机构的自由度计算

合集下载

机构自由度计算(共42张PPT)

机构自由度计算(共42张PPT)
C4
绘制图示偏心泵的运动简图
3 2 1 4
甘肃工业大学专用
偏心泵
四 平面机构的自由度
1 θ1 2
3
S’3 S3
2 1 θ1
3 4 θ4
给定S3=S3(t),一个独立参数
θ1=θ1〔t〕唯一确定,该机
构仅需要一个独立参数。
假设仅给定θ1=θ1〔t〕,那么 θ2 θ3 θ4 均不能唯一确定。 假设同时给定θ1和θ4 ,那么θ3 θ2 能唯一确定,该机构需要两个 独立参数 。
定义:具有确定运动的运动链称为机构 。
机架-作为参考系的构件,如机床床身、车辆底 盘、飞机机身。
原〔主〕动件-按给定运动规律运动的构件。 从动件-其余可动构件。 机构的组成:
机构=机架+原动件+从动件
甘肃工业大学专用
1个
1个或几个
若干
三 平面机构运动简图
机构运动简图-用以说明机构中各构件之间的相对 运动关系的简单图形。

1
2


1
空副 2
间 运
1
动 副


1

球 销
2

甘肃工业大学专用
2 1
2 1
1
2
2 1
2 1
1 2
1 2
1 2
2 1
构件的表示方法:
甘肃工业大学专用
一般构件的表示方法
杆、轴构件
固定构件
同一构件
甘肃工业大学专用
两副构件
一般构件的表示方法
三副构件
甘肃工业大学专用
本卷须知:
画构件时应撇开构件的实际外形,而只考虑运动副的性质。 3. 运动链 运动链-两个以上的构件通过运动副 的联接而构成的系统。 闭式链、开式链

《机构自由度计算》课件

《机构自由度计算》课件

02
机构自由度的基本概念
定义与分类
定义
机构自由度是指在给定机构中, 通过确定各构件的位置和姿态, 能够独立改变的坐标数目。
分类
根据机构自由度的性质,可分为 平面机构自由度和空间机构自由 度。
自由度的计算公式
平面机构自由度计算公式
$F = 3n - 2p_{r} - p_{h}$
空间机构自由度计算公式
三杆机构自由度计算
总结词:计算方法多样 总结词:参数影响 总结词:工程应用
详细描述:三杆机构自由度的计算方法有多种,包括解 析法、图解法和经验公式法等,需要根据具体情况选择 合适的方法进行计算。
详细描述:在三杆机构自由度计算中,需要考虑多个参 数的影响,如活动构件数、低副数、高副数以及机构中 是否存在局部自由度或虚约束等情况。
它反映了机构在空间中的运动状 态,是机构分析和设计中的重要 概念。
机构自由度计算的意义
机构自由度计算是机构分析和设计的基础,通过计算自由度可以了解机构的运动特 性和能力。
机构自由度计算有助于确定机构的可达工作空间、运动速度和加速度等性能指标。
机构自由度计算还可以用于机构的优化设计和改进,提高机构的运动效率和稳定性 。
机构自由度与动力学关系研究
总结词
机构自由度与动力学关系是机构学领域的重要研究方向,需要深入研究其内在联系和规 律。
详细描述
机构自由度与动力学关系是机构学领域的重要研究方向,研究它们之间的内在联系和规 律有助于更好地理解机构的运动特性和动力学行为。未来需要加强这方面的研究,为机
构设计和优化提供更加科学的依据。
代数法
代数法的步骤
1. 列出所有约束条件和运动变量。
2. 建立代数方程来表示各约束条件和运动变量 之间的关系。

平面机构的自由度与运动分析

平面机构的自由度与运动分析

平面机构的自由度与运动分析一、平面机构的自由度平面机构是指机构中的构件只能在一个平面内运动的机构,它由多个连接杆、转动副和滑动副组成。

平面机构的自由度是指机构中能够独立变换位置的最小的连接杆数目,也可以理解为机构中独立的变量的数量。

对于平面机构,其自由度可以通过以下公式计算:自由度=3n-2j-h其中,n表示连接杆的数量,j表示驱动链的数量,h表示外部约束的数量。

根据上述公式可以看出,自由度与平面机构中连接杆的数量和驱动链和外部约束的数量有关。

连接杆的数量越多,机构的自由度就越大,可以实现更复杂的运动。

驱动链的数量越多,机构中的动力驱动器越多,自由度就越小,机构的运动变得更加确定。

外部约束的数量越多,机构中的约束条件就越多,自由度就越小,机构的运动也会变得更加确定。

二、平面机构的运动分析1.闭合链和链架分析:首先需要确定机构中的闭合链和链架,闭合链是指机构中连接杆形成一个封闭的回路,闭合链中的连接杆数目应该为n 或n-1,n是机构中的连接杆数量。

链架是指机构中的连接杆形成一个开放的链路。

通过分析闭合链和链架中的链接关系和约束条件,可以确定机构中构件的位置和运动方式。

2.位置和速度分析:根据机构的连接杆的长度和角度,可以通过几何方法或代数方法确定机构中构件的位置和速度分量。

通过分析连接杆的长度和角度的变化规律,可以推导出机构中构件的位置和速度随时间的变化关系。

3.加速度和动力学分析:根据机构中各个构件的位置和速度,可以通过几何方法或动力学方法计算构件的加速度和动力学特性。

通过分析机构中构件的加速度和动力学特性,可以确定机构中构件的运动稳定性和质量分布。

4.动力分析:对于需要携带负载或进行力学传动的机构,需要进行动力学分析,确定机构中各个构件的受力和承载能力。

通过分析机构中构件的受力情况,可以确定机构的设计参数和强度要求。

总结起来,平面机构的自由度与运动分析是确定机构中构件位置和运动状态的重要方法,通过分析机构中的闭合链和链架、构件的位置和速度、加速度和动力学特性,可以确定机构的运动方式和特性,为机构的设计和优化提供依据。

机构自由度计算公式

机构自由度计算公式

机构自由度计算公式
一个杆件(刚体)在平面可以由其上任一点A的坐标x和y,以及通过A点的垂线AB与横坐标轴的夹角等3个参数来决定,因此杆件具有3个自由度。

【计算公式】F=3n-(2PL +Ph ) n:活动构件数,PL:低副约束数Ph:高副约束数。

计算平面机构自由度的注意事项:
复合铰链--两个以上的构件在同一处以转动副相联。

复合铰链处理方法:如有K个构件在同一处形成复合铰链,则其转动副的数目为(k-1)个。

局部自由度:构件局部运动所产生的自由度,它仅仅局限于该构件本身,而不影响其他构件的运动。

局部自由度常发生在为减小高副磨损而将滑动摩擦变为滚动磨擦所增加的滚子处。

处理方法:在计算自由度时,从机构自由度计算公式中将局部自由度减去。

虚约束--对机构的运动实际不起作用的约束。

计算自由度时应去掉虚约束。

虚约束都是在一定的几何条件下出现的。

常见有以下几种情况:两构件联接前后,联接点的轨迹重合。

如:平行四边形机构,火车轮,椭圆仪。

机构自由度的计算公式

机构自由度的计算公式

机构自由度的计算公式1. 机构自由度是指一个机构、系统或者模型能够自由调整和变化的程度。

它可以用数学公式来计算,一般可以使用以下公式:机构自由度= 总体自由度- 约束自由度其中,总体自由度是指机构、系统或者模型中可以自由调整和变化的总的参数数量,而约束自由度是指受到限制和约束的参数数量。

通过计算机构自由度,我们可以了解机构的灵活性和可调整性。

2. 在机构设计中,机构自由度的计算可以进一步细分为平动自由度和转动自由度。

平动自由度是指机构中可以进行平移运动的自由度数量,转动自由度是指机构中可以进行旋转运动的自由度数量。

这两者的计算可以使用以下公式:平动自由度= 总体自由度- 转动自由度转动自由度= 总体自由度- 平动自由度通过计算平动自由度和转动自由度,我们可以更加具体地了解机构的运动方式和约束情况。

3. 在实际应用中,机构自由度的计算可以根据具体的机构结构和设计要求来确定。

通常情况下,机构自由度的计算需要考虑以下几个因素:- 约束条件:机构中的约束条件可以限制机构的运动范围和方式,需要将这些约束条件考虑进机构自由度的计算中。

- 关节数量:机构中的关节数量也会影响机构的自由度。

每个关节都可以提供一定的自由度,因此需要将关节数量考虑进机构自由度的计算中。

- 运动链路:机构中的运动链路是指连接各个部件的路径和方式。

不同的运动链路会影响机构的自由度,需要将运动链路的特性考虑进机构自由度的计算中。

综上所述,机构自由度是通过计算机构中可调整和变化的参数数量来衡量机构的灵活性和可调整性。

它可以通过总体自由度减去约束自由度来计算,也可以进一步细分为平动自由度和转动自由度。

在实际应用中,还需要考虑约束条件、关节数量和运动链路等因素来确定机构自由度的计算。

机构自由度计算

机构自由度计算

3 几种特殊结构的处理
2 3 1 4

2
3 5 6 4 1
5
6
F = 3n-2pl-ph = 3 5 -2 6 - 0 =3

F = 3n- 2pl-ph = 3 5 -2 7 - 0 =1

(1) 复合铰链


—计算在内
3
2 5
m个构件(m>2)在同一处构成转动副 3 m-1个低副
2 5 1
F=3n-2PL-PH =3 2-2 2 -1 =1

F=3n-2PL-PH =3 2-2 3 -1 =-1 错
2
为虚 约束
1
虚约束经常发生的场合
A 两构件之间构成多个运动副时
B 两构件某两点之间的距离在运动过程中始终保持不变时
C 联接构件与被联接构件上联接点的轨迹重合时 D 机构中对运动不起作用的对称部分


平面副
y
y
n
x t
t
n
t
o
x
o
n
低副:转动副、移动副 (面接触) 高副:齿轮副、凸轮副(点、 线接触)
空间副
了解
高副:点、线接触
球面副
螺旋副
三、机构
机构是由构件通过运动副连接而成的
原动件:按给定运动规律独立运动的构件 从动件:其余的活动构件 机
架:固定不动的构件
2 从动件 3
F =3n-2pl-ph = 3 4-2 5- 1 = 1
2 机构具有确定运动的条件
B C B
C
D
D
A
E
A
C
B A E
F =3n-2pl-ph = 3 2-2 3-0=0

平面机构自由度的计算

平面机构自由度的计算

平面机构自由度的计算
平面机构自由度的计算是机械设计中的重要环节之一。

平面机构是指在同一个平面内运动的机械结构,如连杆机构、齿轮传动机构等。

自由度是指机构在运动过程中自由度的数量,即机构中自由度的个数。

平面机构自由度的计算是根据机构中约束的个数和自由度的数
量来确定的。

约束是指机构中使得某一部分运动受限制的元素,如轴承、固定点等。

自由度是指机构中可以自由运动的元素,如活动连接件、活塞等。

通常情况下,平面机构的自由度可以通过以下公式进行计算:
自由度 = 3n - m - Σfi
其中,n表示机构中的运动副数量;m表示机构中的约束数量;
Σfi表示机构中的外力或外扭矩的数量。

在实际机械设计中,平面机构自由度的计算是非常重要的,它可以帮助设计者确定机械结构的运动特性和受力情况,以保证机械结构的稳定性和可靠性。

- 1 -。

平面机构自由度计算及结构分析

平面机构自由度计算及结构分析

平面机构自由度计算及结构分析在机械工程领域,平面机构是由一系列连接件和铰链组成的机械系统,在平面内进行运动。

平面机构的自由度指的是机构能够独立移动的自由度数量。

自由度的计算及结构分析是设计和优化机构的重要环节,下面将详细介绍平面机构自由度的计算及结构分析方法。

1.平面机构自由度计算的基本原理平面机构中常见的连接件包括滑动副、铰链副和齿轮副等。

根据这些连接件的类型和数量,可以确定机构的格式方程。

例如,如果机构中有n个滑动副,则格式方程的数量为2n,因为每个滑动副有两个约束方程(平移约束和转动约束)。

同样地,如果机构中有m个铰链副,则格式方程的数量为m。

确定格式方程后,我们需要计算机构的独立运动方程数量。

独立运动方程描述了机构中各连接件之间的相对运动关系。

对于平面机构,独立运动方程的数量等于机构中的自由度数量。

通过求解格式方程和独立运动方程,我们可以得到平面机构的总约束方程数量。

然后,通过公式自由度=3n-总约束方程数量,可以计算机构的自由度数量。

2.平面机构自由度计算方法(1)基于迎接方式的计算方法这是一种基本的自由度计算方法,其思想是通过分析机构中两个相邻部件之间的约束关系来计算自由度数量。

首先,确定机构的基本框架,并标记出机构的连杆、滑块等部件。

然后,根据机构的连杆相邻部件之间的连接方式和铰链类型,确定相邻部件之间的约束关系。

对于滑块,如果其只能实现平移运动,则约束数量为2;如果可以实现平移和转动,则约束数量为3、类似地,对于连杆,如果只能实现转动运动,则约束数量为1;如果可以实现平移和转动,则约束数量为2在计算约束数量时,需要注意对于普通铰链,其约束数量为2;对于直线铰链,其约束数量为1;对于齿轮铰链,其约束数量为0。

通过统计各部件之间的约束数量,可以得到机构的自由度数量。

(2)利用虚位移法的计算方法虚位移法是一种准确且广泛应用的方法,用于计算机构的自由度数量。

这种方法基于贝努利-克洛福特定理,即机构中任意一点的虚位移应符合约束条件。

第3章平面机构的自由度计算分解

第3章平面机构的自由度计算分解
F=3n-2PL-PH:=3×7-2×9-1=2 此机构的自由度为2,有两个原动件。
平面机构的结构分析
43 2 C5 D
B1 A
8
67
E n =7 Pl = 10 F = 3×7–2×10 = 1
下一页
平面机构的结构分析
3.2.5 计算机构自由度的实用意义 1.判定机构运动设计方案是否合理 2.改进不合理的运动方案使其具有确定的相对运动 3.判断测绘的机构运动简图是否正确
平面机构具有确定运动的条件: 1)机构自由度数 F≥1; 2)原动件数目等于机构自由度数F。
平面机构的结构分析
3.2.4 计算机构自由度时应注意的几种情况
先看例子:按照之前的算法下图机构的自由度为
F =3n-2PL-PH
=3×10-2×13-2 =2
为什么?
平面机构的结构分析
1.复合铰链 两个以上构件在同一轴线处用转动副连接,就形成了
惯性筛机构
平面机构的结构分析
2.局部自由度
机构中个别构件不影响其它构件运动,即对整个机构运动无 关的自由度。
处理办法:在计算自由度时,拿掉这个局部自由度,即可将滚 子与装滚子的构件固接在一起。
3
n=3 PL=3 PH=1
C
C
3 n=2 PL=2 PH=1
F=3x3-2x3-1x1=2图
计算平面机构自由度 (F=3n-2PL-PH)
机构具有确定运动的条件 F>0(F=原动件个数)
复合铰链 局部自由度
虚约束
转动副:沿轴向和垂直于轴向的移动均受到 约束,它只能绕其轴线作转动。所 以,平面运动的一个转动副引入两 个约束,保留一个自由度。
移动副: 限制了构件一个移动和绕平面的 轴转动,保留了沿移动副方向的 相对移动,所以平面运动的一个 移动副也引入两个约束,保留一 个自由度。

机构自由度计算

机构自由度计算

C 两构件上联接点的轨迹重合

在该机构中,构件2上的C点C2与构 件3上的C点C3轨迹重合,为虚约束 计算时应将构件3及其引入的约束去
3
C(C2,C3) 2 1 B
动画
D

掉来计算

A
4
同理,也可将构件4当作虚约束,将 构件4及其引入的约束去掉来计算,
效果完全一样
F=3n-2PL-PH =3 3-2 4 -0 =1
2 机构具有确定运动的条件
3 几种特殊结构的处理
复合铰链 局部自由度 虚约束
4 小结
1 平面机构自由度的计算
(1) 平面运动构件的自由度 (构件可能出现的独立运动) 与其它构件未连之前:3 用运动副与其它构件连接后, 运 动副引入约束, 原自由度减少 (2) 平面运动副引入的约束R (对独立的运动所加的限制)
F=3n-2PL-PH =3 2-2 2 -1 =1

F=3n-2PL-PH =3 2-2 3 -1 =-1 错
2
为虚 约束
1
虚约束经常发生的场合
A 两构件之间构成多个运动副时
B 两构件某两点之间的距离在运动过程中始终保持不变时
C 联接构件与被联接构件上联接点的轨迹重合时 D 机构中对运动不起作用的对称部分
导路重合的虚约束 43
对称结构的虚约束
机构中的虚约束
轴线重合的虚约束
44
习题1:计算自由度
复合铰链
复合铰链
虚约束 局部自由度
大筛结构
2
差动轮系
45
A 两构件之间构成多个运动副时

两构件组合成多个转动副,且其轴线重合 两构件组合成多个移动副,其导路平行或重合

机械机构自由度计算方法

机械机构自由度计算方法

机械机构自由度计算方法机械机构的自由度是指机构能够同时运动的独立方式数量。

自由度的计算是机械设计中的重要任务,它决定了机构的稳定性、可靠性和灵活性。

在机械设计中,常用的自由度计算方法有几何方法、虚功原理和单位自由度原则等。

几何方法是最常用的自由度计算方法之一,它通过分析机构的几何结构和限制条件来确定机构的自由度。

具体步骤如下:1.确定机构的构型:首先根据机械设计需求和要求,确定机构的构型和连接方式。

在确定构型时,需要考虑机构的类型和关节的数量。

2.确定机构的连接点:根据机构的构型,确定机构的连接点。

连接点是机械机构中两个或多个部件连接的位置,通过连接点可以确定机械机构的自由度。

3.统计机构的关节数目:根据机构的构型和连接点的位置,统计机构中的关节数目。

关节是机械机构中可以相对运动的部件之间的连接点。

常见的关节有转动副、滑动副、铰接副等。

4.计算机构的自由度:根据统计得到的关节数目,计算机构的自由度。

自由度的计算公式为:F=3n-m-k其中,F是机构的自由度,n是机构中的部件数目,m是机构的约束数目,k是机构中的关节数目。

约束是机械机构的运动限制条件,包括固定约束和可变约束。

虚功原理是一种基于能量守恒的自由度计算方法,它利用虚功原理来推导机械机构的自由度。

虚功原理认为,机构中的外力所做的虚功等于零。

根据虚功原理,可以设置广义坐标,通过对广义坐标的求解,可以确定机构的自由度。

单位自由度原则是一种经验法则,它根据机构的功能要求和运动方式来估计机构的自由度。

单位自由度原则认为,每个关节所提供的自由度数目大致相等。

根据单位自由度原则,可以通过统计机构中的关节数目来估计机构的自由度。

在实际机械设计中,通常会综合使用几何方法、虚功原理和单位自由度原则等来计算机构的自由度。

不同的计算方法有不同的适用范围和计算精度,需要根据具体的设计要求和情况选择合适的方法。

总之,机械机构的自由度计算是机械设计中的重要任务,它决定了机构的稳定性、可靠性和灵活性。

自由度公式

自由度公式

自由度公式
自由度计算公式:1、自由度:机构的具有确定运动所必需要的独立运动参数为机构自由度。

2、自由度计算公式:f=3n-2pl-2phn:活动构件数pl:低副数ph:高副数3、机构具有运动的条件:自由度=原动件数。

机构运动离不开自由度,自由度,分为平面机构自由度和空间机构自由度!
自由度:统计学术语:自由度(degree of freedom, df)指的是计算某一统计量时,取值不受限制的变量个数。

通常df=n-k。

其中n为样本数量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。

自由度通常用于抽样分布中。

物理学术语:自由度是指物理学当中描述一个物理状态,独立对物理状态结果产生影响的变量的数量。

如运动自由度是确定一个系统在空间中的位置所需要的最小坐标数。

例如火车车厢沿铁轨的运动,只需从某一起点站沿铁轨量出路程,就可完全确定车厢所在的位置,即其位置用一个量就可确定,我们说火车车厢的运动有一个自由度;汽车能在地面上到处运动,自由程度比火车大些,需要用两个量(例如直角坐标x,y)才能确定其位置,我们说汽车的运动有两个自由度;飞机能在空中完全自由地运动,需要用三个量(例如直角坐标x,y,z)才能确定其位置,我们说飞机在空中的运动有三个自由度。

所谓自由度数就是确定物体在空间的位置所需独立坐标的数目。

机械原理 课件 §2-5 机构自由度计算

机械原理 课件 §2-5 机构自由度计算
§2-5 机构自由度计算
机构的自由度F :相对参考系的独立运动的数目
F=6
F=3 3 F=3
2
y
F=0
机架

1
x
平面上的自由构件有三个自由度
未联接
x, y, z
.
机构自由度计算
用转动副与机架连接后剩一个自由度
n=2 pl=3 ph =0
平面低副引入2个约束 平面高副引入1个约束
y
F=2 F=4 F=1 F=3 机构自由度计算公式 F=3n - (2pl + ph ) 活动构件数:n 低副数: pl 高副数: ph
自由度计算注意事项
n=9 pl =11 ph =3 F’=2 p’=1
点划线
作业:2-16 (a)(b)(c)
.
平面机构的组成原理
研究低副机构
F=3n - 2pl
F=1
平面机构的组成原理
n=5 pl =7 F=1
n=2 pl =3 F=0
基本杆组:不可再分的自由度为0的用运动副连接的构件系统 机构由基本杆组联接于原动件和机架上而构成 n=2 , pl =3 F=3n - 2pl =0 n=3 , 无解 n=4 , pl =6 ……
3 1
n=3 pl =3 ph =1 F=2? n=7 pl =6? ph =0 F=9?
2
3 2 1
pl =10
F=1
.
3、虚约束 运动副引入了重复的约束
两构件之间存在多个 *导路互相平行的移动副 *轴线重合的转动副 *法线重合的高副 *不影响机构运动传递的重复部分
自由度计算注意事项
算 一 个 移 动 副
.

例:手动冲床 F=3*2-(2*3+0)=0

1第一讲机构自由度的计算

1第一讲机构自由度的计算

例6 图示机构各杆相互不平行,计算该机构的自由度。
(3) 计算自由度时需要注意的几个问题

局部自由度 连杆3饶其自身轴线的转 动,对两连架杆2、4之间的 运动关系并无影响,所以它是 一种局部自由度。
例7 计算图示机构的自由度。
构件2的转动对整个机构的运动没有影响,局部自由度。
W=6n-5P5-4P4-3P3-2P2-P1-k =6×3-5×2-3×2-1=1
第一章
机构的结构理论与型综合创新
概述
机构的结构理论,主要研究机构的组成原 理、结构综合、机构分类以及机构具有确定运 动的条件等方面的问题。
它是进行机构分析、综合与创新的基础。
机构的结构综合创新方法的发展,为改造 现有机械和创造新机械指出了途径。
1 .1 基本概念 机构是由具有确定相对运动的构件组成的、 可以传递或变换机械运动的人工系统。 构件机构中的运动单元,一般可认为是刚 体,但也可以是弹性体、挠性体等物体。
例3 计算图示机构的自由度。 解:该机构中
运动副总数P=4
转动副2个
球面副1个
圆柱副1个
W fi 6 1 3 2 1 6 1
i 1 P
(2) 空间闭式链机构的自由度

对于具有公共约束的单环机构
在某些机构中,由于运动副或构件几何位 置的特殊配置,使全部构件都失去了某些运 动的可能性,即等于对机构所有构件的运动 都加上了若干个公共约束,不能再用上式计 算。
C
B
A
D
单环机构的特点是构件总数N与运动副数P相等。
多环机构是在单环机构的基础上叠加Pn=1(n为活动构件数)的运动链组成。
构件
原动件 运动链 机构 机架 运动副 开式 闭式 单环 多环

机构的自由度计算公式

机构的自由度计算公式

机构的自由度计算公式一、机构自由度的基本概念。

1. 定义。

- 机构的自由度是指机构具有的独立运动的数目。

它是衡量机构运动灵活性的一个重要指标。

例如,一个平面机构能够在平面内进行独立运动的方式数量就是它的自由度。

二、平面机构自由度的计算公式。

1. 一般公式。

- 对于平面机构,自由度计算公式为F = 3n - 2P_L-P_H。

- 其中,n为机构中活动构件的数目。

这里的活动构件是指能够相对运动的构件,例如在一个简单的曲柄滑块机构中,曲柄、连杆和滑块都是活动构件。

- P_L为低副的数目。

低副是指两构件之间以面接触而构成的运动副,常见的低副有转动副(如轴与轴承之间的连接,允许相对转动)和移动副(如滑块与导轨之间的连接,允许相对移动)。

- P_H为高副的数目。

高副是指两构件之间以点或线接触而构成的运动副,例如齿轮的啮合(轮齿之间为线接触)、凸轮与从动件之间的接触(点或线接触)。

2. 计算示例。

- 以曲柄滑块机构为例,它有3个活动构件(n = 3),4个低副(P_L=4,包括曲柄与机架之间的转动副、连杆与曲柄之间的转动副、连杆与滑块之间的转动副、滑块与导轨之间的移动副),没有高副(P_H = 0)。

- 根据自由度计算公式F=3n - 2P_L-P_H,可得F = 3×3-2×4 - 0=9 - 8=1,这表明曲柄滑块机构具有1个自由度,即它只有一种独立的运动方式。

3. 特殊情况说明。

- 当计算出的自由度F≤slant0时,机构一般不能运动或者是具有特殊的结构约束情况。

例如,如果F = 0,机构就成为一个刚性桁架结构,各构件之间相对位置固定,不能产生相对运动。

- 在计算自由度时,要准确判断活动构件、低副和高副的数量,有时可能存在虚约束的情况。

虚约束是一种对机构运动不起实际约束作用的约束,在计算自由度时需要去除虚约束的影响,否则会得出错误的自由度结果。

例如,在平行四边形机构中,如果存在一些对运动不起实际限制作用的约束,在计算自由度时需要正确识别并处理这些虚约束。

机构自由度的计算公式(一)

机构自由度的计算公式(一)

机构自由度的计算公式(一)机构自由度计算公式及例解什么是机构自由度?机构自由度指的是一个机构或组织在做决策时所能够自主、独立的度量。

它反映了一个机构内部成员在决策过程中的参与度,并能够量化机构内部的权力分配方式。

机构自由度计算公式机构自由度可以通过以下公式计算:机构自由度 = \frac{自主决策人数}{总决策人数} × 100\%例解1:小型企业假设某小型企业共有10位员工,其中包括2位高层管理人员和8位普通员工。

在该企业中,高层管理人员有权参与并做出最终决策,普通员工只能提供意见,但不能直接参与决策过程。

根据上述公式,可以计算该企业的机构自由度:机构自由度 = \frac{2}{10} × 100\% = 20\%这意味着该小型企业的机构自由度为20%,即只有20%的员工能够参与并影响最终的决策结果。

例解2:开放式组织考虑一个基于开放式组织原则运作的研究机构,共有50位研究人员和5位高级研究主管。

在该机构中,每位研究人员都有平等的决策权,并有权在研究项目的决策中发表意见。

使用上述公式,可以计算该研究机构的机构自由度:机构自由度 = \frac{50}{55} × 100\% ≈ \%这表示该研究机构的机构自由度约为%,即大部分的研究人员都有权参与和影响决策过程。

结论机构自由度是一个衡量机构灵活性和决策参与度的重要指标。

通过计算机构自由度可以了解一个组织内部权力的分配情况,并评估其是否具有较高的自主性和独立性。

对于不同类型的机构,机构自由度的计算方式和数值都可能有所不同,因此在实际应用中需要根据具体情况进行调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2 机构运动简图
在对现有机械进行分析或设计新机器时,都需 要绘出其机构运动简图。 1. 机构运动简图的定义 机构运动简图 根据机构的运动尺寸,按一定的比 例尺定出各运动副的位置, 采用运动副及常用 机构运动简图符号和构件的表示方法,将机构运 动传递情况表示出来的简化图形。 机构示意图 按比例绘出不严格的,只表示机械结 构状况的简图。
凸轮机构:
举例 6
小结:掌握机构自由度的计算方法; 机构具有确定运动的条件; 基本杆组拆分的原则及方法。
计算 • 机构的组成分析和机构的级别判别。构件 2.运动副 3.运动链 4.机构
构件
机构是怎样组成的?
• 连接:运动副 • 运动单元:构件 • 运动单元+连接 运动链 • 运动链+机架 机构
运动副:两个构件直接接触并产生某 些相对运动的可动联接
F=3n-2pl =0 级别 Ⅱ Ⅲ: n24 pl 3 6
结构分类:杆组为几级?什么形式?
例如Ⅱ级组:二杆三副组
外接副:与杆组以外的构件相连的运动副 内接副:与杆组内部的构件相连的运动副
例如Ⅲ级组:三杆六副组 特点:其中一个构件上有三个内接副
举例 5
结构分析:
从远离原动件的构件开始,尽可 能拆成最低的杆组,每拆完一个杆 组,保证剩下的杆组自由度为零。 对剩下的杆组再拆时,仍从最远端 开始拆,每拆一次杆组,均从最低 级的杆组开始,无法拆时,再试拆 高一级的杆组。
第一章 机构的组成及其自由度的计算
§1.1 机构的组成 §1.2 机构运动简图 §1.3 机构具有确定运动的条件 §1.4 平面机构自由度的计算 §1.5 平面机构的组成原理和结构分析
本章的主要内容
1、主要内容 • 机构的组成及其具有确定运动的条件 • 机构运动简图及其绘制 • 机构的组成原理和机构的结构分类 2、重点 • 机构具有确定运动的条件和平面机构自由度的
副, ph个高副,则
自由度计算公式: F=3n-(2pl+ph)
举例 3
2
3
1
4
3
2
4
1
5
10 C 11
8 ,9 3
7D B
18
4 A1
机构具有确定运动的条件
• 原动件数 = 机构的自由度
计算平面机构自由度时的注意事项
• 复合铰链:两个以上构件通过回转副并
联在一起
• 局部自由度:机构中某构件所产生的
10 C 11
8 ,9 3
7D B
18
4 A1
§1.3 机构具有确定运动的条件 构件自由度 : 构件具有独立运动参数的数目 机构自由度 : 机构具有独立运动参数的数目
一个构件的平面运动有三个自由度
• 无约束
平面运动副的约束
平面运动副的约束
高副约束1个自由度
§1.4 平面机构的自由度计算公式 n个活动构件(不包括机架), pl个低
2.机构运动简图的绘制
绘制方法及步骤: (1)搞清机械的构造及运动情况,沿着运动传递路线,
查明组成机构的构件数目、运动副的类别及其位置; (2)选定视图平面; (3)选适当比例尺,作出各运动副的相对位置,再画
出各运动副和机构的符号,最后用简单线条连接即得 机构运动简图。
举例 1 小型压力机
举例 2 内燃机
运动链成为机构的条件:将运动链的一个构件固定, 当它的一个或几个构件作独立运动时,其余构件随之作 确定的运动,这种运动链便成为机构。
显然,不能运动或无规则乱动的运动链都不能成为 机构。
为使运动链获得确定的相对运动,构件的总数、运动 副类型和数量以及独立运动数目必须符合一定的关系, 将在自由度计算中加以论述。
所拆杆组中,级别最高的杆组为 该机构的杆组级别
颚式破碎机 机构简图及杆组拆法
组成原理:原动件+机架+杆组 (F=0)
平面机构中的高副低代
高副低代的原则:
• 代替前后机构的自由度完全相同 • 代替前后机构的瞬时速度和瞬时
加速度完全相同
高副低代的方法: 二高副元素在接触点处的曲率中心用
一构件和两个低副代替
虚约束注意事项
• 两构件连接前后轨迹重合点 • 两构件某两点间的距离始终不变 • 两构件组成多个移动副 • 两构件组成多个转动副 • 不影响机构运动的重复部分
§1.5 平面机构的组成原理 和结构分析
• 组成原理 • 结构分类 • 结构分析
基本杆组:(低副)
构件组去掉机架和原动件后剩下的F=0 的最小运动链。
• 两个构件上参加接触的运动副表面 称运动副元素,运动副的元素是点、 线、面。
运动副分类: 空间和平面运动副
平面运动副
空间运动副
平面运动副:两构件相对运动为平面运动 的运动副
低副:面接触的运动副(回转副、移动副)
高副: 点、线接触的运动副
平面运动副符号:
空间运动副的符号
3.运动链 运动链:构件通过运动副联接而成的相对可动的系统。
局部运动并不影响整个机构中其它构件的 运动
• 虚约束:机构中某些运动副或某些运动
副与构件的组合所形成的约束与其它约束 重复而不再起作用
举例 4
F 3n 2 pl ph 35260 3
F 3n 2 pl ph 33231 2
F 3n 2 pl ph 34260 0
相关文档
最新文档