变频器的电压频率控制 与矢量控制

合集下载

矢量与VF区别

矢量与VF区别

变频器矢量控制与V/F控制区别V/F控制矢量控制母线电压利用率86% 98%低频带载能力0.5Hz带100%负载0.5Hz带150%负载动态响应对瞬态变化响应慢,在负载突变时,转矩和转速震荡对瞬态变化快速响应,保持转矩和转速的平稳V/F控制:就是保证输出电压跟频率成正比的控制这样可以使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生,多用于风机、泵类节能型变频器用压控振荡器实现。

异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。

因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。

V/F控制-控制简单,通用性强,经济性好,用于速度精度要求不十分严格或负载变动较小的场合。

从本质上讲,V/F控制实际上控制的是三相交流电的电压大小和频率大小,然而交流电有三要素,就是除了电压大小和频率之外,还存在相位。

V/F控制没有对电压的相位进行控制,这就导致在瞬态变化过程中,例如突加负载的时候,电机转速受冲击会变慢,但是电机供电频率也就是同步速还是保持不变,这样异步电机会产生瞬时失步,从而引起转矩和转速振荡,经过一段时间后在一个更大转差下保持平衡。

这个瞬时过程中没有对相位进行控制,所以恢复过程较慢,而且电机转速会随负载变化,这就是所谓VF控制精度不高和响应较慢的原因。

我们公司变频器为V/F控制时,参数调节简单,提高VF控制性能的主要方法有:低频力矩补偿、死区补偿、震荡抑制、转速跟踪、滑差补偿等,可以适用于80%以上的工况。

可以通过F1.15~F1.23参数任意设置V/F曲线,满足不同条件下的需求。

矢量控制:是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

变频器频率调节方法

变频器频率调节方法

变频器频率调节方法变频器是一种用于调节电机运行速度和输出功率的装置,广泛应用于工业领域。

在实际应用中,频率调节是变频器的核心功能之一。

本文将介绍几种常见的变频器频率调节方法。

一、电压/频率(V/F)调节法电压/频率(V/F)调节法是最简单和常见的一种方法。

它通过控制变频器输出电压和频率的比值来实现电机的调速。

在这种调节方法下,当频率增加时,输出电压也相应增加,以保持电机的电磁转矩基本不变。

这种方法适用于大多数恒转矩负载的情况下,例如风机、水泵等。

在运行过程中,需要根据负载的变化不断调整电压和频率的比值,以保持电机的稳定运行。

二、矢量控制调节法矢量控制调节法是一种相对复杂的调节方法,它可以实现更高的速度响应和控制精度。

在矢量控制中,通过对电机的电流进行控制,实现对电机的转矩、转速和位置的精确控制。

与V/F调节法相比,矢量控制可以更好地适应负载的变化,并且可以实现起动转矩和低速运行时的高转矩输出。

这种调节方法适用于对控制精度和动态性能要求较高的负载,如机床、卷烟机等。

三、磁场定向调节法磁场定向调节法是在矢量控制的基础上发展起来的一种高级调节方法。

它通过对电机的转子磁化电流和轴向磁化电流进行控制,实现对电机磁场的定向,从而实现对电机的转矩和转速的精确控制。

磁场定向调节法具有更高的动态性能和控制精度,能够在较宽的速度范围内提供稳定的输出转矩。

这种调节方法适用于对控制精度要求极高的负载,如电梯、印刷机等。

四、PID闭环控制调节法PID闭环控制调节法是一种通过测量电机速度和设定速度之间的差异,并根据差异大小自动调整输出频率的方法。

PID控制器根据系统反馈信号和设定值之间的偏差,即误差进行计算,通过比例、积分和微分三种方式进行控制,从而实现对电机转速的精确控制。

这种调节方法适用于对转速控制要求较高的负载,如精密机械加工设备等。

综上所述,变频器频率调节方法有电压/频率调节法、矢量控制调节法、磁场定向调节法和PID闭环控制调节法等。

变频器是如何改变频率和电压控制电机的?

变频器是如何改变频率和电压控制电机的?

变频器是如何改变频率和电压控制电机的?如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。

因此变频器在改变频率的同时必须要同时改变电压。

输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。

工频电源:由电网提供的动力电源(商用电源)起动电流:当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。

工频直接起动会产生一个大的起动起动电流。

而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。

通常,电机产生的转矩要随频率的减小(速度降低)而减小。

减小的实际数据在有的变频器手册中会给出说明。

通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。

1.当变频器调速到大于50Hz频率时,电机的输出转矩将降低通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。

因此在额定频率之下的调速称为恒转矩调速.(T=Te,P<=Pe)变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。

当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。

举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。

因此在额定频率之上的调速称为恒功率调速.(P=Ue*Ie)2.变频器50Hz以上的应用情况大家知道,对一个特定的电机来说,其额定电压和额定电流是不变的。

如变频器和电机额定值都是:15kW/380V/30A,电机可以工作在50Hz以上。

当转速为50Hz时,变频器的输出电压为380V,电流为30A.这时如果增大输出频率到60Hz,变频器的最大输出电压电流还只能为380V/30A.很显然输出功率不变.所以我们称之为恒功率调速.这时的转矩情况怎样呢?因为P=wT(w:角速度,T:转矩).因为P不变,w增加了,所以转矩会相应减小。

变频器矢量控制

变频器矢量控制

变频器矢量控制在工业自动化领域,变频器是一种重要的设备,广泛应用于电机控制和能源节约等方面。

其中,矢量控制是变频器的一种重要控制方式,它通过精确的电机控制实现了更高效、更稳定的运行。

一、矢量控制的原理和特点矢量控制是一种基于电流的控制方式,它通过分析电机电流的大小和方向来实现对电机的控制。

与传统的频率控制相比,矢量控制具有以下几个特点:1.高精度的转矩控制:矢量控制能够精确地控制电机的转矩输出,无论在低速或高速运行时都能提供较为准确的转矩响应。

这对于需要精确控制转矩的应用场景非常重要。

2.宽速度范围的控制:矢量控制可以实现宽速度范围的无级调速。

无论是低速运行还是高速运行,都可以得到较为稳定的输出。

这对于大部分工业应用来说都是非常关键的。

3.良好的动态性能:矢量控制具有快速的动态响应特点,能够在瞬态变化时快速调整电机输出。

这使得在工业生产中的速度要求较高的应用中,矢量控制展现出了很好的优势。

4.较高的效率和能耗节约:矢量控制通过对电机的精确控制,可以使电机运行在最佳工作点上,从而提高电机的效率,降低能耗。

在能耗节约方面,矢量控制也具有很大的潜力。

二、矢量控制的实现方法矢量控制的实现首先需要获取电机的转速和转矩反馈,以及电机的电流反馈。

然后,将这些反馈信号输入到控制器中,通过控制器对电机的电流大小和方向进行调节。

具体的实现方法有以下几种:1.直接转矩控制(DTC):直接转矩控制是一种基于电机转矩和电流的控制方法,它通过直接控制电机的转矩和磁场实现对电机的控制。

这种方法具有快速动态响应和精确控制的特点,但在低速和零速运行时存在一定的困难。

2.间接转矩控制(FOC):间接转矩控制是一种基于电机磁链和电流的控制方法,它通过控制电机的磁链大小和方向来实现对电机的转矩控制。

这种方法相对于直接转矩控制在低速和零速运行时更为稳定,但对控制器的要求更高。

3.空间矢量调制(SVM):空间矢量调制是一种通过改变电压波形的方式来控制电机的方法。

变频器的四种控制方式详解

变频器的四种控制方式详解

变频器的四种控制方式详解一、V/f恒定控制:V/f控制是在改变电动机电源频率的同时改变电动机电源的电压,使电动机磁通保持一定,在较宽的调速范围内,电动机的效率,功率因数不下降。

因为是控制电压(Voltage)与频率(Frequency)之比,称为V/f控制。

恒定V/f控制存在的主要问题是低速性能较差,转速极低时,电磁转矩无法克服较大的静摩擦力,不能恰当的调整电动机的转矩补偿和适应负载转矩的变化; 其次是无法准确的控制电动机的实际转速。

由于恒V/f变频器是转速开环控制,由异步电动机的机械特性图可知,设定值为定子频率也就是理想空载转速,而电动机的实际转速由转差率所决定,所以V/f恒定控制方式存在的稳定误差不能控制,故无法准确控制电动机的实际转速。

二、转差频率控制:转差频率是施加于电动机的交流电源频率与电动机速度的差频率。

根据异步电动机稳定数学模型可知,当频率一定时,异步电动机的电磁转矩正比于转差率,机械特性为直线。

转差频率控制就是通过控制转差频率来控制转矩和电流。

转差频率控制需要检出电动机的转速,构成速度闭环,速度调节器的输出为转差频率,然后以电动机速度与转差频率之和作为变频器的给定频率。

与V/f控制相比,其加减速特性和限制过电流的能力得到提高。

另外,它有速度调节器,利用速度反馈构成闭环控制,速度的静态误差小。

然而要达到自动控制系统稳态控制,还达不到良好的动态性能。

三、矢量控制矢量控制,也称磁场定向控制它是70年代初由西德F.Blasschke等人首先提出,以直流电机和交流电机比较的方法阐述了这一原理。

由此开创了交流电动机和等效直流电动机的先河。

矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子交流电流Ia、Ib、Ic。

通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1、Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流; It1相当于直流电动机的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换实现对异步电动机的控制。

变频器标量和矢量的概念

变频器标量和矢量的概念

变频器标量和矢量的概念变频器是一种电力调节设备,主要用于改变交流电源的频率和电压。

在变频器中,常常涉及到两个术语,即标量和矢量控制。

首先,标量控制是较为简单的变频器控制方式。

标量控制是指变频器仅通过改变电源的频率来控制电机的转速,而忽略电机的转速与转矩之间的关系。

简单来说,标量控制只关注电机的转速,忽略了电机的负载情况。

在标量控制下,电机的输出转矩受电源电压的影响,当电机承受较大负载时,输出转矩可能不足,导致电机无法正常工作或无法达到预期转速。

因此,标量控制适用于对负载要求不高的场合,例如风机、水泵等。

与之相对应的是矢量控制。

矢量控制是一种更先进、更精确的变频器控制方式。

矢量控制不仅可以通过改变电源的频率来控制电机的转速,还可以通过改变电源的电压来控制电机的转矩,实现转速和转矩的独立控制。

在矢量控制下,变频器会通过传感器来实时检测电机的转速和转矩,根据负载情况调节电源的电压和频率,以确保电机输出的转速和转矩符合要求。

矢量控制可以实现负载的精确控制,提高电机的响应速度和控制精度,适用于对负载要求较高的场合,例如机床、卷绕机等。

与标量控制相比,矢量控制具有以下优势:1. 转速和转矩的独立控制:矢量控制可以实现对电机转速和转矩的独立控制,可以根据不同的负载情况来调节输出转矩,确保电机的运行稳定性和可靠性。

2. 响应速度快:矢量控制采用闭环控制,可以实时监测电机的转速和转矩,通过调节电源的电压和频率来实现快速响应,提高电机的加速和减速性能。

3. 控制精度高:矢量控制采用了先进的控制算法,能够对电机的转速和转矩进行精确控制,使得电机的运行更加平稳,提高产品的生产质量。

4. 自适应能力强:矢量控制可以根据电机的负载情况自动调整电源的电压和频率,具有较强的自适应能力,适应不同负载的变化,提高电机的工作效率。

综上所述,标量和矢量控制是变频器两种不同的控制方式。

标量控制只关注电机的转速,适用于对负载要求不高的场合;而矢量控制可以实现电机转速和转矩的独立控制,具有响应速度快、控制精度高等优势,适用于对负载要求较高的场合。

变频器的运行参数

变频器的运行参数

变频器的运行参数变频器是一种用于控制电动机转速的设备。

它通常通过调整电源频率和电压来控制电动机的运行参数。

运行参数是指影响电动机运行性能的各种参数。

以下是关于变频器运行参数的详细解释。

1.输入电压和频率:输入电压和频率是变频器的基本参数之一、通常,变频器可以适应不同的电源电压和频率。

输入电压一般有220V、380V等,而输入频率包括50Hz和60Hz两种。

变频器会将输入电源的电压和频率转换为适合电动机运行的电压和频率。

2.输出电压和频率:输出电压和频率是变频器控制电动机的关键参数。

通过调整输出电压和频率,可以控制电动机的转速和转矩。

输出电压一般为电源电压的一部分,在变频器的输出端通过PWM(脉宽调制)技术产生。

输出频率可以在一定范围内进行调节,常用范围为0-400Hz。

3.输出功率:输出功率是变频器的另一个重要参数。

它表示变频器可以控制的电动机最大功率。

常见的输出功率有0.4kW、1.5kW、5.5kW等,可以根据应用的需求选择适当的功率等级。

4.控制方式:变频器的控制方式可以是V/F控制(电压/频率控制)、矢量控制等。

V/F控制是最简单的控制方式,通过调整输出电压和频率的比例来控制电动机的转速和转矩。

矢量控制是一种更高级的控制方式,可以精确控制电机的转速和转矩,适用于对转速和转矩要求较高的应用。

5.加速时间和减速时间:加速时间和减速时间是指变频器从启动到达设定转速和从运行状态停止的时间。

加速时间和减速时间可以通过设定变频器的参数进行调整。

较长的加减速时间可以减小电动机启动时的冲击和负载的冲击,有利于电机和传动装置的寿命。

6.过载能力:过载能力是指变频器和电动机在短时间内可以承受的额外负载。

变频器和电动机通常具有一定的过载能力,可以应对瞬时负载的变化。

过载能力一般通过设置电流限制和过流保护来实现。

7.故障保护:变频器还通常具备各种故障保护功能,以确保电动机和变频器的安全运行。

常见的故障保护功能包括过流保护、过载保护、过热保护、短路保护等。

acs510变频器工作原理

acs510变频器工作原理

acs510变频器工作原理
ACS510变频器是一种用于控制电机转速的设备,它通过改变电源频率和电压来调节电机的转速。

其工作原理主要包括以下几个方面:
1. PWM调制,ACS510变频器采用脉宽调制(PWM)技术,通过调节开关器件的导通时间来控制输出电压的大小,从而实现对电机的精准控制。

PWM技术可以使变频器输出的电压和频率保持在一定范围内,从而实现对电机转速的精确调节。

2. 电压变频控制,ACS510变频器通过改变输入电压的大小和频率来控制电机的转速。

通过调节变频器内部的电路,可以实现对电机的启动、加速、减速和停止等操作,从而满足不同工况下的转速要求。

3. 矢量控制,ACS510变频器采用矢量控制技术,可以实现对电机转矩和转速的精确控制。

矢量控制技术可以使电机在各种工况下都能够保持稳定的性能,同时还可以提高电机的动态响应能力和效率。

4. 内部保护功能,ACS510变频器内置了多种保护功能,可以对电机和变频器本身进行全面的监测和保护。

例如过载保护、短路保护、过压保护、欠压保护等,可以有效地保护电机和变频器不受损坏。

总的来说,ACS510变频器通过PWM调制、电压变频控制、矢量控制等技术实现对电机转速的精确控制,并且具有全面的内部保护功能,能够满足各种工业场合对电机控制的需求。

变频器的控制方式及合理选用

变频器的控制方式及合理选用

变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。

其控制方式经历以下四代。

(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。

其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。

他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。

以内切多边形逼近圆的方式而进行控制的。

经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。

但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

(3)第三代以矢量控制(磁场定向法)又称VC控制。

其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。

通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。

(4)第四代以直接转矩控制,又称DTC控制。

其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。

具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。

变频器矢量控制说明介绍

变频器矢量控制说明介绍

变频器的V/F控制与矢量控制U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。

但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。

另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

因此人们又研究出矢量控制变频调速。

矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。

通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

矢量控制方法的提出具有划时代的意义。

然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

V/F控制与矢量都是恒转矩控制。

U/F相对转矩可能变化大一些。

而矢量是根据需要的转矩来调节的,相对不好控制一些。

对普通用途。

两者一样1、矢量控制方式——矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。

变频器的输出电压和频率的控制方法

变频器的输出电压和频率的控制方法

变频器的输出电压和频率的控制方法近年来,电机变频器在工业生产中的应用越来越广泛,涉及到了生产中的各个行业,而变频器的输出电压和频率的控制方法则是其中一个比较重要的问题。

在实际应用中,电机的运行状态需要通过调整变频器的输出电压和频率进行控制,而这也是变频器的主要作用之一。

本文将探讨变频器的输出电压和频率的控制方法。

一、控制方法在变频器的控制系统中,输出电压和频率是两个非常重要的参数。

因此,在控制过程中,需要采用一些特殊的方法来控制变频器的电压和频率输出。

目前,在变频器控制系统中,比较常见的方法有以下几种:1. 闭环控制法闭环控制法是指变频器会通过传感器获取电机转速信息,并将这些信息反馈到变频器控制器中。

在控制器的控制下,变频器会根据电机的转速信息来控制电压和频率的输出,以达到最佳的控制效果。

2. 开环控制法开环控制法是指变频器在控制时不需要对电机转速进行反馈,而是直接根据设定的电压和频率值进行输出。

这种控制方式比较简单,但是效果不如闭环控制法好。

3. 模糊控制法模糊控制法是指通过多个自变量和多个规则来控制输出电压和频率的控制方法。

这种方法不仅可以降低电机运行过程中的波动,还可以提高电机的控制精度。

二、控制技术除了以上的控制方法,还有一些控制技术可以用来控制变频器的输出电压和频率。

常见的控制技术包括:1. 调制控制调制控制是指在控制器中添加相应的控制电路来控制输出电压和频率的方法,这种控制技术比较常见,效果也比较好。

2. 矢量控制矢量控制是指通过矢量控制器来控制输出电压和频率的方法。

这种控制技术可以提高电机控制的精度和效率,但是同时也会增加电路的复杂度。

因此,在实际应用中,需要根据具体情况进行选择。

三、总结在电机变频器的控制系统中,输出电压和频率的控制是非常重要的。

通过采用适合的控制方法和控制技术,可以达到更好的控制效果。

在实际应用中,需要根据电机的需求和控制要求选择合适的控制方法和控制技术,并加以实施。

变频器矢量控制原理

变频器矢量控制原理

变频器矢量控制原理
变频器是一种用于调节电机转速的电子设备,它通过改变电源频率和电压来控
制电机的转速和转矩。

在工业生产中,变频器被广泛应用于各种设备和机械中,其矢量控制原理是变频器的核心技术之一。

矢量控制是一种高级的电机控制技术,它可以实现电机的高性能运行,包括精
确的转速控制、高动态响应和高效率运行。

矢量控制技术通过对电机的电流和电压进行精确控制,可以实现电机的高性能运行,同时还可以提高电机的动态响应和稳态性能。

矢量控制技术主要包括电流矢量控制和速度矢量控制两种方式。

在电流矢量控
制中,通过对电机的电流进行精确控制,可以实现电机的高性能运行,包括高转矩、高效率和高动态响应。

而在速度矢量控制中,通过对电机的转速进行精确控制,可以实现电机的精确转速控制和高性能运行。

在变频器的矢量控制中,通常采用的是速度矢量控制技术。

速度矢量控制技术
通过对电机的转速进行精确控制,可以实现电机的高性能运行,包括高转矩、高效率和高动态响应。

速度矢量控制技术主要包括电流环、速度环和位置环三个控制环节,通过这三个控制环节的精确控制,可以实现电机的高性能运行。

在实际的应用中,变频器的矢量控制技术可以应用于各种不同类型的电机,包
括感应电机、永磁同步电机和异步电机等。

通过对电机的精确控制,可以实现电机的高性能运行,提高设备的生产效率和产品质量。

总的来说,变频器的矢量控制原理是一种高级的电机控制技术,它可以实现电
机的高性能运行,包括精确的转速控制、高动态响应和高效率运行。

通过对电机的电流和电压进行精确控制,可以实现电机的高性能运行,提高设备的生产效率和产品质量。

VF控制和矢量控制的区别

VF控制和矢量控制的区别

VF掌握和矢量掌握的一些差别我是做变频器开辟的一耳目员,有过完全的针对三相异步电机和永磁同步电机变频器开辟阅历,产品也在市场上卖,学历方面,在国内正规黉舍拿到了电机工程的博士学位(无夸耀之意,只是解释在这个范畴比较熟习),陈伯实老师长教师的书根本翻烂过,也和陈老师长教师同桌吃过饭.看到评论辩论比较热闹,也来发个言,谈谈对变频器VF掌握.矢量掌握的熟习.针对异步电机,为了包管电机磁通和出力不变 ,电机转变频率时,需保持电压V和频率F的比率近似不变,所以这种方法称为恒压频比(VF)掌握.VF掌握-掌握简略,通用性强,经济性好,用于速度精度请求不十分严厉或负载变动较小的场合.从本质上讲,VF掌握现实上掌握的是三订交换电的电压大小和频率大小,然而交换电有三要素,就是除了电压大小和频率之外,还消失相位.VF掌握没有对电压的相位进行掌握,这就导致在瞬态变更进程中,例如突加负载的时刻,电机转速受冲击会变慢,但是电机供电频率也就是同步速照样保持不变,如许异步电机遇产生瞬时掉步,从而引起转矩和转速振荡,经由一段时光后在一个更大转差下保持均衡.这个瞬时进程中没有对相位进行掌握,所以恢复进程较慢,并且电机转速会随负载变更,这就是所谓VF掌握精度不高和响应较慢的原因.矢量掌握国外也叫磁场定向掌握,其本质是在三订交换电的电压大小和频率大小掌握的基本上,还加上了相位掌握,这个相位在具体操纵中表现为一个角度,简略的讲就是电机定子电流相对于转子的地位角.我们知道,电机定子三相对称交换电的分解后果是一个扭转磁铁,通电后这个扭转磁场经由过程感应在转子上生成三订交换电流,这个电流也等效成一个磁铁,如许就相当于定子磁铁拖着转子磁铁扭转了,这个是电机扭转的基起源基本理.这里有个问题,就是只有定子磁铁和转子磁铁的相对地位靠得比来,产生的力矩才最大,所以如安在电机三相定子绕组上通电获得最大转矩,现实上还和转子地位有关的.矢量掌握会经由过程实测回来的电流联合电机参数,及时盘算出转子地位,这个进程就是所谓的“磁场定向”,然后及时决议三相定子绕组上电压的相位,如许理论上可以做到同样的电流下产生的转矩最优,从而减小电机负载变更时的瞬态进程.此外,矢量掌握趁便还会依据转子地位求出转速,运用电机参数对转速进行瞬时抵偿,进一步优化了掌握机能.综上,我以为矢量掌握和VF掌握的最本质的差别就是参加了电压相位掌握上.从操纵层面上看,矢量掌握一般把电流分化成转矩电流和励磁电流,这里转矩电流和励磁电流的比例就是由转子地位角度(也就是定子电压相位)决议的,这时转矩电流和励磁电流配合产生的转矩是最佳.具体实现可以参考陈老师长教师的书和其他任何一本讲矢量掌握的书.宏不雅上看,矢量掌握和VF掌握的电压,电流,频率在电机稳固运行时相差不大,都是三相对称交换,根本上都知足压频比关系,只是在瞬态进程如突加.突减负载的情形下,矢量掌握会跟着速度的变更主动调剂所加电压.频率的大小和相位,使这个瞬时进程更快恢复均衡.至于矢量掌握里面那些坐标变换,是一种便于懂得和描写的手腕,不是本质问题.从电机理论来看,在dq同步扭转坐标系里,三相正弦交换量可以转换成两相直流量,如许可以简化运算,便于数字处理,现实上真实体系里其实不消失转矩电流和励磁电流的,这些是一种数学抽象,算完了掌握完成后最终照样要表如今现实三订交换电上.比如我们数学里的拉普拉斯变更,可以把微分方程变成代数方程简化运算,运算完了后再反变换归去是一个道理.刘志斌师长教师可能对矢量掌握懂得有误,或者可能书上没把物理本质说得很清晰.刘志斌师长教师的第一点“1.电感的电流浪后电压90度,你能掌握这个角度吗?”这句话是异常准确,电感的电流浪后电压90度,对纯电感而言这个90角度是不成能掌握的,但是不克不及推出“9.所谓对定子电流解耦,对有功电流.无功电流分离掌握是句假话,或者是蒙昧的笑话!”.对电机而言,我想这个论坛里许多人应当学过电机学,知道三相异步电机的等效电路,三相异步电机电感可以以为是不变的,但是转子的等效电阻可以算作两部分,一部分是转子本身的现实电阻r2,不斟酌温度什么的这个可以以为不变,另一个是负载等效电阻(1s)r2/s(s是转差率),这个现实上和转差有关,也就是说跟电机的同步速.负载等身分有关了,如许转子的等效电阻现实上是可变的,电机电感和电阻的比例关系其实不是固定的,那么经由过程转变同步速和响应的电压.相位,对有功电流.无功电流的分离掌握是可行的,而矢量掌握就是供给了这么一种门路.这里我要澄清一下,“对有功电流.无功电流的分离掌握”,其实不是说你能把有功电流.无功电流掌握到随意率性值,想怎么掌握就怎么掌握,对异步电机而言,无功电流永久是感性,这是道理决议的,你不成能把它掌握成容性无功,并且有功电流.无功电流的组合产生的转矩必须和负载均衡,这个是束缚前提.矢量掌握的目标,现实上是“经由过程对有功电流.无功电流的分离掌握实现优化组合”,达到瞬时转矩最优,动态进程最短的目标.而VF掌握少了这么一个对电流瞬时掌握的进程,是粗线条的掌握,理论上就要差些.比如你让一个小弟干活,VF掌握就是“小弟,你把这个器械做出来”,给出一个请求就行了;矢量掌握就是你不只是告知小弟把这个器械做出来,并且还要告知他,第一步怎么搞,第二步怎么搞,细节怎么处理,如许显然后者得到的成果要精致些. 上面是一些理论剖析,从现实来看,VF掌握是今朝变频器主流掌握办法,辅以恰当的抵偿办法可以进步其机能.今朝进步VF掌握机能的重要办法有:低频力矩抵偿.逝世区抵偿.动态磁通掌握.跟踪自启动等,可以实用于80%以上的工况.在某些对动态请求很高的场合,则须要运用矢量掌握,如伺服.印刷等.矢量掌握是依据测量到的电流.电压和磁通等数据,联合电机内部的电阻电感等参数盘算出当前的转速和地位,并进行须要的修改,从而在不合频率下运行时,得到更好的掌握模式.因为盘算量较大,且须要知道电机内部参数,所需数据中的相当部分,一般用户是很可贵到的.这给矢量掌握的运用带来了艰苦.对此,变频器都必须设置装备摆设主动检测电念头参数的功效.总体而言,矢量掌握可以得到更好的机能,低频转矩大,动态响应好 ,但运用比较不便利,假如参数不合适可能还不克不及稳固运行,运用规模受到一些限制.现实中推举用户能用VF 掌握就尽量不必矢量掌握.事实上大多半情形增长了转矩晋升.逝世区抵偿.滑差抵偿的高机能的VF能知足绝大部分请求,并且稳固性更好.今朝矢量掌握的重要问题是实用性不如VF强,VF根本上什么异步电机都能上,但是矢量掌握在专用电机能达到的最高程度让VF瞠乎其后.我到西门子不雅赏的时刻,他们对电机的掌握到了令人震动的程度,那就是用三台电机分离驱动一台时钟的秒针.分针和时针!想想是什么概念:12小时转一圈啊,这种超低速掌握是我想都无法想的.这就是技巧差距!这绝对代表了世界上电机掌握的最高程度,而基起源基本理就是矢量掌握.至于ABB的直接转矩掌握,世界上独此一家.诚实说,我具体测试过波形,是在无法懂得是若何实现的,特殊是细节部分,表现出的波形跟教科书上的完全不一样.只能说本身目光如豆.。

VF控制和矢量控制的区别

VF控制和矢量控制的区别

V F控制和矢量控制的区别V/F控制和矢量控制的区别2010年08月16日1、变频器变频变压第一个遇到的问题是如何生成正弦波交流电2、如果生成正弦波交流电那么电机气隙就是理想圆形旋转磁场轨迹3、用PWM调宽调制波代替正弦波尽管具体操作方式不同但本质都是一样的4、为了保持定子气隙磁场的稳定采取U/F为定值的输出方式5、这样变频器首先实现了输出电压、频率的自动控制即同步转速n1的闭环控制6、由于电动机在其稳定运行区依靠转子转速n2的微小变化控制电磁转矩的大小跟随负载变化具有机械的硬特性可认为转子转速n2基本不变为恒速电机7、这种只控制输出频率、控制同步转速n1即同步转速n1的闭环控制依靠异步电机的机械硬特性实现异步电机转子的异步控制已经能够满足众多负载的调速要求1、但是与直流电机转子转速的闭环控制相比机械特性还不很硬即异步电机变频控制还不是转子转速n2的精确闭环控制2、如何实现变频器的转子转速n2的精确闭环控制首先要解决的是转子电磁转矩的控制、变频器的能力是变频、变压即控制同步转速n1 4、而异步转子电磁转矩的大小与电压U、转差及转差率S有直接关系5、而同步转速n1与转差、转差率S有关6、如果检测转子转速n2的变化给定转子转速n2比较控制同步转速n1就实现了转子电磁转矩的跟随负载大小的控制从而实现转子转速n2的闭环控制达到直流电机的硬特性7、这就是所谓矢量控制的物理本质8、如果检测转子转速n2的变化给定转子转速n2比较控制U也就实现了转子电磁转矩的跟随负载大小的控制从而实现转子转速n2的闭环控制达到直流电机的硬特性9、这就是所谓直接转矩控制的物理本质1、实际上U/F控制的本质就是n1的闭环控制转矩控制的本质就是n2的闭环控制2、不管那种控制都是通过PWM调宽调制的包络实现的只是闭环控制参数的不同而电机的机械特性硬度不同适应不同负载的需要而已变频器控制方式低压通用变频输出电压为380650V输出功率为0.75400kW工作频率为0400Hz它的主电路都采用交直交电路。

hlp-c104变频器说明书

hlp-c104变频器说明书

hlp-c104变频器说明书一、概述HLP-C104变频器是一款高性能、高可靠性的交流变频调速设备,广泛应用于各类工业生产领域。

本文将详细介绍该款变频器的性能特点、结构原理、安装调试以及操作维护等方面的内容,以帮助用户更好地了解和运用这款产品。

二、主要性能参数1.电源电压:380V~480V,50/60Hz2.输出电流:0.5A~600A3.输出电压:0~600V4.调速范围:1:1005.控制方式:电压频率控制、矢量控制等6.保护功能:过压、欠压、过流、短路、过热等三、结构与原理HLP-C104变频器采用模块化设计,主要由电源模块、主机模块、输出模块、显示模块等组成。

其工作原理是通过调整电源电压和频率,实现电机转速的无极调速,以满足不同工况下的生产需求。

四、安装与调试1.安装前,请确保电源电压、频率与变频器参数相匹配。

2.遵循安装图纸进行设备布线,注意电缆长度及接线牢固度。

3.连接电机电缆,注意接线正确无误。

4.开启电源,进行静态调试,检查各项参数设置是否合理。

5.进行动态调试,观察电机启动、停止及调速是否正常。

五、操作与维护1.操作前,请仔细阅读说明书,熟悉操作面板及功能键。

2.定期检查电缆、接线盒等连接部位,确保牢固无松动。

3.保持变频器周围环境清洁,避免进水、潮湿。

4.定期清理滤网,防止灰尘堵塞。

5.切勿在变频器运行过程中覆盖或遮挡显示面板,以免影响观察。

六、故障处理1.故障发生后,请立即切断电源,避免人身伤害和设备损坏。

2.根据故障现象,参照说明书进行排查和处理。

3.如无法自行解决问题,请联系售后服务人员。

七、注意事项1.请勿在潮湿、易爆、腐蚀性环境中使用变频器。

2.请勿将变频器暴露在阳光直射、雨淋、雪冻等恶劣条件下。

3.请勿超负荷使用,以免损坏设备。

4.请定期检查电源线路,确保安全稳定供电。

八、售后服务我公司将为您提供全方位的售后服务,包括产品维修、技术支持等。

如有任何疑问,请随时联系我们。

变频器矢量控制原理

变频器矢量控制原理

变频器矢量控制原理变频器是一种能够改变交流电机工作频率的电力调节装置,它通过改变电机的供电频率和电压,实现对电机转速的调节。

而矢量控制技术则是变频器控制电机的一种高级控制方式,它可以实现对电机的精确控制,提高电机的动态性能和静态性能。

在本文中,我们将详细介绍变频器矢量控制的原理及其应用。

首先,我们来介绍变频器的基本原理。

变频器是由整流器、滤波器、逆变器和控制电路组成的。

整流器将交流电源转换为直流电源,滤波器用于平滑直流电压波形,逆变器将直流电压转换为交流电压,控制电路则用于控制逆变器的输出频率和电压。

通过改变逆变器的输出频率和电压,可以实现对电机转速的调节。

在矢量控制技术中,我们需要对电机的转子位置和转速进行精确的测量和控制。

通常采用编码器或者转子位置传感器来获取电机的转子位置信息,通过这些信息可以实现对电机的精确控制。

在矢量控制技术中,我们需要对电机的电流和电压进行精确的控制,以实现对电机的精确控制。

矢量控制技术分为直接矢量控制和间接矢量控制两种方式。

直接矢量控制是指直接控制电机的电流和电压,实现对电机的精确控制;间接矢量控制是指通过控制电机的磁通和转矩,间接实现对电机的精确控制。

无论是直接矢量控制还是间接矢量控制,都可以实现对电机的精确控制,提高电机的动态性能和静态性能。

在实际应用中,矢量控制技术可以广泛应用于各种需要精确控制的场合,如电梯、风机、水泵等。

通过矢量控制技术,可以实现对电机的精确控制,提高设备的性能和效率,降低能耗和维护成本。

因此,矢量控制技术在工业自动化领域具有广阔的应用前景。

总结而言,变频器矢量控制是一种先进的电机控制技术,通过对电机的精确控制,可以提高电机的动态性能和静态性能,广泛应用于工业自动化领域。

随着科技的不断发展,矢量控制技术将会得到进一步的完善和应用,为工业自动化带来更多的便利和效益。

变频器的调速方法

变频器的调速方法

变频器的调速方法变频器是一种能够改变电机转速的设备,它可以通过调节电机的电压和频率来实现不同转速的控制。

在工业生产中,变频器的广泛应用使得电机的运行更加灵活和高效。

本文将介绍几种常见的变频器调速方法。

一、电压/频率控制调速方法电压/频率控制是最常见的变频器调速方法之一、根据电动机的特性,电机的转速与电压和频率成正比。

通过控制变频器的输出电压和频率,可以实现对电机转速的精确控制。

在调节电压/频率变化的过程中,需要考虑电机的负载、电磁兼容性等因素。

二、矢量控制调速方法矢量控制是一种高性能的变频器调速方法。

它采用了感应电机的电流/磁场定向控制原理,通过测量电机的转子位置和电流反馈信号,计算出电机的电磁矢量,进而控制电机的转速。

矢量控制具有较高的响应速度和较好的转矩控制能力,适用于对转速和转矩精度要求较高的应用场景。

三、闭环控制调速方法闭环控制调速是一种采用反馈控制方式的变频器调速方法。

它通过测量电机输出端的转速信号,与设定的转速进行比较,计算出误差信号,然后通过控制变频器的输出进行补偿,使得电机的转速能够稳定在设定值附近。

闭环控制调速方法能够更精确地控制电机的转速,适用于对转速精度要求较高的应用场景。

四、多点控制调速方法多点控制调速是一种能够实现多个转速设定的变频器调速方法。

通过对变频器进行编程设置,可以实现电机在不同工况下的转速切换。

这种调速方法适用于需要频繁改变转速的应用场景,能够优化电机的运行效率和能耗。

五、过热保护调速方法过热保护调速是一种通过监测电机的温度信号以保护电机的调速方法。

在电机运行过程中,如果温度超过设定的阈值,则会触发保护措施,如降低电机的转速或直接停机。

这种调速方法能够有效保护电机,延长其使用寿命,并防止因过热而导致的事故发生。

综上所述,变频器具有多种调速方法,可以根据不同的应用场景选取合适的调速方式。

通过合理配置和运用变频器的调速功能,可以提高电机的运行效率、降低能耗,实现对电机转速的精确控制,进而提高生产效率和质量。

变频器VF控制和矢量控制

变频器VF控制和矢量控制

个人收集整理-ZQ
常规控制,电机地电压降会随着电机速度地降低而相对增加,这就导致由于励磁不足而使电机不能获得足够地转矩(特别是在低频率时).也就是说常规控制变频器在低频率时无法满足电机额定转矩地输出.另外,在控制中,用户根据负载情况预先设定一种曲线,变频器在工作时就根据输出频率地变化,按照曲线特性调整其输出电压,也就是说控制是使变频器按照事先安排好地补偿程度工作,不能随负载地变化而改变.但是在以节能为目地和对速度控制精度要求不高地场合控制变频器以其优越地性价比而得到广泛地应用.
矢量控制变频器地基本原理是,通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机地励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩地目地.具体是将异步电动机地定子电流矢量分解为产生磁场地电流分量(励磁电流) 和产生转矩地电流分量(转矩电流) 分别加以控制,并同时控制两分量间地幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式.由于矢量控制可以使得变频器根据频率和负载情况实时地改变输出频率和电压,因此其动态性能相对完善.可以对转矩进行精确控制;系统响应快;调速范围广;加减速性能好等特点.在对转矩控制要求高地场合,以其优越地控制性能受到用户地赞赏.文档收集自网络,仅用于个人学习
现在许多新型地通用型变频器也具备了矢量控制功能,只是在参数设定时要求输入完整地电机参数.因为矢量控制是以电机地参数为依据,因此完整地电机参数就显得尤其重要,以便变频器能有效地识别电机,很好地对电机进行控制.文档收集自网络,仅用于个人学习
1 / 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器的V/F控制与矢量控制U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。

但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。

另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

因此人们又研究出矢量控制变频调速。

矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。

通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

矢量控制方法的提出具有划时代的意义。

然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

V/F控制与矢量都是恒转矩控制。

U/F相对转矩可能变化大一些。

而矢量是根据需要的转矩来调节的,相对不好控制一些。

对普通用途。

两者一样1、矢量控制方式——矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。

矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。

在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。

具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

2、V/F控制方式——V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。

例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。

变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

3、V/F这种控制方式多用于风机、泵类节能型变频器。

V与f的比例关系是考虑了电机特性而预先决定的。

4、矢量控制的应用场合一般是要求比较高的传动场合。

比如要求的恒转矩调速范围指标高,恒功率调速的范围比较宽。

而且,矢量控制不同于V/F控制,它在低速时可以输出100%的力矩,而V/F控制在低速时因力矩不够而无法工作。

5、V/F控制特点——以控制速度为目的,控制特点控制精度不高,低速时,力矩明显小,常用于变频器一拖多场合下。

矢量控制——它有速度闭环,即从负载端测出实际的速度,并与给定值进行比较,能够得到更高精度的速度控制,并且在低速时,也有最高的力矩输出。

二、矢量控制系统原理思路:矢量调速的目标——直流调速;努力实现励磁电流与电枢电流的独立控制;励磁电流与电枢电流互差90度角。

原理:矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

比较:基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。

基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。

早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。

三、矢量控制的实现矢量控制基本理念旋转地只留绕组磁场无论是在绕组的结构上,还是在控制的方式上,都和直流电动机最相似。

设想,有两个相互垂直的支流绕组同处于一个旋转体中,通入的是直流电流,它们都由变频器给定信号分解而来的。

经过直交变换将两个直流信号变为两相交流信号;在经二相、三相变换得到三相交流控制信号;结论只要控制直流信号中的任意一个,就可以控制三相交流控制信号,也就控制了交流变频器的交流输出。

通过上述变换,将交流电机控制近似为直流电机控制矢量控制的给定:1、在矢量控制的功能中,选择“用”或“不用”。

2、在选择矢量控制后,还需要输入电动机的容量、极数、额定电流、额定电压、额定功率等。

矢量控制是一电动机的基本运行数据为依据,因此,电动机的运行数据就显得很重要,如果使用的电动机符合变频器的要求,且变频器容量和电动机容量相吻合,变频器就自动搜寻电动机的参数,否则就需要重新测定。

很多类型的变频器为了方便测量电动机的参数都设计安排了电动机参数的自动测定功能。

通过该功能可准确测定电动机的参数,且提供给变频器的记忆单元,以便在矢量控制中使用。

矢量控制的要求:1、一台变频器只能带一台电动机;2、电动机的极数要按说明书的要求,一般以4极为佳;3、电动机容量与变频器的容量相当,最多差一个等级;4、变频器与电动机件的连线不能过长,一般应在30m以内,如果超过30m,则需要在连接好电缆后,进行离线自动调整,以重新测定电动机的相关参数。

矢量控制的优点:1、动态的高速响应;2、低频转矩增大;3、控制灵活;矢量控制系统的应用范围:1、要求高速运转的工作机械;2、适应恶劣的工作环境;3、高精度的电力拖动;4、四象限运转;上面各位讲的都是矢量控制的原理和优点,我想对于初学的也许不能理解较深,简单一点讲,矢量控制就是,电机运行于一定速度时,如负载增减,变频器可以很快调整电机的输出力矩而保持速度的恒定,即动态的高速响应,高精度的电力拖动,而V/F控制时如负载增减时速度会有较大变化后才能运行于原设定速度,对于启动过程为快速响应设定频率输出,会有较高的启动转矩。

目前国内使用变频器的主要目的就是节能和调速,所以针对不同的使用要求,也就出现了控制功能不同的变频器:常规V/F控制变频器和矢量控制变频器。

常规V/F控制,电机的电压降会随着电机速度的降低而相对增加,这就导致由于励磁不足而使电机不能获得足够的转矩(特别是在低频率时)。

也就是说常规V/F控制变频器在低频率时无法满足电机额定转矩的输出。

另外,在V/F控制中,用户根据负载情况预先设定一种u/f曲线,变频器在工作时就根据输出频率的变化,按照曲线特性调整其输出电压,也就是说V/F控制是使变频器按照事先安排好的补偿程度工作,不能随负载的变化而改变。

但是在以节能为目的和对速度控制精度要求不高的场合V/F控制变频器以其优越的性价比而得到广泛的应用。

矢量控制变频器的基本原理是,通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

由于矢量控制可以使得变频器根据频率和负载情况实时的改变输出频率和电压,因此其动态性能相对完善。

可以对转矩进行精确控制;系统响应快;调速范围广;加减速性能好等特点。

在对转矩控制要求高的场合,以其优越的控制性能受到用户的赞赏。

现在许多新型的通用型变频器也具备了矢量控制功能,只是在参数设定时要求输入完整的电机参数。

因为矢量控制是以电机的参数为依据,因此完整的电机参数就显得尤其重要,以便变频器能有效的识别电机,很好的对电机进行控制矢量控制就是矢量控制,V/F 控制就是V/F控制,二者有本质的区别,控制性能差异很大”1、矢量控制、V/F 控制,二者都是电机变频调速时,对电机磁场的控制;2、V/F 控制:1)是一种粗略的简单的控制方式,即V/F=定值控制模式;2)它忽略了定子绕组电阻压降IoR对磁场的影响,V/F=定值控制模式,虽然阻止了频率下降、磁场增大的主要问题,但是磁场不是恒定的,而是随着频率在下降,造成低频时磁场弱、电机转矩不足;3、矢量控制:1)矢量控制,不忽略定子绕组电阻压降IoR对磁场的影响,采用(V-IoR)/F=定值控制模式,或者是励磁电流Io=定值控制模式;2)它不忽略定子绕组电阻压降IoR对磁场的影响,(V-IoR)/F=控制模式,或者是励磁电流Io=定值控制模式,磁场是恒定的,而不是随着频率在下降,低频时不存在磁场弱、电机转矩不足的问题;3)如果磁场能控制在电机设计参数上,变频调速时的运行参数与工频运行参数的关系明确,可精确计算转子转速,实现无速度传感器的速度闭环控制;4、矢量控制、V/F 控制,由于都是磁场控制,这两种控制方式在接近工频运行时,磁场趋于一致,性能趋于一致,所以这两种控制的差别主要在低频端;“…当负载增大时,转子转速下降时,转差增大,转子感应电势、电流增大,转矩增大,‟补充一下,电流完全是开环失控状态,接下来的后果就是IGBT--咚--的一声巨响,整台变频器灯灭灰飞(极端说法)。

”1、‘当负载增大时,转子转速下降时,转差增大,转子感应电势、电流增大,转矩增大’是异步电机的工作转矩原理,有了这一条,异步电机才有可能在工频运行了几个世纪!2、如果负载严重过载,异步电机可能进入堵转区,如不及时停电停车,就会烧电机;3、变频人都懂这个道理,所以变频调速控制电路,设有电流失速保护电路;4、谁也没有把‘当负载增大时,转子转速下降时,转差增大,转子感应电势、电流增大,转矩增大’与失速保护看成矛盾的,而看成是相辅相成的!常规V/F控制,电机的电压降会随着电机速度的降低而相对增加,这就导致由于励磁不足而使电机不能获得足够的转矩(特别是在低频率时)。

相关文档
最新文档