数值分析上机实验报告

合集下载

数值分析2024上机实验报告

数值分析2024上机实验报告

数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。

在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。

本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。

一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。

1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。

常见的数值方法有二分法、牛顿法、割线法等。

在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。

2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。

插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。

在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

3.数值积分这部分实验要求使用数值方法计算给定函数的积分。

常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。

在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。

4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。

常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。

在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。

结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。

2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。

结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。

数值分析上机报告

数值分析上机报告

数值分析上机实习报告专业:土木工程班级:学号:姓名:指导老师:联系电话:2015.12.12序言随着本学期逐渐接近尾声,我也逐渐掌握了数值分析的一些基本理论•本次上机作业是理论与实践的结合•本次作业使用了matlab与C++两种语言•其中matlab具有编程效率高,用户使用方便,方便的绘图功能的优点。

而C++是一种基本的编程语言,在实际的工程中也有广泛的应用。

本次作业根据题目的特点,结合两种语言各自的优势,采用了不同的方法。

其中牛顿法,Steffensen加速法采用了c语言。

插值与多项式拟合使用了两种语言。

Ru n ge-Kutt a 4阶算法仅使用了matlab编程。

本次作业注重问题的计算过程,分析总结,及编程。

由于所涉及原理课本均有详细陈述,在此不再赘述。

第一题 (3)1.1题目 (3)1.2计算过程和结果 (3)1.3结果分析 (3)第二题 (4)2.1题目 (4)2.2计算过程和结果 (4)2.3结果分析 (8)第三题 (8)3.1题目 (8)3.2问题求解及过程 (8)3.3结果分析 (9)总结 (10)附件 (11)第一题 (11)1.1.1第一问牛顿法 (11)1.1.2 第一问牛顿-Steffensen法 (11)1.2.1第二问牛顿法 (12)1.2.2 第二问牛顿-Steffensen法 (13)第二题 (14)2.1.1最小二乘法求解 (14)2.2.1拉格朗日差值多项式拟合 (15)2.2.2牛顿插值 (15)第三题 (17)3.1.1Runge-Kutta 4 阶算法 (17)1.1题目分别用牛顿法,及基于牛顿算法下的Steffe nsen加速法⑴求ln(x+sin x)=0的根。

初值x0分别取0.1, 1,1.5, 2, 4进行计算。

(2)求sin x=0的根。

初值x0分别取1,1.4,1.6, 1.8,3进行计算。

分析其中遇到的现象与问题。

1・2计算过程和结果1.对方程In(x+sinx)=O,可求解x+sinx=1的解。

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告

数值分析第一次上机练习实验报告一、实验目的本次实验旨在通过上机练习,加深对数值分析方法的理解,并掌握实际应用中的数值计算方法。

二、实验内容1. 数值计算的基本概念和方法在本次实验中,我们首先回顾了数值计算的基本概念和方法。

数值计算是一种通过计算机进行数值近似的方法,其包括近似解的计算、误差分析和稳定性分析等内容。

2. 方程求解的数值方法接下来,我们学习了方程求解的数值方法。

方程求解是数值分析中非常重要的一部分,其目的是找到方程的实数或复数解。

我们学习了二分法、牛顿法和割线法等常用的数值求解方法,并对它们的原理和步骤进行了理论学习。

3. 插值和拟合插值和拟合是数值分析中常用的数值逼近方法。

在本次实验中,我们学习了插值和拟合的基本原理,并介绍了常见的插值方法,如拉格朗日插值和牛顿插值。

我们还学习了最小二乘拟合方法,如线性拟合和多项式拟合方法。

4. 数值积分和数值微分数值积分和数值微分是数值分析中的两个重要内容。

在本次实验中,我们学习了数值积分和数值微分的基本原理,并介绍了常用的数值积分方法,如梯形法和辛卜生公式。

我们还学习了数值微分的数值方法,如差商法和牛顿插值法。

5. 常微分方程的数值解法常微分方程是物理和工程问题中常见的数学模型,在本次实验中,我们学习了常微分方程的数值解法,包括欧拉法和四阶龙格-库塔法。

我们学习了这些方法的步骤和原理,并通过具体的实例进行了演示。

三、实验结果及分析通过本次实验,我们深入理解了数值分析的基本原理和方法。

我们通过实际操作,掌握了方程求解、插值和拟合、数值积分和数值微分以及常微分方程的数值解法等数值计算方法。

实验结果表明,在使用数值计算方法时,我们要注意误差的控制和结果的稳定性。

根据实验结果,我们可以对计算结果进行误差分析,并选择适当的数值方法和参数来提高计算的精度和稳定性。

此外,在实际应用中,我们还需要根据具体问题的特点和条件选择合适的数值方法和算法。

四、实验总结通过本次实验,我们对数值分析的基本原理和方法有了更加深入的了解。

(完整版)哈工大-数值分析上机实验报告

(完整版)哈工大-数值分析上机实验报告

实验报告一题目:非线性方程求解摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。

本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。

前言:(目的和意义)掌握二分法与Newton法的基本原理和应用。

数学原理:对于一个非线性方程的数值解法很多。

在此介绍两种最常见的方法:二分法和Newton法。

对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。

重复运行计算,直至满足精度为止。

这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式产生逼近解x*的迭代数列{x k},这就是Newton法的思想。

当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。

另外,若将该迭代公式改进为其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。

程序设计:本实验采用Matlab的M文件编写。

其中待求解的方程写成function的方式,如下function y=f(x);y=-x*x-sin(x);写成如上形式即可,下面给出主程序。

二分法源程序:clear%%%给定求解区间b=1.5;a=0;%%%误差R=1;k=0;%迭代次数初值while (R>5e-6) ;c=(a+b)/2;if f12(a)*f12(c)>0;a=c;elseb=c;endR=b-a;%求出误差k=k+1;endx=c%给出解Newton法及改进的Newton法源程序:clear%%%% 输入函数f=input('请输入需要求解函数>>','s')%%%求解f(x)的导数df=diff(f);%%%改进常数或重根数miu=2;%%%初始值x0x0=input('input initial value x0>>');k=0;%迭代次数max=100;%最大迭代次数R=eval(subs(f,'x0','x'));%求解f(x0),以确定初值x0时否就是解while (abs(R)>1e-8)x1=x0-miu*eval(subs(f,'x0','x'))/eval(subs(df,'x0','x'));R=x1-x0;x0=x1;k=k+1;if (eval(subs(f,'x0','x'))<1e-10);breakendif k>max;%如果迭代次数大于给定值,认为迭代不收敛,重新输入初值ss=input('maybe result is error,choose a new x0,y/n?>>','s');if strcmp(ss,'y')x0=input('input initial value x0>>');k=0;elsebreakendendendk;%给出迭代次数x=x0;%给出解结果分析和讨论:1.用二分法计算方程在[1,2]内的根。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告摘要:本报告是对数值分析课程上机实验的总结和分析,涵盖了多种算法和数据处理方法,通过对实验结果的分析,探究了数值计算的一般过程和计算的稳定性。

1. 引言数值计算是数学的一个重要分支,广泛应用于物理、金融、工程等领域。

本次实验是对数值分析课程知识的实际应用,通过上机实现算法,探究数值计算的可靠性和误差分析。

2. 实验方法本次实验中,我们实现了多种算法,包括:(1)牛顿迭代法求方程的根;(2)高斯消元法求线性方程组的解;(3)最小二乘法拟合数据点;(4)拉格朗日插值法估计函数值;(5)梯形公式和辛普森公式求积分近似值。

对于每个算法,我们都进行了多组数值和不同参数的实验,并记录了相关数据和误差。

在实验过程中,我们着重考虑了算法的可靠性和计算的稳定性。

3. 实验结果与分析在实验中,我们得到了大量的实验数据和误差分析,通过对数据的展示和分析,我们得到了以下结论:(1)牛顿迭代法求解非线性方程的根能够对算法的初始值和迭代次数进行适当的调整,从而达到更高的稳定性和可靠性。

(2)高斯消元法求解线性方程组的解需要注意到矩阵的奇异性和精度的影响,从而保证计算的准确性。

(3)最小二乘法拟合数据点需要考虑到拟合的函数形式和数据的误差范围,采取适当的数据预处理和拟合函数的选择能够提高计算的准确性。

(4)拉格朗日插值法估计函数值需要考虑到插值点的选择和插值函数的阶数,防止出现龙格现象和插值误差过大的情况。

(5)梯形公式和辛普森公式求积分近似值需要考虑到采样密度和拟合函数的选择,从而保证计算的稳定性和收敛速度。

4. 结论通过本次实验的分析和总结,我们得到了深入的认识和理解数值计算的一般过程和算法的稳定性和可靠性,对于以后的数值计算应用也提供了一定的指导和参考。

优质文档精选——数值分析上机实验报告

优质文档精选——数值分析上机实验报告

数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。

1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。

当前后两个的差<=ε时,就认为求出了近似的根。

本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C 语言程序原代码:#include<stdio.h>#include<math.h> main(){double x2,f,f1;double x1=1.9; //取初值为 1.9 do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数 printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB 上机程序function y=Newton(f,df,x0,eps,M) d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验理学院11级统计01班41108030125鲁庆实验报告一一.实验名称误差与误差估计二.实验目的掌握数值运算的误差估计方法三.数学原理 1.绝对误差(*)e x设某一量的准确值为x ,近似值为x*,则x*与x 之差叫做近似值x*的绝对误差(简称误差),记为*(*)*e e x x x ==- 2.绝对误差限适当小的正数,使|(*)||*|*e x x x ε=-≤则称*ε为近似值 x * 的绝对误差限。

(有时用*x x ε*=±表示近似值x *的精度或准确值的所在范围。

3.相对误差(*)r e x绝对误差与准确值之比*(*)*(*),0r r e x x xe e x x x x-===≠称为x *的相对 误差。

4.相对误差限(*)r x ε若指定一个适当小的正数 (*)r x ε,使|(*)||(*)|(*)||r r e x e x x x ε=≤则称(*)r x ε为近似值 x *的相对误差限。

5.有效数字若近似值x*的绝对误差限是某一位的半个单位,该位到x*的第一位非零数字一共有n 位,则称近似值x*有n 位有效数字,或说x*精确到该位。

6.绝对误差的运算:)()()(2121x x x x εεε+=± )()()(122121x x x x x x εεε+≈22122121+=x x x x x x x )()()(εεε (f(x))()(x)f x εε'≈四.实验内容1. 计算I n=e 1-⎰10nxe x 2dx (n=0,1,...)并估计误差。

解: >> I0 = exp(-1)*quad('(x.^0).*exp(x.^2)',0,1,10^(-10));>> vpa(I0,10) ans =.5380795069>> I1= exp(-1)*quad('(x.^1).*exp(x.^2)',0,1,10^(-10)); >> vpa(I1,10) ans =.3160602794>> I2 = exp(-1)*quad('(x.^2).*exp(x.^2)',0,1,10^(-10)); >> vpa(I2,10) ans =.2309602465>> I3 = exp(-1)*quad('(x.^3).*exp(x.^2)',0,1,10^(-10)); >> vpa(I3,10) ans =.1839397206>> I4 = exp(-1)*quad('(x.^4).*exp(x.^2)',0,1,10^(-10)); >> vpa(I4,10) ans =.1535596302>> I5 = exp(-1)*quad('(x.^5).*exp(x.^2)',0,1,10^(-10)); >> vpa(I5,10) ans =.1321205588>> I6 = exp(-1)*quad('(x.^6).*exp(x.^2)',0,1,10^(-10)); >> vpa(I6,10) ans =.1161009245>> I7 = exp(-1)*quad('(x.^7).*exp(x.^2)',0,1,10^(-10)); >> vpa(I7,10) ans =.1036383235>> I8 = exp(-1)*quad('(x.^8).*exp(x.^2)',0,1,10^(-10)); >> vpa(I8,10) ans =.9364676413e-1>> I9 = exp(-1)*quad('(x.^9).*exp(x.^2)',0,1,10^(-10)); >> vpa(I9,10) ans =.8544670595e-1 2.计算x255的值。

东南大学数值分析上机报告完整版

东南大学数值分析上机报告完整版

数值分析上机实验报告目录1.chapter1舍入误差及有效数 (1)2.chapter2Newton迭代法 (3)3.chapter3线性代数方程组数值解法-列主元Gauss消去法 (7)4.chapter3线性代数方程组数值解法-逐次超松弛迭代法 (8)5.chapter4多项式插值与函数最佳逼近 (10)1.chapter1舍入误差及有效数1.1题目设S N =∑1j 2−1N j=2,其精确值为)11123(21+--N N 。

(1)编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。

(2)编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。

(3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度)(4)通过本次上机题,你明白了什么? 1.2编写相应的matlab 程序 clear;N=input('please input N:'); AValue=((3/2-1/N-1/(N+1))/2); sn1=single(0); sn2=single(0); for i=2:Nsn1=sn1+1/(i*i-1); %从大到小相加的通用程序% endep1=abs(sn1-AValue); for j=N:-1:2sn2=sn2+1/(j*j-1); %从小到大相加的通用程序% endep2=abs(sn2-AValue);fprintf('精确值为:%f\n',AValue);fprintf('从大到小的顺序累加得sn=%f\n',sn1); fprintf('从大到小相加的误差ep1=%f\n',ep1); fprintf('从小到大的顺序累加得sn=%f\n',sn2); fprintf('从小到大相加的误差ep2=%f\n',ep2); disp('================================='); 1.3matlab 运行程序结果 >> chaper1please input N:100 精确值为:0.740050从大到小的顺序累加得sn=0.740049 从大到小相加的误差ep1=0.000001 从小到大的顺序累加得sn=0.740050 从小到大相加的误差ep2=0.000000 >> chaper1please input N:10000 精确值为:0.749900从大到小的顺序累加得sn=0.749852 从大到小相加的误差ep1=0.000048 从小到大的顺序累加得sn=0.749900 从小到大相加的误差ep2=0.000000please input N:1000000精确值为:0.749999从大到小的顺序累加得sn=0.749852 从大到小相加的误差ep1=0.000147 从小到大的顺序累加得sn=0.749999 从小到大相加的误差ep2=0.0000001.4结果分析以及感悟按照从大到小顺序相加的有效位数为:5,4,3。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。

在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。

二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。

根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。

2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。

根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。

3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。

通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。

本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。

具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。

2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。

3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。

三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。

下面是实验结果的汇总及分析。

1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程的数值解。

通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。

2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程组的数值解。

与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本实验的目的是通过编写数值分析程序,掌握解决数学问题的数值计算方法,并通过实际应用来检验其有效性和准确性。

具体包括以下几个方面的内容:1.掌握二分法和牛顿迭代法的基本原理和实现方法;2.熟悉利用矩阵的LU分解和追赶法解线性方程组的过程;3.通过具体的实例应用,比较不同方法的计算效果和精度。

二、实验内容本实验分为三个部分,每个部分包括一个具体的数学问题和相应的数值计算方法。

1.问题一:求方程f(x)=x^3-5x^2+10x-80=0的近似解。

在问题一中,我们通过二分法和牛顿迭代法来求解方程的近似解,并比较两种方法的精度和收敛速度。

2.问题二:用LU分解解线性方程组。

问题二中,我们通过矩阵的LU分解方法解线性方程组Ax=b,然后和直接用追赶法解线性方程组进行对比,验证LU分解的有效性和准确性。

三、实验结果及分析1.问题一的结果分析:通过二分法和牛顿迭代法求解方程f(x)=x^3-5x^2+10x-80=0的近似解,得到的结果如下:从结果来看,两种方法得到的近似解均与真实解x≈5非常接近。

但是,通过比较可以发现,牛顿迭代法的计算速度比二分法更快,迭代的次数更少。

因此,在需要高精度近似解的情况下,牛顿迭代法是一个更好的选择。

2.问题二的结果分析:通过LU分解和追赶法解线性方程组Ax=b,得到的结果如下:-用LU分解解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0;-用追赶法解线性方程组得到的结果为x1≈1.0,x2≈2.0,x3≈3.0。

从结果来看,两种方法得到的结果完全一致,而且与真实解非常接近。

这表明LU分解方法和追赶法均可以有效地解决线性方程组问题。

但是,在实际应用中,当方程组规模较大时,LU分解方法的计算复杂度较高,因此追赶法更加适用。

四、实验总结通过本实验,我掌握了二分法和牛顿迭代法以及LU分解和追赶法的基本原理和实现方法。

通过具体的数学问题实例应用,我比较了不同方法的计算效果和精度,得出以下结论:1.在求解函数的近似解时,牛顿迭代法相对于二分法具有更快的收敛速度和更高的计算精度;2.在解决线性方程组问题时,LU分解方法在计算准确性方面与追赶法相当,但在处理较大规模的问题时,计算复杂度较高,追赶法更适合。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告导言:本次上机实验主要是针对数值分析课程中的一些基本算法进行实验验证。

实验内容包括迭代法、插值法、数值积分和常微分方程的数值解等。

在实验过程中,我们将会使用MATLAB进行算法的实现,并对结果进行分析。

一、迭代法迭代法是解决函数零点、方程解等问题的常用方法。

我们将选择几个常见的函数进行迭代求根的实验。

(1)二分法二分法是一种简单而有效的迭代求根法。

通过函数在区间两个端点处的函数值异号来确定函数在区间内存在零点,并通过不断缩小区间来逼近零点。

(2)牛顿法牛顿法利用函数的一阶导数和二阶导数的信息来逼近零点。

通过不断迭代更新逼近值,可以较快地求得零点。

实验结果表明,对于简单的函数,这两种迭代法都具有很好的收敛性和稳定性。

但对于一些复杂的函数,可能会出现迭代失效或者收敛速度很慢的情况。

二、插值法插值法是在给定一些离散数据点的情况下,通过构造一个插值函数来逼近未知函数的值。

本实验我们将使用拉格朗日插值和牛顿插值两种方法进行实验。

(1)拉格朗日插值拉格朗日插值通过构造一个多项式函数来逼近未知函数的值。

该多项式经过离散数据点,并且是唯一的。

该方法简单易懂,但插值点越多,多项式次数越高,插值函数的精度也就越高。

(2)牛顿插值牛顿插值利用差商的概念,通过构造一个插值多项式来逼近未知函数的值。

与拉格朗日插值相比,牛顿插值的计算过程更加高效。

但同样要求插值点的选择要合理,否则可能出现插值函数不收敛的情况。

实验结果表明,这两种插值方法都能够很好地逼近未知函数的值。

插值点的选择对插值结果有很大的影响,过多或者过少的插值点都可能导致插值结果偏离真实函数的值。

三、数值积分数值积分是一种将定积分问题转化为数值求和的方法。

本实验我们将使用复合梯形求积法和复合辛普森求积法进行实验。

(1)复合梯形求积法复合梯形求积法将定积分区间等分为若干小区间,然后使用梯形公式对每个小区间进行近似求积,最后将结果相加得到整个定积分的近似值。

数值分析上机实习报告

数值分析上机实习报告

数值分析上机实习报告目录1.问题一 (1)问题一重述 (1)秦九韶算法简介 (1)问题一算法实现 (1)问题一求解 (1)2.问题二 (2)问题二重述 (2)逐次超松弛迭代法(SOR法)简介 (2)问题二算法实现 (3)问题二求解 (3)3.问题三 (4)问题三重述 (4)最小二乘拟合多项式与拉格朗日插值多项式简介 (4)3.2.1最小二乘拟合多项式简介 (4)3.2.2拉格朗日插值简介 (5)问题三算法实现 (5)3.3.1多项式拟合算法 (5)3.3.2拉格朗日插值算法 (6)问题三求解 (6)3.4.1最小二乘多项式拟合结果 (6)3.4.2拉格朗日插值结果 (8)问题三评判 (9)3.5.1问题三评判方式 (9)3.5.2问题三评判结果 (9)4.总结与体会 (10)5.附录 (11)1. 问题一问题一重述利用秦九韶算法简化求多项式1110n n n n x a x a y x a a --=++++的值的运算式,并写程序计算多项式42352x y x x =--+在1x =-点处的值。

秦九韶算法简介121210...n n n n y a x a x a x a x a --=+++++化为以下形式:1210(...(())...)n n n y a x a x a x a x a --=+++++求多项式值时先计算内层括号内的一次多项式的值,然后由内向外逐层计算一次多项式的值,即:11n n v a x a -=+212n v v x a -=+ …1k k n k v v x a +-=+…10n n v v x a -=+ 问题一算法实现Step1:输入多项式的降次排列的系数矩阵,某次缺失的系数用零补充之;Step2:计算表达式1v ,按递推1k k n k v v x a +-=+公式,一直计算到表达式n v ,表达式n v 即为所求秦九韶表达式;Step3:输入x 的值;Step4:计算1v ,按递推1k k n k v v x a +-=+公式,一直计算到n v 的值,n v 的值即为x 处多项式的值。

数值分析上机实习报告(西南交通大学)

数值分析上机实习报告(西南交通大学)

数值分析上机实习报告姓名:学号:专业:大地测量学与测量工程电话:序言1.所用程序语言:本次数值分析上机实习采用Visual c#作为程序设计语言,利用Visual c#可视化的编程实现方法,采用对话框形式进行设计计算程序界面,并将结果用表格或文档的格式给出。

2.程序概述:(1)第一题是采用牛顿法和steffensen法分别对两个题进行分析,编好程序后分别带入不同的初值,观察与真实值的差别,分析出初值对结果的影响,分析两种方法的收敛速度。

(2)第二题使用Visual c#程序设计语言完成了“松弛因子对SOR法收敛速度的影响”,通过在可视化界面下输入不同的n和w值,点击按钮直接可看到迭代次数及计算结果,观察了不同的松弛因子w对收敛速度的影响。

目录一.用牛顿法,及牛顿-Steffensen法............ 错误!未定义书签。

1. 计算结果.................................... 错误!未定义书签。

2. 结果分析 (5)3. 程序清单 (5)二.松弛因子对SOR法收敛速度的影响 (8)1. 迭代次数计算结果 (8)2. 计算X()结果 (10)3. 对比分析 (12)4. 程序清单: (12)三.实习总结 (14)实验课题(一)用牛顿法,及牛顿-Steffensen法题目:分别用牛顿法,及牛顿-Steffensen法(1)求ln(x+sin x)=0的根。

初值x0分别取0.1, 1,1.5, 2, 4进行计算。

(2)求sin x=0的根。

初值x0分别取1,1.4,1.6, 1.8,3进行计算。

分析其中遇到的现象与问题。

1、计算结果由于比较多每种方法中只选取了其中两个的图片例在下面:2、结果分析通过对以上的牛顿法和steffensen法的练习,我发现在初值的选取很重要,好的初值选出后可以很快的达到预定的精度,要是选的不好就很慢,而且在有的时候得出的还是非数字,所以初始值的选取很重要。

《数值分析》上机实验报告

《数值分析》上机实验报告

数值分析上机实验报告《数值分析》上机实验报告1.用Newton 法求方程 X 7-X 4+14=0在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。

1.1 理论依据:设函数在有限区间[a ,b]上二阶导数存在,且满足条件{}αϕ上的惟一解在区间平方收敛于方程所生的迭代序列迭代过程由则对任意初始近似值达到的一个中使是其中上不变号在区间],[0)(3,2,1,0,)(')()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20)()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f ab c f x f b a x f b f x f k k k k k k ==-==∈≤-≠>+令)9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3225333647>⋅''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f故以1.9为起点⎪⎩⎪⎨⎧='-=+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。

当前后两个的差<=ε时,就认为求出了近似的根。

本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码:#include<stdio.h>#include<math.h>main(){double x2,f,f1;double x1=1.9; //取初值为1.9do{x2=x1;f=pow(x2,7)-28*pow(x2,4)+14;f1=7*pow(x2,6)-4*28*pow(x2,3);x1=x2-f/f1;}while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);}1.3 运行结果:1.4 MATLAB上机程序function y=Newton(f,df,x0,eps,M)d=0;for k=1:Mif feval(df,x0)==0d=2;breakelsex1=x0-feval(f,x0)/feval(df,x0);ende=abs(x1-x0);x0=x1;if e<=eps&&abs(feval(f,x1))<=epsd=1;breakendendif d==1y=x1;elseif d==0y='迭代M次失败';elsey= '奇异'endfunction y=df(x)y=7*x^6-28*4*x^3;Endfunction y=f(x)y=x^7-28*x^4+14;End>> x0=1.9;>> eps=0.00001;>> M=100;>> x=Newton('f','df',x0,eps,M);>> vpa(x,7)1.5 问题讨论:1.使用此方法求方解,用误差来控制循环迭代次数,可以在误差允许的范围内得到比较理想的计算结果。

数值分析上机实验报告

数值分析上机实验报告

一、实验目的通过本次上机实验,掌握数值分析中常用的算法,如二分法、牛顿法、不动点迭代法、弦截法等,并能够运用这些算法解决实际问题。

同时,提高编程能力,加深对数值分析理论知识的理解。

二、实验环境1. 操作系统:Windows 102. 编程语言:MATLAB3. 实验工具:MATLAB数值分析工具箱三、实验内容1. 二分法求方程根二分法是一种常用的求方程根的方法,适用于连续函数。

其基本思想是:从区间[a, b]中选取中点c,判断f(c)的符号,若f(c)与f(a)同号,则新的区间为[a, c],否则为[c, b]。

重复此过程,直至满足精度要求。

2. 牛顿法求方程根牛顿法是一种迭代法,适用于可导函数。

其基本思想是:利用函数在某点的导数值,求出函数在该点的切线方程,切线与x轴的交点即为方程的近似根。

3. 不动点迭代法求方程根不动点迭代法是一种迭代法,适用于具有不动点的函数。

其基本思想是:从初始值x0开始,不断迭代函数g(x)的值,直至满足精度要求。

4. 弦截法求方程根弦截法是一种线性近似方法,适用于可导函数。

其基本思想是:利用两点间的直线近似代替曲线,求出直线与x轴的交点作为方程的近似根。

四、实验步骤1. 二分法求方程根(1)编写二分法函数:function [root, error] = bisection(a, b, tol)(2)输入初始区间[a, b]和精度要求tol(3)调用函数计算根:[root, error] = bisection(a, b, tol)2. 牛顿法求方程根(1)编写牛顿法函数:function [root, error] = newton(f, df, x0, tol)(2)输入函数f、导数df、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = newton(f, df, x0, tol)3. 不动点迭代法求方程根(1)编写不动点迭代法函数:function [root, error] = fixed_point(g, x0, tol)(2)输入函数g、初始值x0和精度要求tol(3)调用函数计算根:[root, error] = fixed_point(g, x0, tol)4. 弦截法求方程根(1)编写弦截法函数:function [root, error] = secant(f, x0, x1, tol)(2)输入函数f、初始值x0和x1,以及精度要求tol(3)调用函数计算根:[root, error] = secant(f, x0, x1, tol)五、实验结果与分析1. 二分法求方程根以方程f(x) = x^2 - 2 = 0为例,输入初始区间[a, b]为[1, 3],精度要求tol 为1e-6。

数值分析matlab上机实验报告

数值分析matlab上机实验报告

数值分析matlab上机实验报告matlab软件实验报告数学上机课实验报告matlab实验报告总结数值分析试卷篇一:《MATLAB与数值分析》第一次上机实验报告标准实验报告(实验)课程名称学生姓名:李培睿学号:2013020904026指导教师:程建一、实验名称《MATLAB与数值分析》第一次上机实验二、实验目的1. 熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算操作。

(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序)2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。

(用.m 文件编写进行符号因式分解和函数求反的程序)3. 掌握Matlab函数的编写规范。

4、掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、三维曲线和面的填充、三维等高线等。

(用.m 文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释)5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。

三、实验内容1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。

并以x,y为坐标显示图像x(n+1) = a*x(n)-b*(y(n)-x(n) ); y(n+1) = b*x(n)+a*(y(n)-x(n) )2. 编程实现奥运5环图,允许用户输入环的直径。

3. 实现对输入任意长度向量元素的冒泡排序的升序排列。

不允许使用sort函数。

四、实验数据及结果分析题目一:①在Editor窗口编写函数代码如下:并将编写的函数文件用“draw.m”储存在指定地址;②在Command窗口输入如下命令:③得到图形结果如下:题目二:①在Editor窗口编写函数代码如下:并将编写的函数文件用“circle.m”储存在指定地址;②再次在Editor窗口编写代码:并将编写的函数文件用“Olympic.m”储存在指定地址;③在Command窗口输入如下指令(半径可任意输入):④按回车执行,将在图形窗口获得五环旗:题目三:①在Editor窗口编写函数代码如下:并用.将编写的函数文件用“qipaofa.m”储存在指定地址;②在Command窗口输入一组乱序数值,则可以得到升序排序结果如下:五、总结及心得体会1. 要熟悉MATLAB编译软件的使用方法,明白有关语法,语句的基本用法,才可以在编写程序的时候游刃有余,不至于寸步难行。

数值分析上机实验报告

数值分析上机实验报告

数值分析上机实验报告数值分析上机实验报告一、引言数值分析是一门研究利用计算机进行数值计算的学科。

通过数值分析,我们可以使用数学方法和算法来解决实际问题,例如求解方程、插值和逼近、数值积分等。

本次上机实验旨在通过编程实现数值计算方法,并应用于实际问题中。

二、实验目的本次实验的目的是掌握数值计算方法的基本原理和实现过程,加深对数值分析理论的理解,并通过实际应用提高编程能力。

三、实验内容1. 数值求解方程首先,我们使用二分法和牛顿迭代法分别求解非线性方程的根。

通过编写程序,输入方程的初始值和精度要求,计算得到方程的根,并与理论解进行对比。

2. 数值插值和逼近接下来,我们使用拉格朗日插值和最小二乘法进行数据的插值和逼近。

通过编写程序,输入给定的数据点,计算得到插值多项式和逼近多项式,并绘制出插值曲线和逼近曲线。

3. 数值积分然后,我们使用梯形法和辛普森法进行定积分的数值计算。

通过编写程序,输入被积函数和积分区间,计算得到定积分的近似值,并与解析解进行比较。

四、实验步骤1. 数值求解方程(1)使用二分法求解非线性方程的根。

根据二分法的原理,编写程序实现二分法求解方程的根。

(2)使用牛顿迭代法求解非线性方程的根。

根据牛顿迭代法的原理,编写程序实现牛顿迭代法求解方程的根。

2. 数值插值和逼近(1)使用拉格朗日插值法进行数据的插值。

根据拉格朗日插值法的原理,编写程序实现数据的插值。

(2)使用最小二乘法进行数据的逼近。

根据最小二乘法的原理,编写程序实现数据的逼近。

3. 数值积分(1)使用梯形法进行定积分的数值计算。

根据梯形法的原理,编写程序实现定积分的数值计算。

(2)使用辛普森法进行定积分的数值计算。

根据辛普森法的原理,编写程序实现定积分的数值计算。

五、实验结果与分析1. 数值求解方程通过二分法和牛顿迭代法,我们成功求解了给定非线性方程的根,并与理论解进行了对比。

结果表明,二分法和牛顿迭代法都能够较好地求解非线性方程的根,但在不同的问题中,二者的收敛速度和精度可能会有所差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析上机实验报告
实验报告一
题目: 非线性方程求解
摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。
前言:(目的和意义)
掌握二分法与Newton法的基本原理和应用。
数学原理:
对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。
前言:(目的和意义)
1.深刻认识多项式插值的缺点。
2.明确插值的不收敛性怎样克服。
3.明确精度与节点和插值方法的关系。
数学原理:
在给定n+1个节点和相应的函数值以后构造n次的Lagrange插值多项式,实验结果表明(见后面的图)这种多项式并不是随着次数的升高对函数的逼近越来越好,这种现象就是Rung现象。
当 时,不选主元和选主元的计算结果如下
0000000
Emax=,0
此时由Emax可以看出,不选主元的结果应该可以说是不正确了,这是由机器误差引起的。
当 时,不选主元和选主元的计算结果如下
NaN1
NaN 2
NaN 3
Emax=NaN, 0
不选主元时,程序报错:Warning: Divide by zero.。这是因为机器计算的最小精度为10-15,所以此时的 就认为是0,故出现了错误现象。而选主元时则没有这种现象,而且由Emax可以看出选主元时的结果应该是精确解。
x1=x0-miu*eval(subs(f,'x0','x'))/eval(subs(df,'x0','x'));
R=x1-x0;
x0=x1;
k=k+1;
if (eval(subs(f,'x0','x'))<1e-10);
break
end
if k>max;%如果迭代次数大于给定值,认为迭代不收敛,重新输入初值
结论:
对于二分法,只要能够保证在给定的区间内有根,使能够收敛的,当时收敛的速度和给定的区间有关,二且总体上来说速度比较慢。Newton法,收敛速度要比二分法快,但是最终其收敛的结果与初值的选取有关,初值不同,收敛的结果也可能不一样,也就是结果可能不时预期需要得结果。改进的Newton法求解重根问题时,如果初值不当,可能会不收敛,这一点非常重要,当然初值合适,相同情况下其速度要比Newton法快得多。
实验报告二
题目: Gauss列主元消去法
摘要:求解线性方程组的方法很多,主要分为直接法和间接法。本实验运用直接法的Guass消去法,并采用选主元的方法对方程组进行求解。
前言:(目的和意义)
1.学习Gauss消去法的原理。
2.了解列主元的意义。
3.确定什么时候系数阵要选主元
数学原理:
由于一般线性方程在使用Gauss消去法求解时,从求解的过程中可以看到,若 =0,则必须进行行交换,才能使消去过程进行下去。有的时候即使 0,但是其绝对值非常小,由于机器舍入误差的影响,消去过程也会出现不稳定得现象,导致结果不正确。因此有必要进行列主元技术,以最大可能的消除这种现象。这一技术要寻找行r,使得
当 时,不选主元和选主元的计算结果如下,其中前一列为不选主元结果,后一列为选主元结果,下同。
Emax=,0
此时,由于 不是很小,机器误差就不是很大,由Emax可以看出不选主元的计算结果精度还可以,因此此时可以考虑不选主元以减少计算量。
当 时,不选主元和选主元的计算结果如下
Emax=,0
此时由Emax可以看出不选主元的计算精度就不好了,误差开始增大。
并将第r行和第k行的元素进行交换,以使得当前的 的数值比0要大的多。这种列主元的消去法的主要步骤如下:
1.消元过程
对k=1,2,…,n-1,进行如下步骤。
1)选主元,记
若 很小,这说明方程的系数矩阵严重病态,给出警告,提示结果可能不对。
2)交换增广阵A的r,k两行的元素。
(j=k,…,n+1)
3)计算消元
解决Rung现象的方法通常有分段线性插值、三次样条插值等方法。
分段线性插值:
设在区间[a, b]上,给定n+1个插值节点
a=x0<x1<…<xn=b
和相应的函数值y0,y1,…,yn,,求作一个插值函数 ,具有如下性质:
1) ,j=0,1,…,n。
2) 在每个区间[xi, xj]上是线性连续函数。则插值函数 称为区间[a, b]上对应n个数据点的分段线性插值函数。
for k=1:n+1;
if k~=q;
l=l.*(x-s(k))./(s(q)-s(k));
else
l=l;
end
end
f=f+Rf(s(q))*l;%求插值函数
end
plot(x,f,'r')%作出插值函数曲线
grid on
hold on
分段线性插值源程序
clear
n=input('将区间分为的等份数输入:\n');
%%%改进常数或重根数
miu=2;
%%%初始值x0
x0=input('input initial value x0>>');
k=0;%迭代次数
max=100;%最大迭代次数
R=eval(subs(f,'x0','x'));%求解f(x0),以确定初值x0时否就是解
while (abs(R)>1e-8)
(i=k+1,…,n;j=k+1,……,n+1)
2.回代过程
对k=n,n-1,…,1,进行如下计算
至此,完成了整个方程组的求解。
程序设计:
本实验采用Matlab的M文件编写。
Gauss消去法源程序:
clear
a=input('输入系数阵:>>\n')
b=input('输入列阵b:>>\n')
n=length(b);
Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式
产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为
其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。
x=;
f(x)=0;
k=9;
由f(x)知结果满足要求,实际上该方程确实有真解x=,但迭代次数增多,实际上当取x0〉时,x≈1,就变成了方程的另一个解,这说明Newton法收敛与初值很有关系,有的时候甚至可能不收敛。
4.用改进的Newton法求解,有2重根,取
x0=;并与3.中的c)比较结果。
当x0=时,程序死循环,无法计算,也就是说不收敛。改 时,结果收敛为
结果分析和讨论:
1.用二分法计算方程 在[1,2]内的根。( ,下同)
计算结果为
x=;
f(x)=;
k=18;
由f(x)知结果满足要求,但迭代次数比较多,方法收敛速度比较慢。
2.用二分法计算方程 在[1,]内的根。
计算结果为
x=;
f(x)=;
k=17;
由f(x)知结果满足要求,但迭代次数还是比较多。
3.用Newton法求解下列方程
x=;
f(x)=;
k=16;
显然这个结果不是很好,而且也不是收敛至方程的2重根上。
当x0=时,结果收敛为
x=;
f(x)=;
k=4;
这次达到了预期的结果,这说明初值的选取很重要,直接关系到方法的收敛性,实际上直接用Newton法,在给定同样的条件和精度要求下,可得其迭代次数k=15,这说明改进后的Newton法法速度确实比较快。
s=[-1+2/n*[0:n]];%%%给定的定点,Rf为给定的函数
m=0;
hh=;
for x=-1:hh:1;
ff=0;
for k=1:n+1;%%%求插值基函数
switch k
case 1
if x<=s(2);
else
l=0;
A=[a b]
x=zeros(n,1);
%%%函数主体
for k=1:n-1;
%%%是否进行主元选取
if abs(A(k,k))<yipusilong;%事先给定的认为有必要选主元的小数
yzhuyuan=1;
elseyzhuyuan=0;
end
if yzhuyuan;
%%%%选主元
t=A(k,k);
function y=f(x);
y=1/(1+25*x*x);
写成如上形式即可,下面给出主程序
Lagrange插值源程序:
n=input('将区间分为的等份数输入:\n');
s=[-1+2/n*[0:n]];%%%给定的定点,Rf为给定的函数
x=-1::1;
f=0;
for q=1:n+1;
l=1;%求插值基函数
s=0;
for r=k+1:n;
s=s+A(k,r)*x(r);
end
t=(A(k,n+1)-s)
x(k)=(A(k,n+1)-s)/A(k,k)
end
结果分析和讨论:
例:求解方程 。其中 为一小数,当 时,分别采用列主元和不列主元的Gauss消去法求解,并比较结果。
记Emax为求出的解代入方程后的最大误差,按要求,计算结果如下:
相关文档
最新文档