2018年吉林省长春市中考数学一模试卷和答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年吉林省长春市中考数学模拟试卷(四)

一、选择题(共8小题,每小题3分,满分24分)

1.(3分)的绝对值是()

A.B.C.2 D.﹣2

2.(3分)我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()

A.0.21×108B.21×106 C.2.1×107D.2.1×106

3.(3分)计算(﹣a2)5的结果是()

A.a7B.﹣a7 C.a10D.﹣a10

4.(3分)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()

A.B.C.D.

5.(3分)方程x2﹣4x+5=0根的情况是()

A.有两个不相等的实数根B.有两个相等的实数根

C.有一个实数根D.没有实数根

6.(3分)如图,在△ABC中,AB=AC,点D是AC上一点,BC=BD=AD,则∠A 的大小是()

A.36°B.54°C.72°D.30°

7.(3分)如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO 是平行四边形,则∠ADB的大小为()

A.30°B.45°C.60°D.75°

8.(3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()

A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)

二、填空题(共6小题,每小题3分,满分18分)

9.(3分)分解因式:x2﹣4=.

10.(3分)如图,利用图形面积的不同表示方法,能够得到的代数恒等式是(写出一个即可).

11.(3分)如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为.(结果保留π)

12.(3分)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为.

13.(3分)如图,在平面直角坐标系中,函数y=(x>0)的图象经过矩形OABC 的边AB、BC的中点E、F,则四边形OEBF的面积为.

14.(3分)如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为.

三、解答题(共10小题,满分78分)

15.(6分)先化简,再求值:(﹣)÷,其中x=2.

16.(6分)一个不透明的口袋中装有形状大小相同的三个小球,每个小球上各标有一个数字,分别是1,2,3,现规定从袋中任意取出一个小球,记录数字后放回,再任意取一个小球,记录其数字,用画树状图(或列表)的方法,求两次

取出的搅匀后,小球上的两个数字之和大于4的概率.

17.(6分)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:

解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…

你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.

18.(7分)在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.

19.(7分)如图,某数学兴趣小组为了测量学校旗杆AB的高度,他们在旗杆对面的实验楼的顶部C处测得旗杆顶端A的仰角为46°,测得旗杆底端B的俯角为32°,同时测量了旗杆底端与实验楼的地面距离BD长为9.5米.求旗杆AB的高.(结果精确到0.1米).

【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62,sin46°=0.72,cos46°=0.69,tan46°=1.04】

20.(7分)为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级、B级、C级、D级),并就按那个测试结果绘成了如下两幅不完整的统计图,请根据统计图中

的信息解答下列问题:

(1)本次抽样测试的学生人数是;

(2)扇形图中∠α的度数是,并把条形统计图补充完整;

(3)对A,B,C,D四个等级依次赋分为90,75,65,55(单位:分),比如:等级为A的同学体育得分为90分,…,依此类推.该市九年级共有学生32000名,如果全部参加这次体育测试,估计该市九年级不及格(即60分以下)学生的人数.

21.(8分)甲、乙两地之间的铁路交通设有特快列车和普通快车两种车次,某天一辆普通快车从甲地出发匀速向乙地行驶,同时另一辆特快列车从乙地出发匀速向甲地行驶,两车离甲地的路程S(千米)与行驶时间t(时)之间的函数关系如图所示.

(1)甲地到乙地的路成为千米,普通快车到达乙地所用时间为小时.

(2)求特快列车离甲地的路程s与t之间的函数关系式.

(3)在甲、乙两地之间有一座铁路桥,特快列车到铁路桥后又行驶0.5小时与普通快车相遇,求甲地与铁路桥之间的路程.

22.(9分)定义:以线段l的一个端点为旋转中心,将这条线段顺时针旋转α(0°<α≤360°),再沿水平方向向右平移m个单位后得到对应线段l′(若m<0,则表示沿水平向左的方向平移|m|个单位),则将线段l到线段l′的变换记为<α,m >.如图①,将线段AB绕点A顺时针旋转30°,再沿水平向右的方向平移3个单位后得到线段A′B′的变换记为<30°,3>.

(1)已知:图②、图③均为5×4的正方形网格,在图②中将线段AB绕点A进行变换<90°,4>,得到对应线段A′B′;在图③中将线段AB绕点A进行变换<270°,﹣3>,得到对应线段A′B′,按要求分别画出变换后的对应线段.

(2)如图④,在平面直角坐标系中,抛物线y=﹣x2+2x与x轴正半轴交于点A,线段OA绕点A进行变换<α,m>后得到对应线段的一个端点恰好落在抛物线的顶点处,直接写出符合题意的<α,m>为.

23.(10分)如图①,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE ∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)(t>0).

(1)求线段AC的长.

(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式.(3)若边EF与边AC交于点Q,连结PQ,如图②.

①当PQ将△PEF的面积分成1:2两部分时,求AP的长.

②直接写出PQ的垂直平分线经过△ABC的顶点时t的值.

相关文档
最新文档