一种改进蚁群算法研究和旅游景区路径规划问题求解

一种改进蚁群算法研究和旅游景区路径规划问题求解
一种改进蚁群算法研究和旅游景区路径规划问题求解

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

基于蚁群算法的机器人路径规划Ant Colony Algorithm

基于蚁群算法的机器人路径规划 说明:基于蚁群算法的机器人路径规划,使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。 使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。 % ACASP.m % 蚁群算法动态寻路算法 % GreenSim团队原创作品,转载请注明 % Email:greensim@https://www.360docs.net/doc/8414117776.html, %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵

matlab 蚁群算法 机器人路径优化问题

用ACO 算法求解机器人路径优化问题 4.1 问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 4.2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。 蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图 2-1 所示,AE 之间有

遗传算法与机器人路径规划

遗传算法与机器人路径规划 摘要:机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 关键词:路径规划;移动机器人;避障;遗传算法 Genetic Algorithm and Robot Path Planning Abstract: Robot path planning research is a very important area of robotics, it is also a combine point of artificial intelligence and robotics. For the mobile robot, it need to be worked by certain rulers(e.g time optimal),and find a best movement path in work space. Robot path planning can be modeled that in the course of robots able to avoid the obstacles from the initial position to the target location,and it ruquire to work under ertain constraints. Genetic algorithm used in path planning is very common, when planning the path ,it use the information of map ,and have high eficient in actual. Key words: Path planning,mobile robot, avoid the obstacles, genetic algorithm 1路径规划 1.1机器人路径规划分类 (1)根据机器人对环境信息掌握的程度和障碍物的不同,移动机器人的路径规划基本上可分为以下几类: 1,已知环境下的对静态障碍物的路径规划; 2,未知环境下的对静态障碍物的路径规划; 3,已知环境下对动态障碍物的路径规划; 4,未知环境下的对动态障碍物的路径规划。 (2)也可根据对环境信息掌握的程度不同将移动机器人路径规划分为两种类型: 1,基于环境先验完全信息的全局路径规划; 2,基于传感器信息的局部路径规划。 (第二种中的环境是未知或部分未知的,即障碍物的尺寸、形状和位置等信息必须通过传感器获取。) 1.2路径规划步骤 无论机器人路径规划属于哪种类别,采用何种规划算法,基本上都要遵循以下步骤: 1, 建立环境模型,即将现实世界的问题进行抽象后建立相关的模型; 2, 路径搜索方法,即寻找合乎条件的路径的算法。 1.3路径规划方法

基于蚁群算法的MATLAB实现

基于蚁群算法的机器人路径规划MATLAB源代码 基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 基于蚁群算法的机器人路径规划 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.360docs.net/doc/8414117776.html,/greensim %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N

蚁群算法最短路径通用Matlab程序(附图)

蚁群算法最短路径通用Matlab程序(附图) function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.360docs.net/doc/8414117776.html, % All rights reserved %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5

基于蚁群算法的三维孔道路径规划(源码,全部5个M文件)

基于蚁群算法的插装阀块孔道路径规划 M文件1 function [ROUTES,PL,Tau]=ACASP(D,Tau,K,M,S,E,Alpha,Beta,Rho,Q,GP) %% 基于蚁群算法的三维路径规划 %% 输入参数列表 % D 邻接矩阵 % Tau 初始信息素矩阵 % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 %% 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- N=size(D,1);%N表示问题的规模 Eta=ones(1,N);%启发式信息,取为至目标点的直线距离的倒数ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度 %% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:K disp(k); for m=1:M %% 第一步:状态初始化 W=S;%当前节点初始化为起始点 Path=S;%爬行路线初始化 PLkm=0;%爬行路线长度初始化 TABUkm=ones(1,N);%禁忌表初始化 TABUkm(S)=0;%已经在初始点了,因此要排除 DD=D;%邻接矩阵初始化 %% 第二步:下一步可以前往的节点 DW=DD(W,:); DW1=find(DW

蚁群算法最优路径

机器人的路径规划---蚁群算法 1.蚁群算法 众所周知,蚁群算法是优化领域中新出现并逐渐引起重视的一种仿生进化算法它是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。自从M.Dorigo等意大利学者在1991年首先提出蚁群算法(Ant Colony System,ACS)以来,这种新型的分布式智能模拟算法已逐渐引起人们的注意并得到广泛的使用。 蚁群算法的特点主要表现在以下五个方面: (1)蚂蚁群体行为表现出正反馈过程。蚁群在寻优的过程中会释放一定量的信息素,蚁群的规模越大,释放的信息素的量也就越大,而寻优路径上存在的信息素浓度越高,就会吸引更多的蚂蚁,形成一种正反馈机制,然后通过反馈机制的调整,可对系统中的较优解起到一个自增强的作用,从而使问题的解向着全局最优的方向演变,最终能有效地获得全局相对较优解。 (2)蚁群算法是一种本质并行的算法。个体之间不断进行信息交流和传递.有利于最优解的发现,并在很大程度上减少了陷于局部最优的可能。 (3)蚁群算法易于和其他方法结合。蚁族算法通过和其他算法的结合,能够扬长避短,提高算法的性能。 (4) 蚁群算法提供的解具有全局性的特点。一群算法是一种群只能算法,每只蚂蚁巡游的过程相对独立,他们会在自己的活动空间进行搜索,蚂蚁在寻优过程中通过释放信息素,相互影响,互相通信,保证了解的全局性。 (5) 蚁群算法具有鲁棒性。蚁族算法的数学模型易于理解,可以广泛使用在很多复杂的优化问题中,蚁族算法区别于传统优化算法的一个特点在于该算法不依赖于初始点的选择,受初始点的影响相对较小,并且在整个算法过程中会自适应的调整寻优路径。 由此可见,在机器人寻找最优路径的过程中,采用蚁群算法实现路径的规划问题,可以高效,准确的找到最优的路径。 2.移动机器人的路径规划 2.1环境信息处理 假设机器人运行环境为边长分别为x和Y的矩形区域,在矩形区域内分布有n

(完整word版)基于蚁群算法的路径规划

MATLAB 实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起 始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm ,ACA ),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS ),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS ),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos 给出了最大-最小蚂蚁系统(MAX-MINAS ),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE ,其中AB ,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0 时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC ,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC 。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC 的蚂蚁分别走过了BCD 和DCB ,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。这使得算法具有较强的鲁棒性; (3)正反馈机制与负反馈机制结合:若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,

matlab_蚁群算法_机器人路径优化问题

用ACO算法求解机器人路径优化问题 4.1问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 4.2算法理论 蚁群算法(Ant ColonyAlgorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo博士在文献[30]中给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。 蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图 2-1 所示,AE 之间有

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用 摘要 蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB 的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。 关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法 1.车辆路径问题 车辆路径问题(VRP)来源于交通运输,1959年由Dantzig 提出,它是组合优化问题中一个典型的NP-hard问题。最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。

车路优化问题如下: 已知有一批客户,各客户点的位置坐标和货物需求已知,供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。 2、蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻找过程中,整个蚁群通过相互留下的信息素作用交换着路径信息,最终找到最优路径。 3、基本蚁群算法求解车辆路径问题 求解VRP问题的蚂蚁算法中,每只蚂蚁是一个独立的用 于构造路线的过程,若干蚂蚁过程之间通过信息素值来交换信

蚁群算法在路径优化中的应用3改

蚁群算法在路径优化中的应用 作者:孙阳阳指导老师:刘冲 摘要针对蚁群算法在路径中的优化问题,本文首先介绍了蚁群算法的概念及其原理,利用数学 形式建立算法模型.根据蚁群算法计算的基本步骤来分析蚁群算法在交通路径优化、TSP问题等3 个方面的应用,由实验结果可知蚁群算法在路径优化中具有很好的可行性和优越性,能起到很 好的效果. 关键词蚁群算法算法模型算法步骤分析应用 1 引言 路径规划是指在具有障碍物的环境下,在符合某种评价条件中,寻找到一条从起始地点到目标地点最优的路径.蚁群算法是近几年优化领域中新出现的一种启发式仿生类并行智能进化系统,计算法采用分布式并行计算和正反馈机制,且易于其它算法结合,目前已有许多关于其在路径规划方面的文献. 建立蚁群算法模型]2][1[,解决城市交通路径优化问题,实验结果表面在搜索效率和搜索最优解的能力两方面都有很大的提高.但是传统蚁群算法易陷入局部最优解和收敛速度较 4[ ,将传统蚁群算法进行改进,例如与栅格法相结合、慢,为此在机器人路径规划的应用中]7 在几何模型下建立模型等.提高了算法的有效性和鲁棒性,解决了蚁群过早陷入局部最优解的问题,扩大了蚂蚁的搜索空间,增强了蚁群算法在机器人路径规划中的适应能力. 本文通过对蚁群算法的研究以及解决几实际路径规划问题,得出了蚁群算法是有其可行性和优越性的,说明了该算法可以在众多优化领域中得到广泛的应用. 2 蚁群算法 蚁群算法(ant colony optimization),又称蚂蚁算法,简称ACO.是由Dorigom、Maniezzov、Colorni等人在1992年所发表的论文提出的,其灵感来源于蚂蚁在寻找食物中发现路径的行为.它是一种模拟进化算法,通过人工模拟蚂蚁觅食过程,即个体间的信息交流与合作不断排除不适合的路途,最终寻找到从蚁穴到食物源的最短路径. 2.1 蚁群算法的基本原理 蚂蚁在搜寻食物过程中总能找到一条从蚁穴到到食物的最优路径,这是因为蚂蚁在搜寻路径上释放一种特殊的信息素.当它们遇到一个还没有被走过的路口时,会随机的选择一条路径,而选择的路径与信息素的浓度有关,同时在该路径上它们也会释放自己的信息素.路径越短,信息素浓度越大;反正路径越长信息素堆积的越少.则过一段时间蚂蚁选择信息素浓度高的路径的概率越来越大,而其它路径随着蚂蚁越来越少的选择信息素浓度逐渐减小,这一就形成了一个正反馈现象,最终指导整个蚁群找到从蚁穴到食物源的最短路径. 2.2 蚁群算法的数学模型 2.2.1 问题的描述

最优路径规划算法设计报告

最优路径规划算法设计 一、 问题概述 兵力机动模型的功能是支持实施机动的实体按照指定路线,由作战空间的一点向另外一点的位置移动,并带入实体在移动过程中发生变化的状态信息。 兵力机动模型包括行军模型、战斗转移模型、机动能力评估模型。涉及的关键算法包括最优路径规划、行军长径计算、行军时间计算、行军所需油料计算、行军方案评估与优选等。 最优路径问题又称最短路问题。是网络优化中的基本问题,如TSP 问题等。下面先举例说明该问题。 最短路问题(SPP -shortest path problem ) 一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。 旅行商问题(TSP -traveling salesman problem ) 一名推销员准备前往若干城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地?) 最短路问题是组合优化中的经典问题,它是通过数学方法寻找离散时间的最优编排、分组、次序、或筛选等,这类问题可用数学模型描述为 min )(x f ..t s 0)(≥x g D x ∈. 其中,)(x f 为目标函数,)(x g 为约束函数,x 为决策变量,D 表示有限个点组成的集合。 一个组合最优化问题可用三个参数),,(f F D 表示,其中D 表示决策变量的定义域,F 表示可行解区域}0)(,|{≥∈=x g D x x F ,F 中的任何一个元素称为该问

题的可行解,f 表示目标函数,满足}|)(m in{)(*F x x f x f ∈=的可行解*x 称为该问题的最优解。组合最优化的特点是可行解集合为有限点集。由直观可知,只要将D 中有限个点逐一判别是否满足0)(≥x g 的约束并比较目标值的大小,就可以得到该问题的最优解。 以上述TSP 问题为例,具体阐述组合优化问题: 此模型研究对称TSP 问题,一个商人欲到n 个城市推销产品,两个城市i 和j 之间的距离ji ij d d =,用数学模型描述为 ∑≠j i ij ij x d min 1..1 =∑=n j ij x t s n i ,,2,1Λ=, 1..1 =∑=n i ij x t s n j ,,2,1Λ=, },,,2,1{,2||2,1||,n s n s s x s j i ij Λ?-≤≤-≤∑∈ j i n j i x ij ≠=∈,,,2,1,},1,0{Λ 约束条件决策变量1=ij x 表示商人行走的路线包含从城市i 到j 的路,而0=ij x 表示商人没有选择走这条路;j i ≠的约束可以减少变量的个数,使得模型中共有 )1(-?n n 个决策变量。 每一个组合优化问题都可以通过完全枚举的方法求得最优解。枚举是以时间为代价的,在TSP 问题中,用n 个城市的一个排列表示商人按这个排列序推销并返回起点。若固定一个城市为起终点,则需要)!1(-n 个枚举。以计算机s 1可以完成24个城市所有路径枚举为单位,则25个城市的计算时间为:以第1个城市为起点,第2个到达城市有可能是第2个、第3个、……、第25个城市。决定前两个城市的顺序后,余下是23个城市的所有排列,枚举这23个城市的排列需要s 1,所以,25个城市的枚举需要24s 。类似地归纳,城市数与计算时间的关系如表1所示。

蚁群算法最短路径matlab程序

蚁群算法最短路径通用Matlab程序 下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划 function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% ---------------------------------------------------------------% ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.360docs.net/doc/8414117776.html, % All rights reserved %% ---------------------------------------------------------------% 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5 ix=MM-0.5;

蚁群算法路径优化算法

其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转移概率。allowedk = C ? tabuk表示蚂蚁k下一步允许选择的城市。α为启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起的作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间的协作性越强。β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重视程度,其值越 大,则该状态转移概率越接近于贪心规则;ηij(t) 为启发函数,表达式为。式中,dij表示相邻两个城市之间的距离。(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该元素(城市)移动到该蚂蚁个体的禁忌表中。(7)若集合C中元素(城市)未遍历完,即k

for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2); end end MAXIT=10;%最大循环次数 Citystart=[]; % 起点城市编号 tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1 rho=0.5; % 挥发系数 alpha=1; % 残留信息相对重要度 beta=5; % 预见值的相对重要度 Q=10; % 蚁环常数 NumAnt=20; % 蚂蚁数量 routelength=inf; % 用来记录当前找到的最优路径长度 for n=1:MAXIT for k=1:NumAnt %考查第K只蚂蚁 deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零 %[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点if lengthk

相关文档
最新文档