变频器的电压频率控制 与矢量控制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器的V/F控制与矢量控制
U/f=C的正弦脉宽调制(SPWM)控制方式
其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。
矢量控制(VC)方式
矢量控制变频调速的做法是将异步电动机在三相坐标系下的定
子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样
1、矢量控制方式——
矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。
矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。
在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。
具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
2、V/F控制方式——
V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。
变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。
3、V/F这种控制方式多用于风机、泵类节能型变频器。V与f的比例关系是考虑了电机特性而预先决定的。
4、矢量控制的应用场合一般是要求比较高的传动场合。比如要求的恒转矩调速范围指标高,恒功率调速的范围比较宽。
而且,矢量控制不同于V/F控制,它在低速时可以输出100%的力矩,而V/F控制在低速时因力矩不够而无法工作。
5、V/F控制特点——以控制速度为目的,控制特点控制精度不高,低速时,力矩明显小,常用于变频器一拖多场合下。
矢量控制——它有速度闭环,即从负载端测出实际的速度,并与给定值进行比较,能够得到更高精度的速度控制,并且在低速时,也有最高的力矩输出。
二、矢量控制系统原理
思路:矢量调速的目标——直流调速;努力实现励磁电流与电枢电流的独立控制;励磁电流与电枢电流互差90度角。
原理:矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩
的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
比较:基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。
三、矢量控制的实现
矢量控制基本理念旋转地只留绕组磁场无论是在绕组的结构上,还是在控制的方式上,都和直流电动机最相似。
设想,有两个相互垂直的支流绕组同处于一个旋转体中,通入的是直流电流,它们都由变频器给定信号分解而来的。
经过直交变换将两个直流信号变为两相交流信号;在经二相、三相变换得到三相交流控制信号;
结论只要控制直流信号中的任意一个,就可以控制三相交流控制信号,也就控制了交流变频器的交流输出。
通过上述变换,将交流电机控制近似为直流电机控制
矢量控制的给定:
1、在矢量控制的功能中,选择“用”或“不用”。
2、在选择矢量控制后,还需要输入电动机的容量、极数、额定电流、额定电压、额定功率等。
矢量控制是一电动机的基本运行数据为依据,因此,电动机的运行数据就显得很重要,如果使用的电动机符合变频器的要求,且变频器容量和电动机容量相吻合,变频器就自动搜寻电动机的参数,否则就需要重新测定。很多类型的变频器为了方便测量电动机的参数都设计安排了电动机参数的自动测定功能。通过该功能可准确测定电动机的参数,且提供给变频器的记忆单元,以便在矢量控制中使用。
矢量控制的要求:
1、一台变频器只能带一台电动机;
2、电动机的极数要按说明书的要求,一般以4极为佳;
3、电动机容量与变频器的容量相当,最多差一个等级;
4、变频器与电动机件的连线不能过长,一般应在30m以内,如果超过30m,则需要在连接好电缆后,进行离线自动调整,以重新测定电动机的相关参数。
矢量控制的优点:
1、动态的高速响应;
2、低频转矩增大;
3、控制灵活;
矢量控制系统的应用范围:
1、要求高速运转的工作机械;
2、适应恶劣的工作环境;
3、高精度的电力拖动;
4、四象限运转;
上面各位讲的都是矢量控制的原理和优点,我想对于初学的也许不能理解较深,简单一点讲,矢量控制就是,电机运行于一定速度时,如