华南理工大学数学分析考研真题2001-2016
2015-2016学年华南理工大学期末考试《工科数学分析》下 试卷(B)
《工科数学分析》2015—2016学年第二学期期末考试试卷 诚信应考,考试作弊将带来严重后果! 华南理工大学本科生期末考试 《工科数学分析》2015—2016学年第二学期期末考试试卷(B )卷 注意事项:1. 开考前请将密封线内各项信息填写清楚; 2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:闭卷; 4. 本试卷共 5个 大题,满分100分, 考试时间120分钟。
一、填空题(每小题3分,共15分) 1. 微分方程24x y y xe ''-=的特解形式为 ; 2. 设(),z z x y =满足方程(),x az y bz ϕ-=-其中ϕ可微,,a b 为常数,则z z a b x y ∂∂+=∂∂ ; 3. 函数()(),,cos f x y z xyz =在点1,1,3P π⎛⎫ ⎪⎝⎭处使方向导数取得最大的方向 是 ; 4. 设222:,L x y a +=取逆时针方向,则()2228L xydx x y dy ++⎰ ; 5. 设幂级数0n n n a x ∞=∑在3x =-条件收敛,则该幂级数的收敛半径为R = 。
《工科数学分析》2015—2016学年第二学期期末考试试卷二、计算题(每小题8分,共40分)1. 设函数,x z f xy y ⎛⎫= ⎪⎝⎭,其中(),f ξη具有连续的二阶偏导数,求2z x y ∂∂∂。
2. 计算曲线积分2I x ds Γ=⎰,其中Γ是球面2222x y z a ++=与平面0x y z ++=的交线。
《工科数学分析》2015—2016学年第二学期期末考试试卷3. 设曲线积分()()()sin cos xL f x e ydx f x ydy --⎰与路径无关,其中()f x 有一阶的连续导数,且()00f =。
(1) 求()f x ; (2)计算曲线积分()()()()()1,10,0sin cos xI f x e ydx f x ydy =--⎰。
华南理工2001--2003年数学分析考研试题及解答
一.解答下列各题 1.求极限 lim
x→0
sin 2 x ; 1 + x sin x − cos x
− 1 4
2. 证明不等式 2e
∞
< ∫ ex
0
22ຫໍສະໝຸດ −xdx < 2e2 ;
3.判断级数 ∑
1 的敛散性; n = 2 ln ( n !)
⎧ 1 ,x ≥0 ⎪ 2 ⎪ x +1 4.设 f ( x ) = ⎨ x ,求 ∫ f ( x − 1) dx ; 0 ⎪ e ,x <0 x ⎪ ⎩1 + e
n −2
,
显然它的收敛区间为 ( −∞, +∞ ) ,
∞
∑ ( n + 1)! = ∑ ( n + 1)! = ∑ n ! − ∑ ( n + 1) !
n =1 n =1 n =1 n =1
n
∞
( n + 1) − 1
∞
1
∞
1
= ( e − 1) − ( e − 2 ) = 1 ; 6.解 f ( 0, y ) = y 2 sin 1 1 , f ( x, 0 ) = x 2 sin , y x
y . x
I = ∫ xzdydz + yzdzdx + z x2 + y 2 dxdy
∑
= ∫∫∫ z + z + x 2 + y 2 dxdydz
V
(
)
= ∫ dθ ∫ dϕ ∫
0
2π
π 4 0
2a
a
( 2r cos ϕ + r sin ϕ ) ⋅ r 2 sin ϕdr
2020年数学分析高等代数考研试题参考解答
安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答。
08年华南理工数学分析考研试题及解答
2008年华南理工数学分析考研试题及解答n例1.设f:Rn?Rn,且f?C1?R???,满足f?x??f?yx?y,对于任意n,都成立.试证明f可逆,且其逆映射也是连续可导的. x,y?R证明显然,对于任意x,y?Rn,x?y,有f?x??f?y?,f 是单射,所以f?1存在,f?1?x??f?1?y??x?y,知f?1连续,f?x??f?y??x?y,得对任意实数t?0,向量x,h?Rn,有f?x?th??f?x??th,f?x?th??f?x??h在中令t?0,取极限,则有t得Jf(x)h?h,任何x,h?Rn,从而必有|Jf(x)|?0,Jf可逆,隐函数组存在定理,所以f?1存在,且是连续可微的。
例2. 讨论序列fn?t??sinnt在?0,???上一致收敛性. nt11解方法一显然fn?t???,nt对任意t??0,???,有limfn?t??0,n??fn?t??sinntnt??t,ntntt?0?limfn?t??0,关于n是一致的;对任意??0,当t???,???时,fn?t??11?,n?于是?fn?t??在??,???上是一致收敛于0的,综合以上结果,故?fn?t??在?0,???上是一致收敛于0的.1 方法二fn?t??sinntnt?sinntnt?nt1?,ntn即得?fn?t??在?0,???上是一致收敛于0的例3、判断?n?1?n在x?1上是否一致收敛. xn????例4. 设f?x?在???,???上一致连续,且?2f?x?dx收敛,证明limf?x??0. x??2?xy?z例5.求有曲面????2?1所围成的立体的体积其中常数a,b,c?0. ?ab?c例6、设D为平面有界区域,f?x,y?在D内可微,在D上连续,在D的边界上f?x,y??0,在D 内f满足方程试证:在D上f?x,y??0. ?f?f??f. ?x?y证明因为f?x,y?在D上连续,设M?maxf?x,y?,?x,y??D则M?0,假若M?0,则存在?x0y0??D,使得f?x0y0??M,于是有?f?f?x0y0??0,?x0y0??0,?x?y??f?f?这与????x0y0??f?x0y0??0矛盾,??x?y?假若M?0,亦可得矛盾. 同理,对m?minf?x,y?,亦有m?0,?x,y??D故f?x,y??0,?x,y??D. 华南理工大学2008年数学分析考研试题及解答一.求解下列各题1、设,数列{x}满足lima?0nn??xn?axn?a。
考研数学-2008年华南理工数学分析解答
例 1.设:n n f R R →,且()1nf C R ∈,满足()()f x f y x y -≥-,对于任意,n x y R ∈,都成立.试证明f 可逆,且其逆映射也是连续可导的.证明 显然,对于任意,n x y R ∈,x y ≠,有()()f x f y ≠,f 是单射,所以1f -存在,由()()11f x f y x y ---≤-,知1f -连续,由()()f x f y x y -≥-,得对任意实数0,t ≠向量,n x h R ∈,有()()f x th f x t h +-≥,在()()f x th f x ht+-≥中令0t →,取极限,则有 得()Jf x h h ≥,任何,n x h R ∈,从而必有|()|0Jf x ≠,Jf 可逆,由隐函数组存在定理,所以1f-存在,且是连续可微的。
例2. 讨论序列()sin n ntf t n t=在()0,+∞上一致收敛性. 解 方法一 显然()11n f t n t≤⋅, 对任意()0,t ∈+∞,有()lim 0n n f t →∞=,()sin n nt ntf t t n t n t=≤=, ()0lim 0n t f t +→=,关于n 是一致的;对任意0δ>,当[),t δ∈+∞时,()11n f t n δ≤⋅, 于是(){}n f t 在[),δ+∞上是一致收敛于0的, 综合以上结果,故(){}n f t 在()0,+∞上是一致收敛于0的.方法二 由()sin sin 1n nt nt nt f t n tn tn t n=≤≤≤, 即得(){}n f t 在()0,+∞上是一致收敛于0的 例3、 判断1nn nx ∞=∑在1x >上是否一致收敛. 例4. 设()f x 在(),-∞+∞上一致连续,且()f x dx +∞-∞⎰收敛,证明()lim 0x f x →∞=.例5.求有曲面2221x y za b c⎛⎫++= ⎪⎝⎭所围成的立体的体积其中常数,,0a b c >.例6、 设D 为平面有界区域,(),f x y 在D 内可微,在D 上连续,在D 的边界上(),0f x y =,在D 内f 满足方程f f f x y∂∂+=∂∂. 试证:在D 上(),0f x y ≡.证明 因为(),f x y 在D 上连续, 设()(),max ,x y DM f x y ∈=,则0M =,假若0M >,则存在()00x y D ∈,使得()00f x y M =, 于是有()000fx y x∂=∂,()000f x y y ∂=∂,这与()()00000f f x y f x y x y ⎛⎫∂∂+=> ⎪∂∂⎝⎭矛盾,假若0M <,亦可得矛盾.同理,对()(),min ,x y Dm f x y ∈=,亦有0m =,故(),0f x y =,(),x y D ∈.华南理工大学2008年数学分析考研试题及解答一.求解下列各题 1、设0a ≠,数列{}n x 满足lim0n n n x ax a→∞-=+,证明lim n n x a →∞=。
华南理工大学《840应用数学基础》[官方]历年考研真题(2014-2014)完整版
840华南理工大学2014年攻读硕士学位研究生入学考试试卷(试卷上做答无效,请在答题纸上做答,试后本卷必须与答题纸一同交回)科目名称:应用数学基础(含概率论、常微分方程)适用专业:系统分析与集成共2页第1页一、(20分)按要求计算下列各题:(1)设A ,B 是两个事件,且6.0)(=A P ,7.0)(=B P ,问在什么条件下,)(AB P 取得最大(小)值,并求出最大(小)值。
(2)三人独自破译一份密码,已知个人能破译密码的概率分别为51,31,41,求三人中至少有一人能破译此密码的概率。
二、(15分)设K 在区间()5,0内服从均匀分布,求下列方程24420x Kx K +++=有实根的概率。
三、(20)若随机变量ξ服从分布:()k P k pq ξ==,(0,1,2,k = ),其中:01p <<,1q p =-。
求ξ的特征函数()f t ,数学期望()E ξ和方差()D ξ。
四、(20分)设独立随机变量序列{}n ξ满足中心极限定理,试证:{}n ξ满足大数定律的充要条件是:()211lim 0nkn k D n ξ→∞==∑第2页五、(21分)求解如下微分方程:(1)22()'2x y y xy +=(2)'x y y e -=(3)2232(2cos 3)(sin )0x y x y dx x y x y dy ++-++=六、(16分)求微分方程51dy y x dx x=-+满足条件(1)1y =的特解。
七、(18分)求方程33xy y y y xe ''''''+++=的通解。
八、(20分)求解微分方程组112233*********y y d y y dx y y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭。
华南理工2005数学分析试题和解答
华南理工大学2005年攻读硕士学位研究生入学考试试题注:本题在解答过程中,参考了博士家园论坛的意见,特别是Zhubin846152 给出了3、10、11题的解答,在此表示感谢! 一、设2n 2n 1n 12a2ax x x ,0a x +-=>>+. 求极限n n x lim ∞→ 解:显然有()0a a a x x 22n 1n >≥+-=+,又11x a 2a 1x x n n 1n ≤⎪⎪⎭⎫ ⎝⎛-+=+ 即,序列为单调减小,且有下界,故存在极限,不妨设A x l i mn n =∞→,则对2n 2n 1n 2a2ax x x +-=+两边取极限,得222a 2aA A A +-=,即a A =,故a x lim n n =∞→ 二、求积分⎰+-C 4433yx dx y dy x , 其中C 是圆:1y x 22=+,逆时针为正向. 解:令[]πθθθ20,sin y ,cos x ,∈==,有()()[]πθθθθθθθθθθπππ23d 2sin 21-1d sin 2cos sin cos d sin cos y x dx y dy x 20220222222044C 4433=⎪⎭⎫⎝⎛=-+=+=+-⎰⎰⎰⎰三、讨论函数序列()tn nt sin t f n=在()∞,0上的一致收敛性.解:利用定义来做,就可以了。
2()()lim ()0(1)0,0,,0|()()||(2)0,0,0,0sin |()()||||(0,)0n n n n n f t f t f t t N f t f t t n ntf t f t nt εδδεεδδδε→∞===∀>>∀>∃=<-=≤<∀>>∀<≤∀>-==≤≤∈利用定义来做:令,根据一致收敛的定义知,上式一致收敛于四、设()y ,x z z =由方程0x z y ,y z x F =⎪⎪⎭⎫⎝⎛++所确定.证明: xy z y z y x z x -=∂∂⋅+∂∂⋅ 证明: 0x z y ,y z x F =⎪⎪⎭⎫⎝⎛++两边分别对x 和y 求偏导数, 0y z x 11F y 1z y z y 1F ,0x 1z x z x 1F x z y 11F 221221=⎪⎪⎭⎫ ⎝⎛∂∂+'+⎪⎪⎭⎫ ⎝⎛-∂∂'=⎪⎭⎫ ⎝⎛-∂∂'+⎪⎪⎭⎫ ⎝⎛∂∂+' 从而有,xF y F F F y z y z ,x F y F F x 1z F xz 2121221122'+''-'⋅=∂∂'+''-⋅⋅'=∂∂,故有 ()xy z xF y F x F y F xy z x F y F F F y z y x F y F F x 1z F x yz y x z x 21212121221122-='+'⎪⎪⎭⎫ ⎝⎛'+'-='+''-'⋅⋅+'+''-⋅⋅'⋅=∂∂+∂∂ 即,问题得证. 五、设()x f 是偶函数,在0x =的某个邻域中有连续的二阶导数,()()20f ,10f =''=,试证明无穷级数∑∞=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛1n 1n 1f 绝对收敛.证明:由题意,可写出()x f 的在0x =处的Taylor 展开式()()()()()2222x o x 1x o x !20f 0f x f ++=+''+=从而有⎪⎭⎫⎝⎛+=-⎪⎭⎫ ⎝⎛22n 1o n 11n 1f ,故, 2222222n 2n 1n 1n 1o n 1n 1o n 1=+<⎪⎭⎫⎝⎛+<⎪⎭⎫ ⎝⎛+,而级数∑∞=1n 2n 2为收敛的, 由比较判别法知,级数∑∞=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛1n 1n 1f 为绝对收敛的,问题得证.六、设曲线()()⎩⎨⎧==t y y t x x 由方程组()⎩⎨⎧=-+=-++2y 2x te 1t 12t y x y确定.求该曲线在0t =处的切线方程和法平面方程.(注:原题为法线方程,个人觉得 曲线不可能有法线,只能有法平面,平面才能有法线) 解:由题意得:0y ,1x ,2y 2x 1y x 0t ==⎩⎨⎧=-=+=有,时,当,()⎩⎨⎧-+=--++=2-y 2x te F 1t 12t y x F y21()()()()()(),3e 2t -21te 1t ,y D F ,F D ,-31te 121y ,x D F ,F D ,321e 2t 2x ,t D F ,F D 0t yy0t 210t y0t 210t y 0t 21=-==-==-=======故,有切线方程3y31x 3-t =-=,法平面()03y 1-x 33t =++-, 也即 切线方程 y 1x t -=-=,法平面1y x t =++-七、求幂级数()()∑∞=++-0n n2n x 1n n 1的收敛域,并求该级数的和.解: 收敛半径()()11n n 1lim 1R n 2nn =++-=∞→,当1x =时,级数变为()()∑∞=++-0n 2n 1n n 1, 显然为发散的.同样级数在1x -=处也发散. 从而,收敛域为()1,1-. 当()1,1x -∈时,有 ()()()()()()∑∑∑∑++=++-=∞=n n n 2n n 2n x -x -n x -n x 1n n 1x f 对第一部分,()()()()()()()()()()( ⎝⎛='⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛==∑∑∑∑∑∞=∞=+∞=∞=-∞=1n 0n 1n 0n n 21n 1n 20n n 21-n x -x -1n x -x -1n x -x -n x -x n x f第二部分,()()()()()()()()()()()20n 1n 0n n 1n 1n 0n n2x 1x x 1x -x -x -x -x -1n x -x -n x -x -n x f +='⎪⎭⎫⎝⎛+='⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛==∑∑∑∑∞=+∞=∞=-∞=故()()()()()321x 11x x x 1x x -x f +-='⎪⎪⎭⎫ ⎝⎛+=, 同样,对第三部分,()x1xx f 3+-=,从而有()()()()()333232223x 1xx x 1x 2x x x x x x x 1x x 1xx 11x x +--=+---++-=+-+++-=原式 八、求第二曲面积分: ⎰⎰+-S zdxdy ydxdz xdydz ,S 为椭球面1cz b y a x 222222=++的上半部分,其定向为下侧.解:不妨添加 交线所围的部分在0z 1cz b y a x 222222==++,方向取向上,记Q ,所围空间记体积为V,故有()abc 32-0abc 32zdxdy ydxdz xdydz dxdydz111zdxdy ydxdz xdydz zdxdy ydxdz xdydz Q VS Sππ=+-=+-++--=+--=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰',其中S '为取外法线方向为正的曲面,九、 (1) 设0a 0>, 证明积分 ()⎰∞+0222axdx关于0a a ≥一致收敛;证明:()()()()()()()()()εδπεδεπεδεππππεπθθθπθθπ<-<-=>∀=<-≤-⎪⎪⎭⎫ ⎝⎛+++=-=->∀-=⋅=⎪⎭⎫⎢⎣⎡∈=+=⎰⎰∞2121404021402142321231414124214204240222a f a f a a a ,0a a a a a a a 1a a 1a a 1a 144a 4a a f a f ,0a f ,4a d cos cos 1a 1a f 20,, tg a x ,,a x dxa f 有时,,使得,当存在即可满足,对只需取要有一致收敛,故,对要从而,则,且记也即()⎰∞+0222axdx关于0a a ≥一致收敛(2) 0a >,计算积分⎰∞+022a x dx和()⎰∞+0322axdx解:()662620462026603222202202222216a 16a 1d 814cos2cos4a 1d cos a 1cos d cos a 1a xdx2a d a 1cos d cos 11a 1a x dx ,20,, tg a x ππθθθθθθθθπθθθθπθθπππππ=⋅=+-===+==⋅=+⎪⎭⎫⎢⎣⎡∈=⎰⎰⎰⎰⎰⎰⎰∞∞则有,令十、设 ()x f 在[)∞,0上有连续的二阶导数, ()()B x f ,A x f ≤''≤. 试证明()AB 2x f ≤'.证明:利用到了一元二次函数的判别式来做的[0,)22()lim '()0'()'()max {|'()|}||,(1)||0b Taylor "()||2|||()()||'()()()|||||()22||2||(2x x f x f x f x f b f x C A f B A f x f b f b x b x b C x b x b B A x b ξ→∞∈+∞∴===≠≥-=-+-≥---⇔+-首先由于有界,。
2018年华南理工大学研究生入学考试专业课真题625_数学分析
625 华南理工大学 2018 年攻读硕士学位研究生入学考试试卷 ( 试卷上做答无效 ,请在答题纸上做答 ,试后本卷必须与答题纸一同交回〉 科目名称 :数学分析 适用专业 :基础数学 ;计算数学 :概率论与数理统计 :应用数学 :运筹学与控制论主主旦7. ( 13 分) 求曲线对 + xy + y2 + 2x -2y 一 12 = 0 上的点到原点的距离之极值.8. (13 分) 计算 fo''ln(2 + c 叫你 ,..x',.vI d l arctantdt I. (12 分) 求 l im Jo 归x->o x(I -cosx) 9. (13 分) 设对任意 X E 归,坷 ,u,,( x ) un+1( x ) > -0 且 {un( x )} 收敛于零,并且对每个 n ,函数u,,( x ) 都在[a, b ] 上单调递增 ,试证 汇( 1)” 'u ρ2. ( 时) 计算!f xy2dx -x2 y 吵, ,其中r 为三+f = I ,方向为逆时针a2 b IO. C 13 分) 设 {元 )} 是有界闭区间[α,b ] 上的连续函数列 ,且/,, (x ) 注/,,+1 (x ) 及1 3. (12 分) 计算 Jf xz , +(x2 - z )y , J 哟,其中S -!i:. x2 +卢蚓0 :::;; z :::;; I) 的lim /,, (x) = f ( x ) 在[α,b ] 上处处存在 ,试证 f ( x ) 在[α,b ] 上必有最大值.下侧. 11. ( 13 分) 设函数 f 在点(剖 ,Yo ) 的某个邻域中有连续偏导数儿 ,在该点存在偏导数4. ( 12 分) 试在变换 U = x + y , v = x - y 及 Z = W -2.xy 下,将方程 Z 且 + 2z 秽 + Z Y.Y = 0到 成 w = w(u,v ) 满足的方程. 元 ,试证f 在该点可微.12. C 13 分〉 设非负函数列{ J,,(x )} 中的每个儿(x ) 在(0, l ] 上有界可积 ,且对任意5. (口分〉 设 I =f fJ( x +y - z +lO )俐在 ,其中 Q 是问2 + z2 = 3 的内部区域,、 Q证 28/iπ s/ ss2Jjπ . 6. ( 12 分) 在曲面 z -2xy = O 上找一点 ,使这点的法线垂直于平面 x + 2y + 3z + 4 = 0 , 并写出此法线方程.C E (0, 1) ,儿(x ) 在[c, I ] 上一致趋于零 ,若川江(x )战斗 ,试证lim f I 1J,,(x)sin 2xdx = 2 .n →国J O X 第 1 页 第 2 页。
华南理工大学2010年数学分析考研试题及解答
华南理工大学2010年数学分析考研试题一.求解下列各题1.确定α与β,使)lim0n n αβ→∞−−=.2.讨论函数()f x ,()g x 在0x =处的可导性,其中(),,x x f x x x −⎧=⎨⎩为无理数,为有理数,和()22,,x x g x x x ⎧−⎪=⎨⎪⎩为无理数,为有理数.3.已知()f x 在[)0,+∞上连续,且满足()0f x x ≤≤,[)0,x ∈+∞,设10a ≥,()1n n a f a +=,1,2n =⋯,证明(1){}n a 收敛;(2)若lim n n a l →∞=,则()f l l =.4.判断下面的级数的收敛性()()()21111nnn x x x x ∞=+++∑⋯,0x ≥.5.讨论函数()(),1cos y y f x y e x ye =+−的极大值和极小值.6.计算33323Sx dydz y dzdx z dxdy ++∫∫,其中S 为球面2222x y z a ++=的外侧.二.设p 为正常数,函数()()cos p f x x =,证明:当01p <≤时,()f x 在[)0,+∞上一致连续.三.证明ax bx bxya e e e dy x −−−−=∫,并计算积分0ax bxe e dx x−−+∞−∫,()0b a >>.四.令()()ln 1,0,,,0,xy x f x y xy x +⎧≠⎪=⎨⎪=⎩证明(),f x y 在其定义域上是连续的.五.求积分D I dxdy =∫∫其中D由曲线1+=和x c =,y c =所围成,且,,0a b c >.六.设f 为定义在(),a +∞上的函数,在每一有限区间(),a b 上有界,且()()lim 1x f x f x A →+∞+−=⎡⎤⎣⎦,证明()lim x f x A x→+∞=.七.设()f x ,()g x 在[],a b 上连续,证明()()()()()01limnbi i i ai f g x f x g x dx λξθ∆→=∆=∑∫,其中∆为[],a b 的任一分割,01:n a x x x b ∆=<<<=⋯,[]1,,i i i i x x ξθ−∈,1,2,,i n =⋯,1i i i x x x −∆=−,(){}1max i i nx λ≤≤∆=∆.华南理工大学2010年数分考研试题解答一.1.解由条件知,lim 0n n n βα→∞⎞−=⎟⎟⎠,从而有lim 0n n βα→∞⎞−−=⎟⎟⎠,lim n n βα→∞⎞=−=⎟⎟⎠)limn β→∞=n →∞=24n →∞−===α=β=2.解显然()00f =,()00g =,()()0f x f x −≤,()()20g x g x −≤,()f x ,()g x 均在0x =处连续,当x 沿着无理点趋向0时,有()()0110f x f x −=−→−−,当x 沿着有理点趋向0时,有()()0110f x f xx x−==→−,()()0limx f x f x →−−不存在,所以()f x 在0x =处不可导.当x 沿着无理点趋向0时,有()()2000g x f x x x x −−==−→−,当x 沿着有理点趋向0时,有()()2000g x g x x x x −==→−,于是有()()0lim00x g x g x →−=−存在,所以()g x 在0x =处可导,且()00g ′=.3.证明(1)有题设条件,知()2110a f a a ≤=≤,()10n n n a f a a +≤=≤,于是{}n a 单调递减,有下界,根据单调有界定理,知{}n a 收敛.(2)设lim n n a l →∞=,由于()f x 在[)0,+∞上连续,在()1n n a f a +=中,令n →∞,取极限,得()f l l =.4.解设()()()()2111nn nx u x x x x =+++⋯,显然当0x =时,()00n u =,()10n n u ∞=∑收敛,当0x >时,()0n u x >,()()11,011limlim,1120,1n n n n nx x u x xx u x x x ++→∞→∞<<⎧⎪⎪===⎨+⎪>⎪⎩,于是0x ≥,()1n n u x ∞=∑收敛.5.解()()1sin y fe x x∂=+−∂,()cos y y y fe x ye e y∂=−+∂()cos 1y e x y =−+⎡⎤⎣⎦.易知(,)f x y 的驻点集为()(){}2,0,(21),2:k k k Z ππ+−∈,又由()1cos y xx f e x =−+,sin y xy f e x =−,(cos 2)y yyf e x y =−−,知(2,0)20|01k Hf π−⎛⎞=⎜⎟−⎝⎠是负定矩阵,2((21),2)210|0k e Hf e π−+−−⎛⎞+=⎜⎟−⎝⎠,于是(,)f x y 在(){}2,0:k k Z π∈处取的最大值2,且(,)f x y 无极小值,也无最小值。
最新和华南理工数学分析考研试题及解答汇总
2004年和2005年华南理工数学分析考研试题及解答华南理工大学2004年数学分析考研试题及解答1 求极限«Skip Record If...»。
解由«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»,得«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
2 设«Skip Record If...»,求«Skip Record If...»。
解对«Skip Record If...»两边求导,有«Skip Record If...»,于是有 «Skip Record If...»,«Skip Record If...»,对«Skip Record If...»两边求导,得«Skip Record If...»,«Skip Record If...»,故«Skip Record If...»«Skip Record If...»«Skip Record If...»。
3 设«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,试证:«Skip Record If...»收敛,并求«Skip Record If...»。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (1) = 1 , 试证: ∃ x ∈ (−1,1) ,使 f (3) ( x) ≥ 3 . 10. (15 分)试讨论无穷级数 f ( x) =
∑ 1 + n 2 x 在 (0, ∞) 上的一致收敛
n =1
∞
1
性,以及 f ( x) 在 (0, ∞) 上的有界性.
11 . ( 15 分 ) 设 f ( x) ≥ 0 在 (−∞,+∞) 上 连 续 , f ε ( x) = 1
∫0
∞
试证: g (t ) ≤ e A f (t ), t ≥ 0 .
第
2 页
325 2006
¡ ¿Ê ¨ У «¥℄Ô Þ ¦ Ù¥¸ ℄Ô ÝÞ℄Ô Ú (10
)
³ Õ ÏÕ ×½ÌÇÕ ¢ Ê ¨ £ ²§¿¨Ò Ô ¤
¢ Ú º´¢
2
ö
√ √ n+ n− n . lim √ n→∞ n 3n + 5n + 7n
2
1. (10
)
n→∞
lim
√
√ 1+ n n ln √ n
√ n n+1
+
n+1 n
− 1 .
2. (10
)
x→0
lim
1 x2
−
1 x
+1−
1 x
∫−∞ f ( x) dx = 1 ,
+∞
ε
x f ( ) .试证明:对每个有界连续函数 ϕ ( x) ,有
ε
ε →0 + − ∞
lim
∫
+∞
ϕ ( x ) f ε ( x ) dx = ϕ ( 0) .
(12)-(13)任选一题做. (15 分)证明: 12.
∫0
g (t ) ≤ f (t ) +
1
∞ 1 + x dx 1 π2 ln =2 = . 2 1− x x 4 n =1 ( 2n − 1)
∑
13. (15 分)设 f (t ), g (t ), h(t ) 为 [0, ∞) 上连续非负函数,满足
∫0
t
g ( s )h( s )ds, t ≥ 0 ; f ' (t ) ≥ 0 ; h(t )dt = A < ∞ .
x
Sn+1 (x) = {Sn(x)} )
a
Sn(t)dt, (n ≥ 1).
Ĺ [a, b] ÊÚ £
y)
¤
Ë°℄ z = f (x,
x2 +y2 ≤1
u = x + az,
§ ¬ F (u, v) = 0, À ¥ a, b ª℄, v = y + bz , F Á aFu + bFv = 0, õ
Ø
(10 ¡ É (10 (10 ¡ (10
)
Ë A > 0, x1 >
xn+1 = 2xn
√
A,
x2 n+A
, (n ≥ 1).
n→∞
{xn} )
£©Ã¶
lim xn.
Ë α > 0,
1 2α−1
0 ≤ x ≤ 1.
¡
≤ xα + (1 − x)α ≤ 1.
)
Ë S1(x) Ĺ [a, b] Ê Ó£ Ü
325
华南理工大学 2004 年攻读硕士学位研究生入学考试试卷
(试卷上做答无效,请在答题纸上做答,试后本卷必须与答题纸一同交回) 科目名称:数学分析 适用专业:计算数学、应用数学、运筹学与控制论 共 2 页
本试卷满分 1Leabharlann 0 分. 1. (10 分)求极限
x 2 e x + 2 cos x − 2 lim . x →0 tan x − sin x
( x, y ) = (0,0) ⎧0 , ⎪ (15 分)令 f ( x, y ) = ⎨ x 3 ,ν 是 ( x, y ) 平面上的 7. ≠ , ( , ) ( 0 , 0 ) x y ⎪ 2 2 ⎩x + y 任一单位向量.
(1)求 f ( x, y ) 在 (0,0) 沿ν 的方向导数; 第 1 页
¦ (15 ) Ë f (x) ßÛܣõ
+∞ 0
[0, +∞)
Ê Ó£
dx.
+∞ f (x) A x
f (2x) − f (3x) x
¾ (15
)
÷℄
∞ n=2
(−1)n
xn+1 n2 − 1
±°℄¤ Í (15
)
Ë f (x, y) G = {(x, y)|x2 + y2 < 1} Êß Ü£È f (x, 0) x = 0 Æ Ó£Á fy (x, y ) G Êß»£¡ f (x, y ) (0, 0) Ó¤
(2)试讨论 f ( x, y ) 在 (0,0) 处的连续性和可微性.
8. (15 分)设 f ( x) 连续, y( x) = y"+ y = f ( x),
∫0 f (x − t) sin t dt ,试证: y( x) 满足
y (0) = y ' (0) = 0 .
x
(15 分)设 f ( x) 在 [−1,1] 上三次可微, f (−1) = f (0) = f ' (0) = 0 , 9.
e−(x
2 +y2 )
a
1
∂z ∂x
+b
∂z ∂y
dxdy.
Ø
(10
)
õ
L
(sin x + y )2dx + (x2 + y 2 cos y )dy, y = x2
À¥ L (15
)
ʯ
(−1, 1)
(1, 1)
Ê Ú ¤ ÆÛ A > 0
Ë a > 0, Å
x = eax
Î℄
℄¤
dx
( y + 9x)dx + ( y − x)dy . 2 2 9 x + y C
∫
5. (10 分)求
∑ n(n + 1) x n 的收敛区间,并求级数的和.
n =1
∞
(n + 2)
(10 分)设 S 为单位球面的上半部分,外侧为正向,计算 6.
∫∫ x
S
2
dydz + y 2 dzdx + z 2 dxdy .
1 y d2 y . (10 分)设 ln( x 2 + y 2 ) = arctan ,求 2. 2 x d x2
(10 分)设 x1 > a > 1 , x n +1 = 3.
a + xn , n = 1, 2, L , 1 + xn
试证: {x n } 收敛,并求 lim x n .
x →∞
4. (10 分)设 C 为单位圆周,逆时针为正向,求
)
ÍÚ (15
¡
f (x) = xe−x
2
x 0
et dt
2
[0, +∞)
ÊÚ £ Ó¤
∞
Ĺ [0, +∞) Ê Í (15 ) Ö¼°℄ f (x) = n=1 n2 1 +x Ú £ ÓÑ£ Ñ£ Ѥ
2
ÓÑ£
Ø
625
° 2007 Ê ¸ÇÄ ½Îλ ͺŠ¢ × ÜÅ ¢Í ¥º§ Ö ÜÐ℄¶±¡ ¾ ª¤ ÌÔ ¤²¬ ´ Ö ¿ ´ ÓÔ