硬质合金刀具基础知识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硬质合金刀具材料基础知识
浏览:
文章来源:中国刀具信息网添加人:阿刀添加时间:2011-01-31
硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。
硬度与韧性
WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。
制粉工艺
碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。
在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在WC-Co硬质合金中添加钌,可在不降低其硬度的前提下显著提高其韧性。增加结合剂的含量也可以提高硬质合金的韧性,但却会降低其硬度。
减小碳化钨颗粒的尺寸可以提高材料的硬度,但在烧结工艺中,碳化钨的粒度必须保持不变。烧结时,碳化钨颗粒通过溶解再析出的过程结合和长大。在实际烧结过程中,为了形成
一种完全密实的材料,金属结合剂要变成液态(称为液相烧结)。通过添加其他过渡金属碳化物,包括碳化钒(VC)、碳化铬(Cr3C2)、碳化钛(TiC)、碳化钽(TaC)和碳化铌(NbC),可以控制碳化钨颗粒的长大速度。这些金属碳化物通常是在将碳化钨粉与金属结合剂一起进行混合碾磨时加入,尽管碳化钒和碳化铬也可以在对碳化钨粉进行渗碳时形成。
利用回收的废旧硬质合金材料也可以生产牌号碳化钨粉料。废旧硬质合金的回收和再利用在硬质合金行业已有很长历史,是该行业整个经济链的一个重要组成部分,它有助于降低材料成本、节约自然资源和避免对废弃材料进行无害化处置。废旧硬质合金一般可通过APT (仲钨酸铵)工艺、锌回收工艺或通过粉碎后进行再利用。这些“再生”碳化钨粉通常具有更好的、可预测的致密性,因为其表面积比直接通过钨渗碳工艺制成的碳化钨粉更小。
碳化钨粉与金属结合剂混合碾磨的加工条件也是至关重要的工艺参数。两种最常用的碾磨技术是球磨和超微碾磨。这两种工艺都能使碾磨的粉料均匀混合,并能减小颗粒尺寸。为使以后压制的工件具有足够的强度,能保持工件形状,并使操作者或机械手能拿起工件进行操作,在碾磨时通常还需要添加一种有机结合剂。这种结合剂的化学成分可以影响压制成工件的密度和强度。为了有利于操作,最好添加高强度的结合剂,但这样会导致压制密度较低,并可能会产生硬块,造成在最后成品中存在缺陷。
完成碾磨后,通常会对粉料进行喷雾干燥,产生由有机结合剂凝聚在一起的自由流动团块。通过调整有机结合剂的成分,可以根据需要定制这些团块的流动性和装料密度。通过筛选出较粗或较细的颗粒,还可以进一步定制团块的粒度分布,以确保其在装入模腔时具有良好的流动性。
工件制造
硬质合金工件可采用多种工艺方法成型。根据工件的尺寸、形状复杂水平和生产批量,大部分切削刀片都是采用顶压和底压式刚性模具模压成型。在每一次压制时,为了保持工件重量和尺寸的一致性,必须保证流入模腔的粉料量(质量和体积)都完全相同。粉料的流动性主要通过团块的尺寸分布和有机结合剂的特性来控制。通过在装入模腔的粉料上施加10-80ksi(千磅/平方英尺)的成型压力,就可以形成模压工件(或称“坯件”)。
即便在极高的成型压力下,坚硬的碳化钨颗粒也不会变形或破碎,而有机结合剂却被压入碳化钨颗粒之间的缝隙之中,从而起到固定颗粒位置的作用。压力越高,碳化钨颗粒的结合就越紧密,工件的压制密度就越大。牌号硬质合金粉料的模压特性可能各不相同,取决于金属结合剂的含量、碳化钨颗粒的尺寸和形状、形成团块的程度,以及有机结合剂的成分和添加量。为了提供有关牌号硬质合金粉料压制特性的量化信息,通常由粉料生产商来设计构建模压密度与成型压力的对应关系。这种信息可确保提供的粉料与刀具制造商的模压工艺协调一致。
大尺寸硬质合金工件或具有高长宽比的硬质合金工件(如立铣刀和钻头的刀杆)通常采用在一个柔性料袋中均衡压制牌号硬质合金粉料来制造。虽然均衡压制法的生产周期比模压法要长一些,但刀具的制造成本较低,因此该方法更适合小批量生产。
这种工艺方法是将粉料装入料袋中,并将袋口密封,然后将装满粉料的料袋置于一个腔室中,通过液压装置施加30-60ksi的压力进行压制。压制成的工件通常要在烧结之前加工成特定的几何形状。料袋的尺寸被加大,以适应压紧过程中的工件收缩,并为磨削加工提供足够的余量。由于工件在压制成型后要进行加工,因此对装料一致性的要求不像模压法那样严格,但是,仍然希望能保证每一次装入料袋的粉料量相同。如果粉料的装料密度过小,就可能导致装入料袋的粉料不足,从而造成工件尺寸偏小而不得不报废。如果粉料的装料密度过大,装入料袋的粉料过多,工件在压制成型后就需要加工去除更多的粉料。尽管去除的多余粉料和报废的工件都可以回收再用,但这样做毕竟会降低生产效率。
硬质合金工件还可以利用挤出模或注射模进行成型加工。挤出成型工艺更适合轴对称形状