔2〕根据两个直角三角形相似得到强相似点的两种情况即可.〔3〕因为点E是梯形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.解答:解:〔1〕点E是四边形ABCD的边AB上的相似点.理由:∵∠A=55°,∴∠ADE+∠DEA=125°.∵∠DEC=55°,∴∠BEC+∠DEA=125°.∴∠ADE=∠BEC.〔2分〕∵∠A=∠B,∴△ADE∽△BEC.∴点E是四边形ABCD的AB边上的相似点.〔2〕作图如下:〔3〕∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,∴BE=CE=AB.在Rt△BCE中,tan∠BCE==tan30°,∴,∴.点评:此题考查了相似三角形的判定和性质,矩形的性质,梯形的性质以及理解相似点和强相似点的概念等,从而可得到结论.24.〔12分〕〔2022•咸宁〕如图,直线y=x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.〔1〕点C的坐标是〔0,3〕线段AD的长等于4;〔2〕点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;〔3〕如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在〔2〕中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形假设存在,请求出该菱形的周长l;假设不存在,请说明理由.考点:二次函数综合题.分析:〔1〕首先求出图象与x轴交于点A,与y轴交于点B的坐标,进而得出C点坐标以及线段AD的长;〔2〕首先得出点M是CD的中点,即可得出M点坐标,进而利用待定系数法求二次函数解析式;〔3〕分别根据当点F在点C的左边时以及当点F在点C的右边时,分析四边形CFPE 为菱形得出即可.解答:解:〔1〕∵直线y=x+1与x轴交于点A,与y轴交于点B,∴y=0时,x=﹣3,x=0时,y=1,∴A点坐标为:〔﹣3,0〕,B点坐标为:〔0,1〕,∴OC=3,DO=1,∴点C的坐标是〔0,3〕,线段AD的长等于4;〔2〕∵CM=OM,∴∠OCM=∠COM.∵∠OCM+∠ODM=∠COM+∠MOD=90°,∴∠ODM=∠MOD,∴OM=MD=CM,∴点M是CD的中点,∴点M的坐标为〔,〕.〔说明:由CM=OM得到点M在OC在垂直平分线上,所以点M的纵坐标为,再求出直线CD的解析式,进而求出点M的坐标也可.〕∵抛物线y=x2+bx+c经过点C,M,∴,解得:.∴抛物线y=x2+bx+c的解析式为:y=x2﹣x+3.〔3〕抛物线上存在点P,使得以C,E,F,P为顶点的四边形是菱形.情形1:如图1,当点F在点C的左边时,四边形CFEP为菱形.∴∠FCE=PCE,由题意可知,OA=OC,∴∠ACO=∠PCE=45°,∴∠FCP=90°,∴菱形CFEP为正方形.过点P作PH⊥CE,垂足为H,那么Rt△CHP为等腰直角三角形.∴CP=CH=PH.设点P为〔x,x2﹣x+3〕,那么OH=x2﹣x+3,PH=x,∵PH=CH=OC﹣OH,∴3﹣〔x2﹣x+3〕=x,解得:x=∴CP=CH=×=,∴菱形CFEP的周长l为:×4=10.情形2:如图2,当点F在点C的右边时,四边形CFPE为菱形.∴CF=PF,CE∥FP.∵直线AC过点A〔﹣3,0〕,点C〔0,3〕,∴直线AC的解析式为:y=x+3.过点C作CM⊥PF,垂足为M,那么Rt△CMF为等腰直角三角形,CM=FM.延长PF交x轴于点N,那么PN⊥x轴,∴PF=FN﹣PN,设点P为〔x,x2﹣x+3〕,那么点F为〔x,x+3〕,∴FC=x,FP=〔x+3〕﹣〔x2﹣x+3〕=﹣x2+x,∴x=﹣x2+x,解得:x=﹣,∴FC=x=﹣2,∴菱形CFEP的周长l为:〔﹣2〕×4=18﹣8.综上所述,这样的菱形存在,它的周长为10或18﹣8.点此题主要考查了二次函数综合应用以及菱形的判定与性质等知识,根据进行分类讨评:论得出是解题关键.。

湖北省咸宁市中考数学试卷

湖北省咸宁市中考数学试卷

湖北省咸宁市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·金华) 下列各组数中,把两数相乘,积为1的是()A . 2和-2B . -2和C . 和D . 和-2. (2分)(2019·怀集模拟) 下列计算正确的是()A . x2﹣3x2=﹣2x4B . (﹣3x2)2=6x2C . x2y•2x3=2x6yD . 6x3y2÷(3x)=2x2y23. (2分)(2017·常州模拟) 在函数y= 中,自变量x的取值范围是()A . x<2B . x≤2C . x>2D . x≥24. (2分) (2017九上·宁县期末) 二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A . (1,3)B . (﹣1,3)C . (1,﹣3)D . (﹣1,﹣3)5. (2分) (2016九上·肇源月考) 不等式-3x≥6的解集在数轴上表示为()A .B .C .D .6. (2分)(2019·河南模拟) 若一组数据2,x,8,4,2的平均数是6,则这组数据的中位数和众数分别是()A . 8,2B . 3,2C . 4,2D . 6,87. (2分) (2016七下·老河口期中) 下列各语句:①对顶角相等吗?②延长线段AB;③内错角相等;④垂线段最短.其中真命题有()A . 1个B . 2个C . 3个D . 4个8. (2分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A . 2B . 4C .D . 5二、填空题 (共8题;共8分)9. (1分)(2019·黔东南) 分解因式:9x2-y2=________.10. (1分) (2019七上·法库期末) 我国最新研制出的“曙光超级服务器”的峰值速度达到次/秒,数据用科学记数法表示为________.11. (1分)(2018·成都模拟) 已知整数k<5,若△ABC的边长均满足关于x的方程x2﹣3 x+8=0,则△ABC 的周长是________.12. (1分) (2019七上·施秉月考) 若x2-3x=-1,则-x2+3x+4的值为________.13. (1分) (2019七上·静安期末) 在小于等于9的正整数中任意取出一个数,取到素数的可能性大小是________.14. (1分)(2019·扬州) 将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=________.15. (1分)(2017·静安模拟) 如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于________.16. (1分) (2019九上·绿园期末) 如图,在平面直角坐标系中,抛物线与抛物线都经过轴正半轴上的点 .过点作轴的平行线,分别与这两条抛物线交于、两点,以为边向下作等边,则的周长为________.三、解答题 (共8题;共91分)17. (5分)计算或化简:(1) 30﹣2﹣3+(﹣3)2﹣()﹣1(2)(﹣2a2b3)4+(﹣a)8•(2b4)3(3)(﹣ x+2y)(﹣ x﹣2y)(4)(2a+1)﹣(1﹣2a)2(5)(3x﹣y)2﹣(2x+y)+5x(y﹣x)(6)(x+5)2﹣(x﹣5)2﹣(2x+1)(﹣2x﹣1)(7)(a+1)(a﹣1)(a2+1)(a4+1)(a8+1)(8)(﹣2a﹣b+3)(﹣2a+b+3)18. (15分) (2016八下·凉州期中) 如图所示,在△ABC中,∠ACB=90°,点D,E分别为AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF为平行四边形.19. (10分)(2013·镇江) 通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.(1)写出点B的坐标,并求a的值;(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).①求n的值;②分别写出平移后的两个图象C′和l′对应的函数关系式;③直接写出不等式的解集.20. (16分)(2018·东营) 2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本)频率名人传记175a科普图书b0.30小说110c其他65d(1)求该校九年级共捐书多少本;(2)统计表中的a=________,b=________,c=________,d=________;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21. (5分)(2018·山西) 2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.22. (10分)(2017·广陵模拟) 为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).23. (15分)(2015·舟山) 小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数.(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?24. (15分)(2018·宜宾模拟) 如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共91分)17-1、17-2、17-3、17-4、17-5、17-6、17-7、17-8、18-1、19-1、19-2、20-1、20-2、20-3、20-4、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

()湖北省咸宁市中考数学试卷含答案,文档

()湖北省咸宁市中考数学试卷含答案,文档

个人收集整理资料,仅供交流学习,勿作商业用途湖北省咸宁市中考2021年数学试卷一、选择题<共8小题,每题3分,总分值24分〕在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.<3分〕<2021?咸宁〕如果温泉河的水位升高时水位变化记作,那么水位下降时水位变化记作< 〕b5E2RGbCAPA0m B C﹣ D﹣....考正数和负数.点:分首先根据题意,明确“正〞和“负〞所表示的意义,再根据题析:意作答即可.解解:∵水位升高时水位变化记作,答:∴水位下降时水位变化记作﹣05m;应选D.点此题考查了正数和负数,解题关键是理解“正〞和“负〞的相评:对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.2.<3分〕<2021?咸宁〕2021年,咸宁全面推进“省级战略,咸宁实施〞,经济持续增长,全市人均GDP再攀新高,到达约24000元.将24000用科学记数法表示为< 〕p1EanqFDPwA×104B×103C×105D×105....考科学记数法—表示较大的数.点:分科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n析:为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解解:将24000用科学记数法表示为×104.答:应选A.点此题考查科学记数法的表示方法.科学记数法的表示形式为评:a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正1/23确确定a的值以及n的值.3.<3分〕<2021?咸宁〕以下学习用具中,不是轴对称图形的是〕A B C D....考轴对称图形.点:分根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边析:能够重合的图形是轴对称图形,对各选项判断即可.解解:A、是轴对称图形,不合题意,故本选项错误;答:B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;应选C.点此题考查了轴对称图形的知识,属于根底题,判断轴对称图形评:的关键是寻找对称轴.4.<3分〕<2021?咸宁〕以下运算正确的选项是< 〕A a6÷a2=a3B3a2b﹣a2b=2C<﹣2a3〕D<a+b〕...2=4a6.2=a2+b2考同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平点:方公式.分根据同底数幂的除法、合并同类项、幂的乘方及完全平方公析:式,结合各选项进行判断即可.解解:A、a6÷a2=a4,原式计算错误,故本选线错误;答:B、3a2b﹣a2b=2a2b,原式计算错误,故本选线错误;C、<﹣2a3〕2=4a6,计算正确,故本选线正确;D、<a+b〕2=a2+2ab+b2,计算错误,故本选线错误;应选C.点此题考查了同底数幂的除法、合并同类项、幂的乘方运算,属评:于根底题,掌握各局部的运算法那么是关键.5.<3分〕<2021?咸宁〕如图,过正五边形ABCDE的顶点A作直线l∥BE,那么∠1的度数为< 〕DXDiTa9E3d2/23A30°B36°C38°D45°....考平行线的性质;等腰三角形的性质;多边形内角与外角.点:分首先根据多边形内角和计算公式计算出每一个内角的度数,再析:根据等腰三角形的性质计算出∠AEB,然后根据平行线的性质可得答案.解解:∵ABCDE是正五边形,答:∴∠BAE=<5﹣2〕×180°÷5=108°,∴∠AEB=<180°﹣108°〕÷2=36°,l∥BE,∴∠1=36°,应选:B.点此题主要考查了正多边形的内角和定理,以及三角形内角和定评:理,平行线的性质,关键是掌握多边形内角和定理:<n﹣2〕.180°<n≥3〕且n为整数〕.6.<3分〕<2021?咸宁〕关于x的一元二次方程<a﹣1〕x2﹣2x+3=0有实数根,那么整数a的最大值是< 〕RTCrpUDGiTA2 B1 C0 D﹣1....考根的判别式.点:分根据方程有实数根,得到根的判别式的值大于等于0,且二次析:项系数不为0,即可求出整数a的最大值.解解:根据题意得:△=4﹣12<a﹣1〕≥0,且a﹣1≠0,答:解得:a≤,a≠1,那么整数a的最大值为0.应选C.点此题考查了根的判别式,一元二次方程的定义,弄清题意是解评:此题的关键.3/237.<3分〕<2021?咸宁〕如图,正方形ABCD是一块绿化带,其中阴影局部EOFB,GHMN都是正方形的花圃.自由飞翔的小鸟,将随机落在这块绿化带上,那么小鸟在花圃上的概率为< 〕5PCzVD7HxAA B C D....考相似三角形的应用;正方形的性质;几何概率.点:分求得阴影局部的面积与正方形ABCD的面积的比即可求得小鸟在析:花圃上的概率;解解:设正方形的ABCD的边长为a,答:那么BF=BC=,AN=NM=MC=a,∴阴影局部的面积为<〕2+<a〕2=a2,∴小鸟在花圃上的概率为=应选C.点此题考查了正方形的性质及几何概率,关键是表示出大正方形评:的边长,从而表示出两个阴影正方形的边长,最后表示出面积.8.<3分〕<2021?咸宁〕如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.假设点P的坐标为<2a,b+1〕,那么a与b的数量关系为< 〕jLBHrnAILg4/23Aa=b B2a+b=﹣1C2a﹣b=1D2a+b=1....考作图—根本作图;坐标与图形性质;角平分线的性质.点:分根据作图过程可得P在第二象限角平分线上,有角平分线的性析:质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解解:根据作图方法可得点P在第二象限角平分线上,答:那么P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,应选:B.点此题主要考查了每个象限内点的坐标特点,以及角平分线的性评:质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.二、填空题<共8小题,每题3分,总分值24分〕9.<3分〕<2021?咸宁〕﹣3的倒数为﹣.考倒数.点:分根据倒数的定义:假设两个数的乘积是1,我们就称这两个数互析:为倒数.解解:∵<﹣3〕×<﹣〕=1,答:∴﹣3的倒数是﹣.故答案为﹣.点此题主要考查倒数的定义,要求熟练掌握.需要注意的是:评:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.5/23个人收集整理资料,仅供交流学习,勿作商业用途倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.10.<3分〕<2021?咸宁〕化简+ 的结果为x .考分式的加减法.点:分先把两分数化为同分母的分数,再把分母不变,分子相加减即析:可.解解:原式=﹣答:==x.故答案为:x.点此题考查的是分式的加减法,即把分母不相同的几个分式化成评:分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.11.<3分〕<2021?咸宁〕如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的外表上,与汉字“香〞相对的面上的汉字是泉.xHAQX74J0X考专题:正方体相对两个面上的文字.点:分正方体的外表展开图,相对的面之间一定相隔一个正方形,根析:据这一特点作答.解解:正方体的外表展开图,相对的面之间一定相隔一个正方答:形,“力〞与“城〞是相对面,“香〞与“泉〞是相对面,“魅〞与“都〞是相对面.故答案为泉.点此题主要考查了正方体相对两个面上的文字,注意正方体的空6/23评:间图形,从相对面入手,分析及解答问题.12.<3分〕<2021?咸宁〕是二元一次方程组的解,那么m+3n的立方根为2.考二元一次方程组的解;立方根.点:分将代入方程组,可得关于m、n的二元一次方程析:组,解出m、n的值,代入代数式即可得出m+3n的值,再根据立方根的定义即可求解.解解:把代入方程组,答:得:,解得,∴那么m+3n=+3×=8,所以= =2.故答案为2.点此题考查了二元一次方程组的解,解二元一次方程组及立方根评:的定义等知识,属于根底题,注意“消元法〞的运用.13.<3分〕<2021?咸宁〕在数轴上,点A<表示整数a〕在原点的左侧,点B<表示整数b〕在原点的右侧.假设|a﹣b|=2021,且AO=2BO,那么a+b的值为﹣671.LDAYtRyKfE考数轴;绝对值;两点间的距离.点:分根据条件可以得到a<0<b.然后通过取绝对值,根据两析:点间的距离定义知b﹣a=2021,a=﹣2b,那么易求b=671.所以a+b=﹣2b+b=﹣b=﹣671.解解:如图,a<0<b.答:∵|a﹣b|=2021,且AO=2BO,b﹣a=2021,①a=﹣2b,②由①②,解得b=671,a+b=﹣2b+b=﹣b=﹣671.7/23故答案是:﹣671.点此题考查了数轴、绝对值以及两点间的距离.根据条件得评:到a<0<b是解题的关键.14.<3分〕<2021?咸宁〕跳远运发动李刚对训练效果进行测试, 6次跳远的成绩如下:,,,,,.<单位:m〕这六次成绩的平均数为,方差为.如果李刚再跳两次,成绩分别为,.那么李刚这8次跳远成绩的方差变大<填“变大〞、“不变〞或“变小〞〕.Zzz6ZB2Ltk考方差.点:分根据平均数的定义先求出这组数据的平均数,再根据方差公式析:求出这组数据的方差,然后进行比较即可求出答案.解解:∵李刚再跳两次,成绩分别为,,答:∴这组数据的平均数是,∴这8次跳远成绩的方差是:S2=﹣〕﹣〕2+2×<7.7﹣〕﹣〕﹣〕2+2×<7.9﹣〕2]= ,,∴方差变大;故答案为:变大.点此题考查方差的定义,一般地设n个数据,x1,x2,xn的平评:均数为,那么方差S2=[<x1﹣〕2+<x2﹣〕2++<xn﹣〕2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.<3分〕<2021?咸宁〕如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ<点Q为切点〕,那么切线PQ的最小值为 2 .dvzfvkwMI18/23考切线的性质;等腰直角三角形.点:分首先连接OP、OQ,根据勾股定理知PQ2=OP2﹣OQ2,可得当析:OP⊥AB时,线段OP最短,即线段PQ 最短,然后由勾股定理即可求得答案.解解:连接OP、OQ.答:∵PQ是⊙O的切线,OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3,AB=OA=6,OP==3,∴PQ===2.故答案为:2.点此题考查了切线的性质、等腰直角三角形的性质以及勾股定评:理.此题难度适中,注意掌握辅助线的作法,注意得到当PO⊥AB时,线段PQ最短是关键.16.<3分〕<2021?咸宁〕“龟兔首次赛跑〞之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑〞的故事<x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程〕.有以下说法:rqyn14ZNXI9/23①“龟兔再次赛跑〞的路程为1000M;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750M处追上乌龟.其中正确的说法是①③④.<把你认为正确说法的序号都填上〕考函数的图象.点:分结合函数图象及选项说法进行判断即可.析:解解:根据图象可知:答:龟兔再次赛跑的路程为1000M,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200<40≤x≤60〕,y2=100x﹣4000<40≤x≤50〕,当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:,y1=y2=750M,即兔子在途中750M处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.点此题考查了函数的图象,读函数的图象时首先要理解横纵坐标评:表示的含义,理解问题表达的过程,有一定难度.三、解答题<共8小题,总分值72分〕17.<10分〕<2021?咸宁〕<1〕计算:+|2﹣|﹣<〕﹣110/23<2〕解不等式组:.考解一元一次不等式组;实数的运算;负整数指数幂.点:分<1〕此题涉及到二次根式的化简、绝对值、负整数指数幂,根析:据各知识点计算后,再计算有理数的加减即可;<2〕分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.解解:<1〕原式=2 +2﹣﹣2= .答:<2〕解不等式x+6≤3x+4,得;x≥1.解不等式>x﹣1,得:x<4.原不等式组的解集为:1≤x<4.点此题主要考查了二次根式的化简、绝对值、负整数指数幂,以评:及解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.<7分〕<2021?咸宁〕在咸宁创立〞国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树〞的力度,平均每天比原方案多植5棵,现在植60棵所需的时间与原方案植45棵所需的时间相同,问现在平均每天植多少棵树?EmxvxOtOco考分式方程的应用.点:分设现在平均每天植树x棵,那么原方案平均每天植树<x﹣5〕析:棵.根据现在植60棵所需的时间与原方案植45棵所需的时间相同建立方程求出其解即可.解解:设现在平均每天植树x棵,那么原方案平均每天植树<x﹣5〕答:棵.依题意得:,解得:x=20,经检验,x=20是方程的解,且符合题意.答:现在平均每天植树20棵.点此题是一道工程问题的运用题,考查了工作总量÷工作效率=工评:作时间的运用,列分式方程解实际问题的运用,解答时根据植60棵所需的时间与原方案植45棵所需的时间相同建立方程是11/23关键.19.<8分〕<2021?咸宁〕如图,在平面直角坐标系中,直线y=2x+b<b<0〕与坐标轴交于A,B两点,与双曲线y=<x>0〕交于D点,过点D作DC⊥x轴,垂足为G,连接OD.AOB≌△ACD.SixE2yXPq5<1〕如果b=﹣2,求k的值;<2〕试探究k与b的数量关系,并写出直线OD的解读式.考反比例函数综合题.点:分<1〕首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由析:△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,由点D在双曲线y=<x>0〕的图象上求出k的值;<2〕首先直线y=2x+b与坐标轴交点的坐标为 A<﹣,0〕,B<0,b〕,再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解读式求出k和b之间的关系,进而也可以求出直线OD的解读式.解解:<1〕当b=﹣2时,答:直线y=2x﹣2与坐标轴交点的坐标为A<1,0〕,B<0,﹣2〕.∵△AOB≌△ACD,CD=DB,AO=AC,∴点D的坐标为<2,2〕.∵点D在双曲线y=<x>0〕的图象上,∴k=2×2=4.<2〕直线y=2x+b与坐标轴交点的坐标为A<﹣,0〕,B<0,12/23b〕.∵△AOB≌△ACD,CD=OB,AO=AC,∴点D的坐标为<﹣b,﹣b〕.∵点D在双曲线y=<x>0〕的图象上,k=<﹣b〕?<﹣b〕=b2.即k与b的数量关系为:k=b2.直线OD的解读式为:y=x.点此题主要考查反比例函数的综合题的知识点,解答此题的关键评:是熟练掌握反比例函数的性质以及反比例函数图象的特征,此题难度不大,是一道不错的中考试卷.20.<8分〕<2021?咸宁〕如图,△ABC内接于⊙O,OC和AB相交于点E,点D在OC的延长线上,且∠B=∠D=∠BAC=30°.6ewMyirQFL<1〕试判断直线AD与⊙O的位置关系,并说明理由;<2〕AB=6 ,求⊙O的半径.考切线的判定;解直角三角形.点:分<1〕连接OA,求出∠AOC=2∠B=60°,根据三角形内角和定理析:求出∠OAD,根据切线判定推出即可;<2〕求出∠AEC=90°,根据垂径定理求出AE,根据锐角三角函数的定义即可求出AC,根据等边三角形的性质推出即可.解解:<1〕直线AD与⊙O相切.理由如下:答:如图,连接OA.∵∠B=30°,∴∠AOC=2∠B=60°,∴∠OAD=180°﹣∠AOD﹣∠D=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.13/23<2〕∵OA=OC,∠AOC=60°,∴△ACO是等边三角形,∴∠ACO=60°,AC=OA,∴∠AEC=180°﹣∠EAC﹣∠ACE=90°,OC⊥AB,又∵OC是⊙O的半径,∴AE=AB= 6 =3 ,在Rt△ACE中,sin∠ACE==sin60°,AC=6,∴⊙O的半径为6.点此题考查了切线的判定,含30度角的直角三角形,锐角三角函评:数的定义,等边三角形的性质和判定的应用,主要考查了学生综合运用性质进行推理的能力.21.<8分〕<2021?咸宁〕在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩<单位:厘M〕如下:kavU42VRUs,,,,,,,,,<1〕通过计算,样本数据<10名学生的成绩〕的平均数是,中位数是,众数是;y6v3ALoS89 <2〕一个学生的成绩是厘M,你认为他的成绩如何?说明理由;<3〕研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀〞等级,如果全市有一半左右的学生能够达14/23到“优秀〞等级,你认为标准成绩定为多少?说明理由.M2ub6vSTnP考用样本估计总体;加权平均数;中位数;众数.点:分<1〕利用中位数、众数的定义进行解答即可;析:<2〕将其成绩与中位数比较即可得到答案;<3〕用中位数作为一个标准即可衡量是否有一半学生到达优秀等级.解解:<1〕中位数是,众数是.答:<2〕方法1:根据<1〕中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于厘M,有一半学生的成绩小于厘M,这位学生的成绩是厘M,大于中位数厘M,可以推测他的成绩比一半以上学生的成绩好.<5分〕方法2:根据<1〕中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市学生的平均成绩是厘M,这位学生的成绩是厘M,大于平均成绩厘M,可以推测他的成绩比全市学生的平均成绩好.<5分〕<3〕如果全市有一半左右的学生评定为“优秀〞等级,标准成绩应定为厘M<中位数〕.因为从样本情况看,成绩在厘M以上<含厘M〕的学生占总人数的一半左右.可以估计,如果标准成绩定为厘M,全市将有一半左右的学生能够评定为“优秀〞等级.<8分〕点此题考查了加权平均数、中位数及众数的定义,属于统计中的评:基此题型,需重点掌握.22.<9分〕<2021?咸宁〕为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按本钱价提供产品给大学毕业生自主销售,本钱价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.这种节能灯的本钱价为每件10元,出厂价为每件12元,每月销售量y<件〕与销售单价x<元〕之间的关系近似满足一次函数:y=﹣10x+500.0YujCfmUCw15/23<1〕李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?<2〕设李明获得的利润为w<元〕,当销售单价定为多少元时,每月可获得最大利润?<3〕物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元,那么政府为他承担的总差价∵最少为多少元?eUts8ZQVRd考二次函数的应用.点:分<1〕把x=20代入y=﹣10x+500求出销售的件数,然后求出政府析:承担的本钱价与出厂价之间的差价;<2〕由利润=销售价﹣本钱价,得w=<x﹣10〕<﹣10x+500〕,把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;<3〕令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.解解:<1〕当x=20时,y=﹣10x+500=﹣10×20+500=300,答:300×<12﹣10〕=300×2=600,即政府这个月为他承担的总差价为600元.<2〕依题意得,w=<x﹣10〕<﹣10x+500〕=﹣10x2+600x﹣5000=﹣10<x﹣30〕2+4000a=﹣10<0,∴当x=30时,w有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000.<3〕由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.a=﹣10<0,抛物线开口向下,16/23∴结合图象可知:当20≤x≤40时,w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,p=<12﹣10〕×<﹣10x+500〕=﹣20x+1000.k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为元.点此题主要考查了二次函数的应用的知识点,解答此题的关键熟评:练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.23.<10分〕<2021?咸宁〕阅读理解:如图1,在四边形ABCD的边AB上任取一点E<点E不与点A、点B重合〕,分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:sQsAEJkW5T<1〕如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;GMsIasNXkA<2〕如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格<网格中每个小正方形的边长为1〕的格点<即每个小17/23正方形的顶点〕上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;TIrRGchYzg拓展探究:<3〕如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.假设点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.7EqZcWLZNX考相似形综合题.点:分<1〕要证明点E是四边形ABCD的AB边上的相似点,只要证明析:有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.<2〕根据两个直角三角形相似得到强相似点的两种情况即可.<3〕因为点E是梯形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.解解:<1〕点E是四边形ABCD的边AB上的相似点.答:理由:∵∠A=55°,∴∠ADE+∠DEA=125°.∵∠DEC=55°,∴∠BEC+∠DEA=125°.∴∠ADE=∠BEC.<2分〕∵∠A=∠B,∴△ADE∽△BEC.∴点E是四边形ABCD的AB边上的相似点.<2〕作图如下:18/23个人收集整理资料,仅供交流学习,勿作商业用途<3〕∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM,∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM,CE=CD,∴∠BCE=∠BCD=30°,BE=CE=AB.在Rt△BCE中,tan∠BCE==tan30°,∴,∴.点此题考查了相似三角形的判定和性质,矩形的性质,梯形的性评:质以及理解相似点和强相似点的概念等,从而可得到结论.24.<12分〕<2021?咸宁〕如图,直线y=x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到COD.lzq7IGf02E<1〕点C的坐标是<0,3〕线段AD的长等于 4 ;<2〕点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解读式;<3〕如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在<2〕中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?假设存在,请求出该菱形的周长l;假设不存在,请说明理由.zvpgeqJ1hk19/23个人收集整理资料,仅供交流学习,勿作商业用途考二次函数综合题.点:分<1〕首先求出图象与x轴交于点A,与y轴交于点B的坐标,析:进而得出C点坐标以及线段AD的长;<2〕首先得出点M是CD的中点,即可得出M点坐标,进而利用待定系数法求二次函数解读式;<3〕分别根据当点F在点C的左边时以及当点F在点C的右边时,分析四边形CFPE为菱形得出即可.解解:<1〕∵直线y=x+1与x轴交于点A,与y轴交于点B,答:∴y=0时,x=﹣3,x=0时,y=1,∴A点坐标为:<﹣3,0〕,B点坐标为:<0,1〕,∴OC=3,DO=1,∴点C的坐标是<0,3〕,线段AD的长等于4;<2〕∵CM=OM,∴∠OCM=∠COM.∵∠OCM+∠ODM=∠COM+∠MOD=90°,∴∠ODM=∠MOD,∴OM=MD=CM,∴点M是CD的中点,∴点M的坐标为<,〕.<说明:由CM=OM得到点M在OC在垂直平分线上,所以点M的纵坐标为,再求出直线CD的解读式,进而求出点 M的坐标也可.〕∵抛物线y=x2+bx+c经过点C,M,∴,解得:.20/23个人收集整理资料,仅供交流学习,勿作商业用途∴抛物线y=x2+bx+c的解读式为:y=x2﹣x+3.<3〕抛物线上存在点P,使得以C,E,F,P为顶点的四边形是菱形.情形1:如图1,当点F在点C的左边时,四边形CFEP为菱形.∴∠FCE=PCE,由题意可知,OA=OC,∴∠ACO=∠PCE=45°,∴∠FCP=90°,∴菱形CFEP为正方形.过点P作PH⊥CE,垂足为H,那么Rt△CHP为等腰直角三角形.∴CP=CH=PH.设点P为<x,x2﹣x+3〕,那么OH=x2﹣x+3,PH=x,PH=CH=OC﹣OH,3﹣<x2﹣x+3〕=x,解得:x=CP=CH=×=,∴菱形CFEP的周长l为:×4=10.情形2:如图2,当点F在点C的右边时,四边形CFPE为菱形.21/23CF=PF,CE∥FP.∵直线AC过点A<﹣3,0〕,点C<0,3〕,∴直线AC的解读式为:y=x+3.过点C作CM⊥PF,垂足为M,那么Rt△CMF为等腰直角三角形,CM=FM.延长PF交x轴于点N,那么PN⊥x轴,∴PF=FN﹣PN,设点P为<x,x2﹣x+3〕,那么点F为<x,x+3〕,FC=x,FP=<x+3〕﹣<x2﹣x+3〕=﹣x2+x,x=﹣x2+x,解得:x=﹣,∴FC=x=﹣2,∴菱形CFEP的周长l为:<﹣2〕×4=18﹣8.综上所述,这样的菱形存在,它的周长为10或18﹣8.点此题主要考查了二次函数综合应用以及菱形的判定与性质等知评:识,根据进行分类讨论得出是解题关键.22/23申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

2022湖北省咸宁市中考数学真题试卷和答案

2022湖北省咸宁市中考数学真题试卷和答案

2022年湖北省孝感市/黄冈市/咸宁市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑)1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15-D.152. 某几何体的三视图如图所示,则该几何体是( )A. 圆锥B. 三棱锥C. 三棱柱D. 四棱柱3. 北京冬奥会开幕式冰雪五环由我国航天科技建造,该五环由21000个LED 灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城,将数据21000用科学记数法表示为( )A. 21×103B. 2.1×104C. 2.1×105D. 0.21×1064. 下列图形中,对称轴最多的是( )A. 等边三角形B. 矩形C. 正方形D. 圆5. 下列计算正确的是( )A. a 2•a 4=a 8B. (-2a 2)3=-6a 6C. a 4÷a =a 3D. 2a +3a =5a 26. 下列调查中,适宜采用全面调查方式的是( )A. 检测“神舟十四号”载人飞船零件的质量 B. 检测一批LED 灯的使用寿命C. 检测黄冈、孝感、咸宁三市的空气质量D. 检测一批家用汽车的抗撞击能力7. 如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则弧AD 的长为( )A. πB.43π C.53π D. 2π8. 如图,在矩形ABCD 中,AB <BC ,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N ,直线MN 分别交AD ,BC 于点E ,F.下列结论:的①四边形AECF 是菱形;②∠AFB =2∠ACB ;③AC •EF =CF •CD ;④若AF 平分∠BAC ,则CF =2BF .其中正确结论的个数是( )A. 4B. 3C. 2D. 1二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9. 若分式21x -有意义,则x 取值范围是________.10. 如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=54°,则∠3=________度.11. 已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____.12. 如图,已知AB DE ∥,AB DE =,请你添加一个条件________,使ABC DEF △≌△.13. 小聪和小明两个同学玩“石头,剪刀、布“的游戏,随机出手一次是平局的概率是________.14. 如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB为的________m .(sin 580.85︒≈,cos580.53︒≈,tan 58 1.60︒≈,结果保留整数).15. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是________(结果用含m 的式子表示).16. 如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 运动速度为1cm /s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17 先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.18. 某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?19. 为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“t ≤45”,B 组“45<t ≤60”,C 组“60<t ≤75”,D 组“75<t ≤90”,E 组“t >90”.将收集的数据整理后,绘制成如下两幅不完整的统计图. 根据以上信息,解答下列问题:的.(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,B 组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.20. 如图,已知一次函数y 1=kx +b 的图像与函数y 2=m x(x >0)的图像交于A (6,-12),B (12,n )两点,与y 轴交于点C ,将直线AB 沿y 轴向上平移t 个单位长度得到直线DE ,DE 与y 轴交于点F .(1)求y 1与y 2的解析式;(2)观察图像,直接写出y 1<y 2时x 的取值范围;(3)连接AD ,CD ,若△ACD 的面积为6,则t 的值为.21. 如图,O 是ABC 的外接圆,AD 是O 的直径,BC 与过点A 的切线EF 平行,BC ,AD 相交于点G .(1)求证:AB AC =;(2)若16DG BC ==,求AB 的长.22. 为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x ≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.23. 问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证AB AC =BDCD.小慧的证明思路是:如图2,过点C 作CE ∥AB ,交AD 的延长线于点E ,构造相似三角形来证明AB AC =BDCD.的(1)尝试证明:请参照小慧提供的思路,利用图2证明AB AC =BDCD;(2)应用拓展:如图3,在Rt △ABC 中,∠BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.①若AC =1,AB =2,求DE 的长;②若BC =m ,∠AED =α,求DE 的长(用含m ,α的式子表示).24. 抛物线y =x 2-4x 与直线y =x 交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)直接写出点B 和点D 的坐标;(2)如图1,连接OD ,P 为x 轴上的动点,当tan ∠PDO =12时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,它的横坐标为m (0<m <5),连接MQ ,BQ ,MQ 与直线OB 交于点E .设△BEQ 和△BEM 的面积分别为S 1和S 2,求12S S 的最大值.2022年湖北省孝感市/黄冈市/咸宁市中考数学试卷答案一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 某几何体的三视图如图所示,则该几何体是()A. 圆锥B. 三棱锥C. 三棱柱D. 四棱柱【答案】C【解析】【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3. 北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城,将数据21000用科学记数法表示为()A. 21×103B. 2.1×104C. 2.1×105D.0.21×106【答案】B【解析】【分析】首先思考科学记数法表示数的形式,再确定a,n的值,即可得出答案.【详解】21000=2.1×104.故选:B.【点睛】本题主要考查了科学记数法表示绝对值大于1的数,掌握形式解题的关键.即a×10n,其中1≤|a|<10,n为正整数.4. 下列图形中,对称轴最多的是()A. 等边三角形B. 矩形C. 正方形D. 圆【答案】D【解析】【详解】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.5. 下列计算正确的是()A. a2•a4=a8B. (-2a2)3=-6a6C. a4÷a=a3D. 2a+3a =5a2【答案】C【解析】【分析】根据同底数幂的乘法、积的乘方、同底数幂的除法、合并同类项逐个选项判断即可.【详解】A、a2•a4=a6,故A错误;B、(-2a2)3=-8a6,故B错误;C、a4÷a=a3,故C正确;D、2a+3a=5a,故D错误,故选:C.【点睛】本题考查了同底数幂的乘法、积的乘方、同底数幂的除法、合并同类项,熟记法则并根据法则计算是解题关键.6. 下列调查中,适宜采用全面调查方式的是()A. 检测“神舟十四号”载人飞船零件的质量B. 检测一批LED灯的使用寿命C. 检测黄冈、孝感、咸宁三市的空气质量D. 检测一批家用汽车的抗撞击能力【答案】A【解析】【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【详解】解:A、检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A 符合题意;B 、检测一批LED 灯的使用寿命,适宜采用抽样调查的方式,故B 不符合题意;C 、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C 不符合题意;D 、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D 不符合题意.故选:A .【点睛】本题主要考查了全面调查和抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.7. 如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则弧AD 的长为( )A. πB.43π C.53π D. 2π【答案】B 【解析】【分析】连接CD ,根据∠ACB =90°,∠B =30°可以得到∠A 的度数,再根据AC =CD 以及∠A 的度数即可得到∠ACD 的度数,最后根据弧长公式求解即可.【详解】解:连接CD ,如图所示:∵ACB =90°,∠B =30°,AB =8,∴∠A =90°-30°=60°,AC =12AB =4,由题意得:AC =CD ,∴△ACD 为等边三角形,∴∠ACD =60°,∴ AD 的长为:604180π⨯=43π,故选:B .【点睛】本题考查了弧长公式,解题的关键是:求出弧所对应的圆心角的度数以及弧所在扇形的半径.AC的长8. 如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于12为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A. 4B. 3C. 2D. 1【答案】B【解析】⊥,且平分AC,设AC与MN的交点为O,证明四边形【分析】根据作图可得MN ACAECF为菱形,即可判断①,进而根据等边对等角即可判断②,根据菱形的性质求面积即=,根据含30度角的直角三角形的性可求解.判断③,根据角平分线的性质可得BF FO质,即可求解.【详解】如图,设AC与MN的交点为O,⊥,且平分AC,根据作图可得MN AC∴=,AO OC四边形ABCD是矩形,AD BC ∴∥,EAO OCF ∴∠=∠,又AOE COF ∠=∠ ,AO CO = ,AOE COF ∴ ≌,AE FC ∴=,AE CF ∥ ,∴四边形AECF 是平行四边形,MN 垂直平分AC ,EA EC ∴=,∴四边形AECF 是菱形,故①正确;②FA FC = ,∴ACB FAC ∠=∠,∴∠AFB =2∠ACB ;故②正确;③由菱形的面积可得12AC •EF =CF •CD ;故③不正确,④ 四边形ABCD 是矩形,90ABC ∴∠=︒,若AF 平分∠BAC ,,FB AB FO AC ⊥⊥,则BF FO =,BAF FAC ∴∠=∠,FAC FCA ∠=∠ ,90BAF FAC FCA ∠+∠+∠=︒ ,30ACB ∴∠=︒,12FO FC ∴=,FO BF = ,∴CF =2BF .故④正确;故选B【点睛】本题考查了菱形的性质与判定,矩形的性质,平行四边形的性质与判定,含30度角的直角三角形的性质,角平分线的性质,综合运用以上知识是解题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9. 若分式21x -有意义,则x 的取值范围是________.【答案】1x ≠【解析】【分析】根据分式有意义的条件即可求解.【详解】解:∵分式21x -有意义,∴10x -≠,解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.10. 如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=54°,则∠3=________度.【答案】54【解析】【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.【详解】因为a ∥b ,所以23∠=∠,因为12∠∠,是对顶角,所以12∠=∠,所以31∠=∠,因为154∠=︒,所以354∠=︒,故答案为:54.【点睛】本题考查了平行线的性质和对顶角的性质,熟练掌握对顶角相等,两直线平行同位角相等、内错角相等,加以灵活运用求解相关角的度数是解题关键.11. 已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____.【答案】3【解析】【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可.【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∴x 1•x 2=31=3.故答案为3.【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x b aa =,.12. 如图,已知AB DE ∥,AB DE =,请你添加一个条件________,使ABC DEF △≌△.【答案】A D ∠=∠或BC EF =或ACB F∠=∠【解析】【分析】先根据平行线的性质得到B DEF ∠=∠,然后根据全等三角形的判定方法添加条件.【详解】解:∵AB DE ∥,∴B DEF ∠=∠,∵AB DE =,∴当添加A D ∠=∠时,根据ASA 可判断ABC DEF △≌△;当添加BC EF =时,根据SAS 可判断ABC DEF △≌△;当添加ACB F ∠=∠时,根据AAS 可判断ABC DEF △≌△.故答案为:A D ∠=∠或BC EF =或ACB F ∠=∠.【点睛】本题考查了全等三角形的判定和平行线的性质.熟练掌握全等三角形的判定方法(一般三角形全等的判定有:SSS 、ASA 、SAS 、AAS 共四种;直角三角形全等的判定有:SSS 、ASA 、SAS 、AAS 、HL 共五种)是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.13. 小聪和小明两个同学玩“石头,剪刀、布“的游戏,随机出手一次是平局的概率是________.【答案】13【解析】【分析】列表表示所有可能出现的结果,再确定符合条件的结果,根据概率公式计算即可.【详解】解:列表如下:石头剪子布石头(石头,石头)(石头,剪子)(石头,布)剪子(剪子,石头)(剪子,剪子)(剪子,布)布(布,石头)(布,剪子)(布,布)一共有9种可能出现的结果,每种结果出现的可能性相同,出手相同的时候即为平局,有3种,所以随机出手一次平局的概率是3193=,故答案为:13.【点睛】本题主要考查了列表求概率,掌握概率计算公式是解题的关键.14. 如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为________m .(sin 580.85︒≈,cos580.53︒≈,tan 58 1.60︒≈,结果保留整数).【答案】16【解析】【分析】过D 点作DE AB ⊥于点E ,则6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,设AE x =,则DE x =,BC x =,6AB AE BE x =+=+,在Rt ABC 中,6tan tan 58 1.60AB x ACB BC x+∠=︒==≈,解得10x ≈,进而可得出答案.【详解】解:如图,过D 点作DE AB ⊥于点E ,设AE x =,根据题意可得:AB BC ⊥,DC BC ⊥,∴90AED BED ABC DCB ∠=∠=∠=∠=︒,∴四边形BCDE 是矩形,∵从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离,乙建筑物的高度CD 为6,∴6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,∴9045EAD ADE ∠=︒-∠=︒,∴EAD ADE ∠=∠,∴DE AE x ==,∴BC DE x ==,∴6AB AE BE x =+=+,在Rt ABC 中,tan ∠=AB ACB BC 即6tan 58 1.60x x+︒=≈,∴6tan tan 58 1.60AB x ACB BC x +∠=︒==≈解得10x ≈,经检验10x ≈是原分式方程的解且符合题意,∴()616AB x m =+≈.故答案为:16.【点睛】本题考查解直角三角形的应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识.熟练掌握锐角三角函数的定义是解答本题的关键.15. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是________(结果用含m的式子表示).【答案】m 2+1【解析】【分析】2m 为偶数,设其股是a ,则弦为a +2,根据勾股定理列方程即可得到结论.【详解】∵2m 为偶数,∴设其股是a ,则弦为a +2,根据勾股定理得,(2m )2+a 2=(a +2)2,解得a =m 2+1,∴弦长为m 2+1,故答案为:m 2+1.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.16. 如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm /s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.【答案】2+##【解析】【分析】根据函数图像可得AB =4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB =4,AB +BC =8,∴BC =AB =4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD =BD ,72BCA DAC ∠∠︒==,∴AD =BD =CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC=,∴x 4x 4x -=,解得: 12x =-+,22x =--(舍去),∴2AD BD CD ===-,此时21AB BD t +==+(s ),故答案为:2+.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17. 先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.【答案】5xy ,10-【解析】【分析】根据整式的加减运算化简,然后将字母的值代入即可求解.【详解】解:原式=4xy -2xy +3xy=()423xy-+=5xy ;当x =2,y =-1时,原式=()52110⨯⨯-=-.【点睛】本题考查了整式加减的化简求值,正确的计算是解题的关键.18 某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?【答案】(1)买一份甲种快餐需30元,一份乙种快餐需20元(2)至少买乙种快餐37份【解析】【分析】(1)设一份甲种快餐需x 元,一份乙种快餐需y 元,根据题意列出方程组,解方程即可求解;(2)设购买乙种快餐a 份,则购买甲种快餐()55a -份,根据题意列出一元一次不等式,解不等式即可求解.【小问1详解】解:设一份甲种快餐需x 元,一份乙种快餐需y 元,根据题意得,27023120x y x y +=⎧⎨+=⎩解得3020x y =⎧⎨=⎩答:买一份甲种快餐需30元,一份乙种快餐需20元;【小问2详解】设购买乙种快餐a 份,则购买甲种快餐()55a -份,根据题意得,()3055201280a a -+≤解得37a ≥∴至少买乙种快餐37份答:至少买乙种快餐37份.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,根据题意列出方程组和不等式是解题的关键.19. 为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“t ≤45”,B .组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图. 根据以上信息,解答下列问题:(1)这次调查的样本容量是,请补全条形统计图;(2)在扇形统计图中,B组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【答案】(1)100,图形见解析(2)72,C;(3)估计该校每天完成书面作业不超过90分钟的学生有1710人.【解析】【分析】(1)根据C组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D组的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以计算出B组的圆心角的度数,以及中位数落在哪一组;(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.【小问1详解】这次调查的样本容量是:25÷25%=100,D组的人数为:100-10-20-25-5=40,补全的条形统计图如图所示:故答案为:100;【小问2详解】在扇形统计图中,B 组的圆心角是:360°×20100=72°,∵本次调查了100个数据,第50个数据和51个数据都在C 组,∴中位数落在C 组,故答案为:72,C ;小问3详解】1800×1005100=1710(人),答:估计该校每天完成书面作业不超过90分钟的学生有1710人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.20. 如图,已知一次函数y 1=kx +b 的图像与函数y 2=m x (x >0)的图像交于A (6,-12),B (12,n )两点,与y 轴交于点C ,将直线AB 沿y 轴向上平移t 个单位长度得到直线DE ,DE 与y 轴交于点F.【(1)求y1与y2的解析式;(2)观察图像,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为.【答案】(1)113 2y x-=,23 (0)y xx=->;(2)16 2x<<;(3)2.【解析】【分析】(1)将两函数A、B的坐标值分别代入两个函数解析式求出未知系数即可;(2)由图像可知当x在A、B两点之间时y1<y2,,所以x取值在A、B两点横坐标之间;(3)根据平移性质可知DE AB∥,CF=t,求出两直线之间的距离即为△ACD的高CG,通过A、C坐标求出线段AC长,列出△ACD面积=1·2AC CG的代数式求解即可.【小问1详解】∵一次函数y1=kx+b的图像与函数y2=mx(x>0)的图像交于A(6,-12),B(12,n)两点,∴16212k bk b n⎧+=-⎪⎪⎨⎪+=⎪⎩,1262mn m⎧-=⎪⎨⎪=⎩,解得:1132kb=⎧⎪⎨=-⎪⎩,36mn=-⎧⎨=-⎩,∴y1、y2的解析式为:113 2y x-=,23 (0)y xx=->;【小问2详解】从图像上可以看出,当x在AB两点之间时,y1<y2,∴x的取值范围为:16 2x<<;【小问3详解】作CG ⊥DE 于G ,如图,∵直线DE 是直线AB 沿y 轴向上平移t 个单位长度得到,∴DE AB ∥,CF =t ,∵直线AB 的解析式为1132y x -=,∴直线AB 与y 轴交点为C 130,2⎛⎫- ⎪⎝⎭,与x 轴的交点为13,02⎛⎫ ⎪⎝⎭,即直线AB 与x 、y 坐标轴的交点到原点O 的距离相等,∴∠FCA =45°,∵CG ⊥DE , DE AB ∥,∴CG ⊥AC ,CG 等于平行线AB 、DE 之间距离,∴∠GCF =∠GFC =45°,∴CG,∵A 、C 两点坐标为:A (6,-12),C 130,2⎛⎫- ⎪⎝⎭,∴线段AC=,∴11322ACD S AC CG t =⋅=⨯= ,∵△ACD 的面积为6,∴3t =6,解得:t =2.【点睛】本题综合考查了一次函数、反比例函数,熟练掌握通过已知函数图像上的点的坐标求函数解析式,通过图像查看自变量取值范围,灵活运用平移的性质是解题关键.的的21. 如图,O 是ABC 的外接圆,AD 是O 的直径,BC 与过点A 的切线EF 平行,BC ,AD 相交于点G .(1)求证:AB AC =;(2)若16DG BC ==,求AB 的长.【答案】(1)证明见解析(2)【解析】【分析】(1)由切线的性质和BC EF ∥可得AD BC ⊥,由垂径定理可得BG CG =,从而得到AD 垂直平分BC ,最后利用垂直平分线的性质即可得证;(2)先利用勾股定理得到BD =AGB BGD △∽△,从而得到AB BG BD DG=,代入数据计算即可.【小问1详解】证明:∵直线EF 切O 于点A ,AD 是O 的直径,∴AD EF ⊥,∴90DAE DAF ∠=∠=︒,∵BC EF ∥,∴90DGB DAE ∠=∠=︒,∴AD BC ⊥,∴BG CG =,∴AD 垂直平分BC ,∴AB AC =;【小问2详解】如图,连接BD ,由(1)知:AD BC ⊥,BG CG =,∴90DGB AGB ∠=∠=︒,∵16DG BC ==,∴182BG BC ==,在Rt DGB 中,BD ===,∵AD 是O 的直径,∴90ABD ∠=︒,∴90ABG DBG ∠+∠=︒,又∵90BDG DBG Ð+Ð=°,∴ABG BDG ∠=∠,又∵90DGB AGB ∠=∠=︒∴AGB BGD △∽△,∴AB BG BD DG=,816=,∴AB =,即AB 的长为.【点睛】本题考查了切线的性质,垂径定理,圆周角定理,垂直平分线的性质,平行线的性质,三角形相似的判定和性质,勾股定理,直角三角形的两锐角互余等知识.通过作辅助线构造相似三角形是解答本题的关键.22. 为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x ≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.【答案】(1)()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<; (2)①甲种花卉种植90m 2, 乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元;②40x ≤或60360x ≤≤.【解析】【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.【小问1详解】由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2),所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x =40时,y =30,当x =100时,y =15,代入函数关系式得:304015100k b k b =+⎧⎨=+⎩,解得:1,404k b =-=,∴140(0)4y x x =-+40≤≤10∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;【小问2详解】①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m =30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m =90时,离对称轴m =50最远,w 最小,即当m =90时,w 有最小值21(9050)602556254--+=(元)∵5625<5850,∴当m =90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270,故甲种花卉种植90m 2, 乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元.②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+,令21(50)602560004x --+≤,解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在40x ≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元,所以甲种花卉种植面积x 的取值范围为:40x ≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.23. 问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证AB AC =BD CD.小慧的证明思路是:如图2,过点C 作CE ∥AB ,交AD 的延长线于点E ,构造相似三角形来证明AB AC =BD CD .(1)尝试证明:请参照小慧提供的思路,利用图2证明AB AC =BD CD;(2)应用拓展:如图3,在Rt △ABC 中,∠BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.①若AC =1,AB =2,求DE 的长;②若BC =m ,∠AED =α,求DE 的长(用含m ,α的式子表示).【答案】(1)详见解析(2)①DE ;②tan 1m DE α=+【解析】【分析】(1)利用AB ∥CE ,可证得ABD ECD ,即AB CE BD CD=,由AD 平分∠BAC ,可知AC =EC ,即可证得结果;(2)利用(1)中的结论进行求解表示即可.【小问1详解】解:∵AB ∥CE ,∴∠BAD =∠DEC ,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,。

湖北省咸宁市中考数学试卷

湖北省咸宁市中考数学试卷

湖北省咸宁市2021年初中毕业学业考试数学试卷一、精心选一选〔本大题共8小题,每题3分,总分值24分〕1.以下关于0的说法正确的选项是〔〕〔A〕0是正数〔B〕0是负数〔C〕0是有理数〔D〕0是无理数勾股定理是“人类最伟大的十个科学发现之一〞,我国对勾股定理得证明是由汉代的赵爽在注解?周髀算经?时给出的,他用来证明勾股定理得图案被称为“赵爽弦图〞.2002年在北京召开的国际数学大会选它作为会徽.以下图案中是“赵爽弦图〞的是〔〕3.以下计算正确的选项是〔〕〔A〕〔B〕25232365-32(2)2〔〕a a a 〔〕(ab)abC D4 .假设正方形的内角和是540°,那么该正多边形的一个外角为〔〕〔A〕45°〔B〕60°〔C〕72°〔D〕90°5 .如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,那么它的〔〕〔A〕主视图会发生改变〔B〕俯视图会发生改变〔C〕左视图会发生改变〔D〕三种视图都会发生改变6.假设关于x的一元二次方程x22x m0有实数根,那么实数m的取值范围是〔〕〔A〕m1〔B〕m1〔C〕m1〔D〕m17.点A〔-1,m〕,B〔1,m〕,C〔2,m-n〕〔n>0〕在同一个函数的图象上,这个函数可能是〔〕〔A〕y=x〔B〕y2〔C〕y x2〔D〕y-x2x8.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y1(x0),y4(x 0)的图象上,那么sin∠ABO的值为〔〕x x〔A〕1〔B〕3〔C〕5〔D〕5 3345二、细心填一填〔本大题共8小题,每题3分,共24分〕9.计算:(2)01.10.一个质地均匀的小正方体,六个面分别标有数字“1〞“2〞“4〞“5〞“5〞,随机掷一次小正方体,朝上一面的数字是奇数的概率是.11.假设整式x2my2(m为常数,且m≠0〕能在有理数范围内分解因式,那么m的值可以是〔写一个即可〕.12.?孙子算经?中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之几何?〞译文大致是:“用一根绳子去量一根木条,绳子剩余尺,将绳子对折再量木条问木条长多少尺?〞如果木条长x尺,绳子长y尺,可列方程组为.13.如下图,九〔1〕班数学课外活动小组在河边测量河宽AB〔这段河流的两岸平行〕,缺乏一尺,木长,木条剩余1尺, ,他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,那么河宽AB约为m〔结果保存整数,3〕.14.如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,那么阴影局部的面积为〔结果保存π〕.15.有一列数,按一定规律排列成1,-2,4,-8,16,-32,,其中某三个相邻数的积是412,那么这三个数的和是.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.以下结论:CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=25;④△PQM的面积S的取值范围是3≤S≤5.其中正确的选项是〔把正确结论的序号都填上〕.三、专心解一解〔本大题共8小题,总分值72分〕17.〔此题总分值8分,每题4分〕〔1〕化简:21;〔2〕解不等式组:x31 m2m m15x63x18.〔7分〕在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.1〕求证:四边形DEFC是矩形;2〕请用无刻度的直尺在图中作出∠ABC的平分线〔保存作图痕迹,不写作法〕.19.〔8分〕小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.1〕小慧返回家中的速度比去文具店的速度快多少?2〕请你画出这个过程中,小慧离家的距离y与时间x的函数图像.3〕根据图象答复,小慧从家出发后多少分钟离家距离为720m?〔8分〕某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩〔一分钟跳绳次数〕进行整理、描述和分析,下面给出了局部信息:根据以上信息,答复以下问题:〔1〕表中a=;〔2〕在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是〔填“甲〞或“乙〞〕,理由是.〔3〕该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?21.〔9分〕如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.1〕试判断FG与⊙O的位置关系,并说明理由.2〕假设AC=3,CD=2.5,求FG的长.22.〔此题10分〕某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产本钱y〔元/件〕与x〔天〕之间的关系如下图,第x天该产品的生产量z〔件〕与x〔天〕满足关系式z=-2x+120.〔1〕第40天,该厂生产该产品的利润是元;〔2〕设第x天该厂生产该产品的利润为w圆.①求w与x之间的函数关系式 ,并指出第几天的利润最大.最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?〔10分〕定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:〔1〕如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:〔2〕如图2,在等补四边形ABCD 中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:〔3〕如图3,在等补四边形ABCD 中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5, 求DF的长.24.〔12分〕如图,在平面直角坐标系中,直线y 1x2与x轴交于点A,与y轴交于点B,抛物线2y1x2bxc经过A,B两点且与x轴的负半轴交于点C.2〔1〕求该抛物线的解析式;〔2〕假设点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;〔3〕E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.。

咸宁数学中考试题及答案

咸宁数学中考试题及答案

咸宁数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2.5D. 5答案:D2. 以下哪个表达式等于 \(2^3\)?A. 6B. 8C. 9D. 12答案:B3. 圆的周长公式是 \(C = 2\pi r\),如果半径 \(r = 3\) 厘米,那么周长是多少?A. 6π 厘米B. 9π 厘米C. 12π 厘米D. 18π 厘米答案:C4. 计算 \((-2)^2\) 的值是多少?A. 4B. -4C. 2D. -2答案:A5. 以下哪个分数是最简形式?A. \(\frac{6}{8}\)B. \(\frac{5}{10}\)C. \(\frac{3}{9}\)D. \(\frac{4}{6}\)答案:A6. 一个等腰三角形的底边长为5厘米,两腰长为6厘米,那么它的周长是多少?A. 17厘米B. 18厘米C. 21厘米D. 22厘米答案:A7. 一个数的相反数是-7,那么这个数是多少?A. 7B. -7C. 14D. -14答案:A8. 计算 \((-3) \times (-2)\) 的结果是?A. -6B. 6C. 9D. -9答案:B9. 一个长方体的长、宽、高分别是4厘米、3厘米和2厘米,那么它的体积是多少?A. 24立方厘米B. 36立方厘米C. 48立方厘米D. 52立方厘米答案:A10. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5和-5D. 0答案:C二、填空题(每题4分,共20分)1. 一个数的平方根是2,这个数是 _______ 。

答案:42. 一个数的立方是-8,这个数是 _______ 。

答案:-23. 一个直角三角形的两直角边长分别是3和4,那么斜边长是_______ 。

答案:54. 一个数的倒数是 \(\frac{1}{3}\),这个数是 _______ 。

答案:35. 一个数的绝对值是它本身,那么这个数是非负数,即 _______ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖北省咸宁市中考数学试卷一、选择题(每题只有一个正确选项,本题共8小题,每题3分,共24分)1.(3.00分)(2018•咸宁)咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A.1℃B.﹣1℃C.5℃D.﹣5℃2.(3.00分)(2018•咸宁)如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100° D.70°3.(3.00分)(2018•咸宁)2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为()A.123.5×109B.12.35×1010C.1.235×108D.1.235×10114.(3.00分)(2018•咸宁)用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同5.(3.00分)(2018•咸宁)下列计算正确的是()A.a3•a3=2a3B.a2+a2=a4 C.a6÷a2=a3D.(﹣2a2)3=﹣8a66.(3.00分)(2018•咸宁)已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2|D.x12+x1=7.(3.00分)(2018•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5 D.58.(3.00分)(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)9.(3.00分)(2018•咸宁)如果分式有意义,那么实数x的取值范围是.10.(3.00分)(2018•咸宁)因式分解:ab2﹣a=.11.(3.00分)(2018•咸宁)写出一个比2大比3小的无理数(用含根号的式子表示).12.(3.00分)(2018•咸宁)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.13.(3.00分)(2018•咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为m(结果保留整数,≈1.73).14.(3.00分)(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O 是坐标原点,点E的坐标为(2,3),则点F的坐标为.15.(3.00分)(2018•咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.16.(3.00分)(2018•咸宁)如图,已知∠MON=120°,点A,B分别在OM,ON 上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是.(把你认为正确结论的序号都填上).三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)(2018•咸宁)(1)计算:﹣+|﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).18.(7.00分)(2018•咸宁)已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.19.(8.00分)(2018•咸宁)近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数012345人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是,众数是,该中位数的意义是;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?20.(8.00分)(2018•咸宁)如图,在平面直角坐标系中,矩形OABC的顶点B 的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.(1)试说明点N也在函数y=(x>0)的图象上;(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x >0)的图象仅有一个交点时,求直线M'N′的解析式.21.(9.00分)(2018•咸宁)如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=25,BC=,求DE的长.22.(10.00分)(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.23.(10.00分)(2018•咸宁)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.24.(12.00分)(2018•咸宁)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标.2018年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共8小题,每题3分,共24分)1.(3.00分)(2018•咸宁)咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A.1℃B.﹣1℃C.5℃D.﹣5℃【分析】根据题意列出算式,再利用减法法则计算可得.【解答】解:这一天的温差是2﹣(﹣3)=2+3=5(℃),故选:C.【点评】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则.2.(3.00分)(2018•咸宁)如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100° D.70°【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【解答】解:如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°.故选:B.【点评】本题利用平行线的性质和邻补角的定义,熟练掌握性质和概念是解题的关键.3.(3.00分)(2018•咸宁)2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP约123500000000元,增速在全省17个市州中排名第三,将123500000000用科学记数法表示为()A.123.5×109B.12.35×1010C.1.235×108D.1.235×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:123500000000=1.235×1011,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•咸宁)用4个完全相同的小正方体搭成如图所示的几何体,该几何体的()A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三种视图都相同【分析】分别得出该几何体的三视图进而得出答案.【解答】解:如图所示:,故该几何体的主视图和左视图相同.故选:A.【点评】本题考查了三视图的知识,正确把握三视图的画法是解题关键.5.(3.00分)(2018•咸宁)下列计算正确的是()A.a3•a3=2a3B.a2+a2=a4 C.a6÷a2=a3D.(﹣2a2)3=﹣8a6【分析】根据同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、a3•a3=a6,此选项错误;B、a2+a2=2a2,此选项错误;C、a6÷a2=a4,此选项错误;D、(﹣2a2)3=﹣8a6,此选项正确;故选:D.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、合并同类项法则及同底数幂的除法、积的乘方与幂的乘方运算法则.6.(3.00分)(2018•咸宁)已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2|D.x12+x1=【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【解答】解:根据题意得x1+x2=﹣=﹣1,x1x2=﹣,所以A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,所以C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,所以D选项正确.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.7.(3.00分)(2018•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5 D.5【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.【点评】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.8.(3.00分)(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)9.(3.00分)(2018•咸宁)如果分式有意义,那么实数x的取值范围是x ≠2.【分析】根据分式有意义的条件可得x﹣2≠0,再解即可.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.10.(3.00分)(2018•咸宁)因式分解:ab2﹣a=a(b+1)(b﹣1).【分析】首先提取公因式a,再运用平方差公式继续分解因式.【解答】解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).【点评】本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.11.(3.00分)(2018•咸宁)写出一个比2大比3小的无理数(用含根号的式子表示).【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【解答】解:∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.12.(3.00分)(2018•咸宁)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.【解答】解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果,所以两次摸出的小球标号相同的概率是=,故答案为:.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.13.(3.00分)(2018•咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为300m(结果保留整数,≈1.73).【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.【解答】解:如图,∵在Rt△ABD中,AD=90,∠BAD=45°,∴BD=AD=110(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=110×=190(m),∴BC=BD+CD=110+190=300(m)答:该建筑物的高度BC约为300米.故答案为300.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.14.(3.00分)(2018•咸宁)如图,将正方形OEFG放在平面直角坐标系中,O 是坐标原点,点E的坐标为(2,3),则点F的坐标为(﹣1,5).【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【解答】解:如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线EG,垂足为G,连接GE、FO交于点O′.∵四边形OEFG是正方形,∴OG=EO,∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,∴△OGM≌△EOH(ASA)∴GM=OH=2,OM=EH=3,∴G(﹣3,2).∴O′(﹣,).∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5).故答案是:(﹣1,5).【点评】考查了正方形的性质,坐标与图形性质,全等三角形的判定与性质,根据题意求得点G的坐标是解题的难点.15.(3.00分)(2018•咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.【分析】根据数列得出第n个数为,据此可得前2018个数的和为++++…+,再用裂项求和计算可得.【解答】解:由数列知第n个数为,则前2018个数的和为++++…+=++++…+=1﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:.【点评】本题主要考查数字的变化类,解题的关键是根据数列得出第n个数为,并熟练掌握裂项求和的方法.16.(3.00分)(2018•咸宁)如图,已知∠MON=120°,点A,B分别在OM,ON 上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是①③④.(把你认为正确结论的序号都填上).【分析】①根据对称的性质:对称点的连线被对称轴垂直平分可得:OM'是AC 的垂直平分线,再由垂直平分线的性质可作判断;②作⊙O,根据四点共圆的性质得:∠ACD=∠E=60°,说明∠ACD是定值,不会随着α的变化而变化;③当α=30°时,即∠AOD=∠COD=30°,证明△AOC是等边三角形和△ACD是等边三角形,得OC=OA=AD=CD,可作判断;④先证明△ACD是等边三角形,当AC最大时,△ACD的面积最大,当AC为直径时最大,根据面积公式计算后可作判断.【解答】解:①∵A、C关于直线OM'对称,∴OM'是AC的垂直平分线,∴CD=AD,故①正确;②连接OC,由①知:OM'是AC的垂直平分线,∴OC=OA,∴OA=OB=OC,以O为圆心,以OA为半径作⊙O,交AO的延长线于E,连接BE,则A、B、C 都在⊙O上,∵∠MON=120°,∴∠BOE=60°,∵OB=OE,∴△OBE是等边三角形,∴∠E=60°,∵A、C、B、E四点共圆,∴∠ACD=∠E=60°,故②不正确;③当α=30°时,即∠AOD=∠COD=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=OA=AC,由①得:CD=AD,∴∠CAD=∠ACD=∠CDA=60°,∴△ACD是等边三角形,∴AC=AD=CD,∴OC=OA=AD=CD,∴四边形OADC为菱形;故③正确;④∵CD=AD,∠ACD=60°,∴△ACD是等边三角形,当AC最大时,△ACD的面积最大,∵AC是⊙O的弦,即当AC为直径时最大,此时AC=2OA=2a,α=90°,∴△ACD面积的最大值是:AC2==,故④正确,所以本题结论正确的有:①③④故答案为:①③④.【点评】本题是圆和图形变换的综合题,考查了轴对称的性质、四点共圆的性质、等边三角形的判定、菱形的判定、三角形面积及圆的有关性质,有难度,熟练掌握轴对称的性质是关键,是一道比较好的填空题的压轴题.三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)(2018•咸宁)(1)计算:﹣+|﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).【分析】(1)先化简二次根式、计算立方根、去绝对值符号,再计算加减可得;(2)先计算多项式乘多项式、单项式乘多项式,再合并同类项即可得.【解答】解:(1)原式=2﹣2+2﹣=;(2)原式=a2﹣2a+3a﹣6﹣a2+a=2a﹣6.【点评】本题主要考查实数和整式的混合运算,解题的关键是掌握二次根式的性质、立方根的定义及绝对值的性质、多项式乘多项式、单项式乘多项式的运算法则.18.(7.00分)(2018•咸宁)已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD ≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB.【解答】证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′,在△OCD和△O′C′D′中,∴△OCD≌△O′C′D′,∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了基本作图.19.(8.00分)(2018•咸宁)近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数012345人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是3,众数是3,该中位数的意义是表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?【分析】(1)根据中位数和众数的定义求解可得;(2)根据加权平均数的公式列式计算即可;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.【解答】解:(1)∵总人数为11+15+23+28+18+5=100,∴中位数为第50、51个数据的平均数,即中位数为=3次,众数为3次,其中中位数表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次),故答案为:3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)=≈2(次),答:这天部分出行学生平均每人使用共享单车约2次;(3)1500×=765(人),答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.20.(8.00分)(2018•咸宁)如图,在平面直角坐标系中,矩形OABC的顶点B 的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.(1)试说明点N也在函数y=(x>0)的图象上;(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x >0)的图象仅有一个交点时,求直线M'N′的解析式.【分析】(1)根据矩形OABC的顶点B的坐标为(4,2),可得点M的横坐标为4,点N的纵坐标为2,把x=4代入y=﹣x+,得y=,可求点M的坐标为(4,),把y=2代入y=﹣x+,得x=1,可求点N的坐标为(1,2),根据待定系数法可求函数y=(x>0)的解析式,再图象过点M,把N(1,2)代入y=,即得作出判断;(2)设直线M'N′的解析式为y=﹣x+b,由得x2﹣2bx+4=0,再根据判别式即可求解.【解答】解:(1)∵矩形OABC的顶点B的坐标为(4,2),∴点M的横坐标为4,点N的纵坐标为2,把x=4代入y=﹣x+,得y=,∴点M的坐标为(4,),把y=2代入y=﹣x+,得x=1,∴点N的坐标为(1,2),∵函数y=(x>0)的图象过点M,∴k=4×=2,∴y=(x>0),把N(1,2)代入y=,得2=2,∴点N也在函数y=(x>0)的图象上;(2)设直线M'N′的解析式为y=﹣x+b,由得x2﹣2bx+4=0,∵直线y=﹣x+b与函数y═(x>0)的图象仅有一个交点,∴(﹣2b)2﹣4×4=0,解得b=2,b2=﹣2(舍去),∴直线M'N′的解析式为y=﹣x+2.【点评】本题考查了用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,矩形的性质等知识点的应用,主要考查学生应用性质进行计算的能力,题目比较好,难度适中.21.(9.00分)(2018•咸宁)如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=25,BC=,求DE的长.【分析】(1)直接利用圆周角定理以及结合切线的判定方法得出DE是⊙O的切线;(2)首先过点C作CG⊥DE,垂足为G,则四边形ODGC为正方形,得出tan∠CEG=tan∠ACB,=,即可求出答案.【解答】(1)证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠ABD=45°,∴∠AOD=90°,∵DE∥AC,∴∠ODE=∠AOD=90°,∴DE是⊙O的切线;(2)解:在Rt△ABC中,AB=2,BC=,∴AC==5,∴OD=,过点C作CG⊥DE,垂足为G,则四边形ODGC为正方形,∴DG=CG=OD=,∵DE∥AC,∴∠CEG=∠ACB,∴tan∠CEG=tan∠ACB,∴=,即=,解得:GE=,∴DE=DG+GE=.【点评】此题主要考查了切线的判定与性质以及锐角三角函数关系的应用,正确利用tan∠CEG=tan∠ACB得出GE的长是解题关键.22.(10.00分)(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;(2)根据汽车总数不能小于=(取整为8)辆,即可求出;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,由题意得出400x+300(8﹣x)≤3100,得出x取值范围,分析得出即可.【解答】解:(1)设老师有x名,学生有y名.依题意,列方程组为,解之得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆;故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点评】此题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x辆甲种客车与租车费用的不等式关系是解决问题的关键.23.(10.00分)(2018•咸宁)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.【分析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出EQ=FE,继而求出•FE=8,即可得出结论.【解答】解:(1)由图1知,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,①当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴=或=2,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)证明:∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;。

相关文档
最新文档