知识点:函数的对称性总结

合集下载

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中一个重要的概念,在各个领域都有广泛应用。

理解和应用函数对称性有助于我们更好地理解和解决数学问题。

本文将对函数对称性的概念、性质和应用进行总结。

函数对称性的概念:在数学中,函数对称性是指函数具有某种变换性质,使得在一定的条件下,函数在变换前后保持不变。

具体来说,如果对于定义域上的任意一个元素x,都存在一个元素y,使得对称变换后的x,会得到y,在函数对称变换之后,函数的图像也会发生相应的变化。

函数对称性可以分为轴对称、中心对称和周期对称等。

1.轴对称:一个函数在平面上如果具有轴对称性,比如存在一个轴使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是轴对称函数。

轴对称函数的图像具有左右对称的特点。

比如,y = x^2 就是一个轴对称函数,其图像关于y轴对称。

2.中心对称:一个函数在平面上如果具有中心对称性,比如存在一个点使得对称变换后的图像与变换前的图像完全重合,那么这个函数就是中心对称函数。

中心对称函数的图像具有上下左右对称的特点。

比如,y = sin(x) 就是一个中心对称函数,其图像关于原点对称。

3.周期对称:一个函数如果具有周期对称性,那么在一定的周期内,函数的变换可以形成循环。

即,在给定的周期内,函数的某个值与另一个值相等。

周期对称函数的图像在周期内具有相似的形状和变化趋势。

比如,y = sin(x) 就是一个周期对称函数,其周期为2π。

函数对称性的性质:1.对称轴或对称中心是函数对称性的重要特征。

通过找到函数的对称轴或对称中心,可以更好地理解函数的变化规律和性质。

2.函数对称性能够简化函数的分析和计算过程。

根据函数对称性的特点,我们可以通过分析对称图形的一部分,推断出对称图形的其他部分;通过对称性可以简化函数的复杂性,并提供更方便的计算方法。

3.函数对称性能够提供问题求解的启示。

函数对称性在实际问题中具有重要的应用价值,比如建筑设计中的对称线、电路中的交流信号分析等。

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中一个重要的概念,可以帮助我们更好地理解和分析各种函数。

在本文中,我将总结函数对称性的基本概念、性质和应用,以及如何判断函数的对称性。

首先,什么是函数对称性?函数对称性指的是函数在某种变换下保持不变的性质。

具体来说,如果函数在某个变换下满足等式 f(x) = f(-x),那么我们称这个函数具有对称性。

这个变换可以是关于原点对称、关于y轴对称、关于x轴对称等。

常见的函数对称性包括:1. 关于原点对称:如果一个函数满足 f(x) = f(-x),则称该函数关于原点对称。

这意味着函数的图像在原点处对称,即图像的左右两侧是镜像关系。

2. 关于y轴对称:如果一个函数满足 f(x) = f(-x),则称该函数关于y轴对称。

这意味着函数的图像在y轴上对称,即在图像的左右两侧相互重合。

3. 关于x轴对称:如果一个函数满足 f(x) = -f(-x),则称该函数关于x轴对称。

这意味着函数的图像在x轴上对称,即图像关于x轴对称。

函数对称性的性质也值得我们注意:1. 对称性可以简化函数的分析和计算。

例如,如果一个函数是关于y轴对称的,那么我们只需要计算出函数在y轴右侧的部分,然后将结果镜像到左侧即可。

2. 对称性可以帮助我们发现函数的特点。

例如,如果一个函数是关于x轴对称的,那么当 x = a 是函数的零点时,可以确定 x = -a 也是函数的零点。

现在,让我们来看看如何判断一个函数是否具有对称性。

一般来说,我们可以通过一些简单的方法来进行判断。

1. 对称性的代数判断方法:通过代数运算,我们可以验证函数的对称性。

例如,对于关于原点对称的函数,我们可以将 x 替换为 -x,然后将两边进行比较来判断函数是否具有对称性。

2. 对称性的图形判断方法:通过函数的图形来判断函数是否具有对称性。

我们可以绘制函数的图像,并观察图像是否在某个变换下保持不变。

3. 对称性的性质判断方法:通过函数的性质来判断函数是否具有对称性。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结1. 引言在数学中,函数对称性是一个重要的概念,它描述了函数在某种变换下保持不变的性质。

函数对称性有多种形式,如轴对称性、中心对称性等。

本文将对函数对称性的一些常见公式进行总结,并提供示例说明。

2. 轴对称函数公式2.1 轴对称性的定义轴对称是指函数图像对于某一条直线对称,即函数图像在这条直线两侧对称。

设函数为 f(x),对称轴为 x = a,则函数 f(x) 在对称轴两侧的函数值相等,即 f(a + h) = f(a - h)。

2.2 轴对称函数公式•偶函数:若函数 f(x) 满足 f(-x) = f(x),则称 f(x) 为偶函数。

•奇函数:若函数 f(x) 满足 f(-x) = -f(x),则称 f(x) 为奇函数。

偶函数和奇函数都具有轴对称性,其中以偶函数更为常见。

3. 中心对称函数公式3.1 中心对称性的定义中心对称是指函数图像对于某一点对称,即函数图像关于这一点对称。

设函数为 f(x),对称中心为 (a, b),则函数 f(x) 在对称中心两侧的函数值相等,即 f(a + h) = f(a - h)。

3.2 中心对称函数公式•对数函数:对数函数 y = loga(x) 关于 y 轴对称,其中 a > 0,且a ≠ 1。

•幂函数:幂函数 y = ax^n 关于 y 轴对称,其中a ≠ 0,且 n 为任意整数。

•正弦函数和余弦函数:正弦函数 y = sin(x) 和余弦函数 y = cos(x) 关于原点对称。

4. 复合对称函数公式4.1 复合对称性的定义复合对称是指函数图像同时具有轴对称性和中心对称性。

函数 f(x) 在具有轴对称性的直线上的每一个点,同时也是具有中心对称性的点。

4.2 复合对称函数公式•奇次幂函数:奇次幂函数y = ax^(2n+1) 具有轴对称性和中心对称性,其中a ≠ 0,n 为任意整数。

5. 示例说明5.1 示例 1:偶函数考虑函数 f(x) = x^2,我们可以看到该函数关于 y 轴对称,即 f(x) = f(-x)。

函数对称性知识点归纳总结

函数对称性知识点归纳总结

函数对称性知识点归纳总结一、函数的对称性概念1.1 函数的定义在数学中,函数是一种将输入值映射到输出值的关系。

它通常表示为f(x),其中x是输入值,f(x)是输出值。

函数可以用数学公式、图表、图形等方式来表示。

1.2 函数的对称性函数的对称性是指在某种变换下,函数图像保持不变的性质。

这种变换可以是关于坐标轴的对称、关于原点的对称、关于直线或平面的对称等。

函数的对称性可以分为以下几种:- 偶函数:如果对任意的x,有f(x) = f(-x),那么函数f(x)是关于y轴对称的,称为偶函数。

偶函数的图像在y轴对称。

- 奇函数:如果对任意的x,有f(x) = -f(-x),那么函数f(x)是关于原点对称的,称为奇函数。

奇函数的图像关于原点对称。

- 周期函数:如果存在一个正数T,使得对任意的x,有f(x+T) = f(x),那么函数f(x)是周期函数。

周期函数的图像在某一段距离上重复。

1.3 示例以函数f(x) = x^2为例,它是一个偶函数。

因为对任意的x,有f(x) = x^2 = (-x)^2 = f(-x),所以函数图像关于y轴对称。

又如函数f(x) = sin(x),它是一个奇函数。

因为对任意的x,有f(x) = sin(x) = -sin(-x) = -f(-x),所以函数图像关于原点对称。

二、函数对称性的判定与应用2.1 函数对称性的判定在判断一个函数是否具有对称性时,可以通过以下方法进行判定:- 偶函数:验证函数f(x)是否满足f(x) = f(-x)即可判断是否为偶函数。

- 奇函数:验证函数f(x)是否满足f(x) = -f(-x)即可判断是否为奇函数。

- 周期函数:通过周期函数的定义,验证函数f(x)是否满足f(x+T) = f(x)即可判断是否为周期函数。

2.2 函数对称性的应用函数对称性在数学分析、物理学、工程学等领域中有着广泛的应用。

以下是函数对称性的一些应用场景:- 在积分计算中,利用函数的对称性可以简化积分的计算。

高三函数对称性知识点汇总

高三函数对称性知识点汇总

高三函数对称性知识点汇总函数是数学中的重要概念,在高三数学学习中,函数的对称性是一个重要的知识点。

本文将对高三函数对称性的相关知识进行汇总,并介绍不同函数的对称性及其特点。

函数的对称性是指函数图像在某种变换下保持不变的性质。

在高三函数学习中,常见的函数对称性有以下几种:关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称。

一、关于x轴对称若函数图像在x轴两侧关于x轴对称,即对于函数中的每一个点(x, y),都存在另一个点(x, -y)也在函数图像上,则称函数关于x轴对称。

对于一个函数关于x轴对称的特点有:1. 函数的解析式中只含有偶次项,或不包含奇次项。

2. 函数图像关于y轴对称。

若函数图像在y轴两侧关于y轴对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, y)也在函数图像上,则称函数关于y 轴对称。

对于一个函数关于y轴对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。

2. 函数图像关于x轴对称。

三、关于原点对称若函数图像关于原点对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, -y)也在函数图像上,则称函数关于原点对称。

对于一个函数关于原点对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。

2. 函数图像关于原点对称。

当函数图像在直线L两侧对称时,我们称函数关于直线L对称。

对于关于直线对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。

2. 函数图像上关于直线L对称。

五、关于点对称若函数图像在点P两侧对称时,我们称函数关于点P对称。

对于关于点对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。

2. 函数图像关于点P对称。

综上所述,高三数学中的函数对称性知识点主要包括关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称等几种形式。

高三函数对称性知识点总结

高三函数对称性知识点总结

高三函数对称性知识点总结在高中数学的学习过程中,函数是一个非常重要的概念。

而函数的对称性是函数图像在坐标轴上的对称特性,它是一种具有很高抽象性的数学思维,对于理解和解决数学问题具有重要意义。

在高三数学学习中,函数的对称性是一个非常重要的知识点,也是数学建模和解题中常用的技巧之一。

下面将对高三函数对称性的知识点进行总结。

一、函数的对称性1. 关于x轴的对称性当函数图像与x轴对称时,称函数具有关于x轴的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(x, -y)也在函数图像上。

2. 关于y轴的对称性当函数图像与y轴对称时,称函数具有关于y轴的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(-x, y)也在函数图像上。

3. 关于原点的对称性当函数图像与原点对称时,称函数具有关于原点的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(-x, -y)也在函数图像上。

4. 奇函数如果函数f(-x) = -f(x),那么称函数f(x)为奇函数。

奇函数的图像关于原点对称,且通过原点。

5. 偶函数如果函数f(-x) = f(x),那么称函数f(x)为偶函数。

偶函数的图像关于y轴对称,且通过y 轴。

6. 周期函数如果函数f(x + T) = f(x),其中T为正实数,那么称函数f(x)为周期函数。

周期函数的图像在一个周期内具有对称性。

二、对称性在数学建模中的应用1. 对称性可以简化问题在数学建模中,对称性可以帮助我们简化问题,减少计算量和分析难度。

通过对称性的特点,我们可以找到函数图像上的对称点,从而减少求解方程的步骤。

2. 对称性可以加快求解过程利用函数的对称性,在求解函数的零点、极值点和拐点时,可以通过对称点的关系,快速地确定函数的特征点,从而加快求解过程。

3. 对称性可以提高模型的精度在数学建模中,对称性可以帮助我们合理地选择函数模型,提高模型的精度和可靠性。

三、对称性在解题中的应用举例1. 求函数图像与坐标轴的交点在函数图像与坐标轴相交的点的求解中,利用函数的对称性可以帮助我们简化求解过程。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结1. 引言在数学中,函数对称性是指函数在某种变换下保持不变的特性。

函数对称性广泛应用于各个数学分支,如代数、几何和微积分等。

本文将对常见的函数对称性公式进行总结,以帮助读者更好地理解和应用这些公式。

2. 对称轴对称轴是函数对称性的一个重要概念。

对称轴是指函数图像关于某一直线对称。

对称轴上的点与其对称点关于对称轴对称。

对称轴的方程可以通过观察函数的特性或运用特定的公式来确定。

2.1 y轴对称性若函数满足f(x) = f(-x),则函数具有y轴对称性。

对于奇函数来说,其图像关于y轴对称;对于偶函数来说,其图像与y 轴重合。

常见的函数对称于y轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)2.2 x轴对称性若函数满足f(x) = -f(x),则函数具有x轴对称性。

对于奇函数来说,其图像关于x轴对称;对于偶函数来说,其图像与x 轴重合。

常见的函数对称于x轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)3. 极限和导数对称性在微积分中,极限和导数也可以与函数的对称性相关联。

3.1 极限对称性若函数f(x)在某一点x=a的极限存在,并且与x=a的对称点x=-a的极限相等,即lim(x->a) f(x) = lim(x->-a) f(x),则函数具有极限对称性。

常见的函数具有极限对称性的公式有:•正弦函数的极限对称性:lim(x->0) sin(x) = lim(x->0) sin(-x)•余弦函数的极限对称性:lim(x->0) cos(x) = lim(x->0) cos(-x)3.2 导数对称性若函数f(x)在某一点x=a可导,并且其导数与x=a的对称点x=-a的导数相等,即f’(a) = f’(-a),则函数具有导数对称性。

常见的函数具有导数对称性的公式有:•正弦函数的导数对称性:(sin(x))’ = cos(-x)•余弦函数的导数对称性:(cos(x))’ = -sin(-x)4. 对称性的应用函数对称性是解决许多数学问题的重要工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点:函数的对称性总结
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。

函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。

本文拟通过函数自身的对称性和不同函数之间的对称性这两个
方面来探讨函数与对称有关的性质。

一、函数自身的对称性探究
定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是
f (x) + f (2a-x) = 2b
证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上, 2b-y = f (2a-x)
即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。

(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)
∵ f (x) + f (2a-x) =2bf (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P
与点P'关于点A (a ,b)对称,充分性得征。

推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0
定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是
f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者)
推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)
定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y = f (x)是周期函数,且
2| a-b|是其一个周期。

②若函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称(ab),则y = f (x)是周期函数,且2| a-b|是其一个周期。

③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(ab),则y = f (x)是周期函数,且4| a-b|是其一个周期。

①②的证明留给读者,以下给出③的证明:
∵函数y = f (x)图像既关于点A (a ,c) 成中心对称,
f (x) + f (2a-x) =2c,用2b-x代x得:
f (2b-x) + f [2a-(2b-x) ] =2c(*)
又∵函数y = f (x)图像直线x =b成轴对称,
f (2b-x) = f (x)代入(*)得:
f (x) = 2c-f [2(a-b) + x](**),用2(a-b)-x代x 得
f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得:f (x) = f [4(a-b) + x],故y = f (x)是周期函数,且4| a-b|是其一个周期。

二、不同函数对称性的探究
定理4. 函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。

定理5. ①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。

②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。

③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。

定理4与定理5中的①②证明留给读者,现证定理5中的③设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)。

记点P( x ,y)关于直线x-y = a的轴对称点为P'(x1, y1),则x1 = a + y0 , y1 = x0-a ,x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) 点P'(x1, y1)在函数x-a = f (y + a)的图像上。

同理可证:函数x-a = f (y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f (x)的图像上。

故定理5中的③成立。

推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。

三、三角函数图像的对称性列表
注:①上表中kZ
②y = tan x的所有对称中心坐标应该是(k/2 ,0 ),而在岑申、王而冶主编的浙江教育出版社出版的21世纪高中数学精编第一册(下)及陈兆镇主编的广西师大出版社出版的高一数学新教案(修订版)中都认为y = tan x的所有对称中心坐标是( k, 0 ),这明显是错的。

四、函数对称性应用举例
例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是()(第十二届希望杯高二第二试题)
(A)是偶函数,也是周期函数(B)是偶函数,但不是周期函数(C)是奇函数,也是周期函数(D)是奇函数,但不是周期函数解:∵f (10+x)为偶函数,f (10+x) = f (10-x).
f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。

故选(A)
例2:设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x
对称,若g(5) = 2019,那么f(4)=()。

(A)2019;(B)2019;(C)2019;(D)2019。

解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称,
y = g-1(x-2) 反函数是y = f(x-1),而y = g-1(x-2)的反函数是:y = 2 + g(x), f(x-1) = 2 + g(x), 有f(5
-1) = 2 + g(5)=2019
故f(4) = 2019,应选(C)
例3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-10时,
f (x) = - x,则f (8.6 ) = _________ (第八届希望杯高二第一试题)
解:∵f(x)是定义在R上的偶函数x = 0是y = f(x)对称轴;又∵f(1+x)= f(1-x) x = 1也是y = f (x) 对称轴。

故y = f(x)是以2为周期的周期函数,f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3
例4.函数 y = sin (2x + )的图像的一条对称轴的方程是()(92全国高考理) (A) x = - (B) x = - (C) x = (D) x = 解:函数 y = sin (2x + )的图像的所有对称轴的方程是2x
+ = k +
x = - ,显然取k = 1时的对称轴方程是x = -故选(A) 例5. 设f(x)是定义在R上的奇函数,且f(x+2)= -f(x),当01时,
f (x) = x,则f (7.5 ) = ()
(A) 0.5(B)-0.5(C) 1.5(D) -1.5
解:∵y = f (x)是定义在R上的奇函数,点(0,0)是其对称中心;
又∵f (x+2 )= -f (x) = f (-x),即f (1+ x) = f (1-x),直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。

f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-
0.5 故选(B)。

相关文档
最新文档