高中平面解析几何知识点总结 (1)
高中数学中的解析几何知识点总结
高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,主要研究几何图形在坐标系中的性质和关系。
在高中数学中,解析几何是一个重要的学习内容。
本文将对高中数学中的解析几何知识点进行总结,帮助读者更好地理解和掌握相关知识。
一、平面直角坐标系平面直角坐标系是解析几何的基础,用来描述平面上的点和直线。
平面直角坐标系由x轴和y轴组成,它们相交于原点O。
在平面直角坐标系中,每个点都可以用有序数对(x, y)表示,其中x是该点在x轴上的坐标,y是该点在y轴上的坐标。
二、点的位置关系在平面直角坐标系中,可以根据点的坐标确定其位置关系。
1. 同一直线上的点:设A(x₁, y₁)、B(x₂, y₂)和C(x₃, y₃)是平面直角坐标系中的三个点,如果它们满足斜率相等的条件,即 (y₂ - y₁) / (x₂ - x₁) = (y₃ - y₁) / (x₃ - x₁)那么点A、B和C在同一直线上。
2. 垂直关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率互为负倒数,即(y₂ - y₁) / (x₂ - x₁) = -1 / ((y₄ - y₃) / (x₄ - x₃))那么直线AB和CD垂直。
3. 平行关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率相等,即(y₂ - y₁) / (x₂ - x₁) = (y₄ - y₃) / (x₄ - x₃)那么直线AB和CD平行。
三、直线的方程在解析几何中,直线可以用不同的形式表示其方程。
常见的有点斜式、斜截式和一般式。
1. 点斜式:设直线L过坐标系中的点A(x₁, y₁)且斜率为k,那么直线L的点斜式方程为y - y₁ = k(x - x₁)2. 斜截式:设直线L与y轴相交于点B,且直线L的斜率为k,那么直线L的斜截式方程为y = kx + b3. 一般式:设直线L的方程为Ax + By + C = 0,其中A、B、C为常数且A和B不同时为0,那么该直线L的一般式方程为Ax + By + C = 0四、直线的性质在解析几何中,对于两条直线的位置关系,有以下几个重要的性质。
平面解析几何-高考复习知识点
平面解析几何 高考复习知识点一、直线的倾斜角、斜率1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。
2、直线的斜率(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。
例题:例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析: ∵, ∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.类型二:斜率定义例2.已知△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 思路点拨:本题关键点是求出边AB 与AC 所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan150°= k AC =tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.类型三:斜率公式的应用例3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.例4、过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或. 经检验不适合,舍去. 故.例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.思路点拨:如果过点AB ,BC 的斜率相等,那么A ,B ,C 三点共线.解析:∵A 、B 、C 三点在一条直线上,∴k AB =k AC .即二、直线方程的几种形式1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
平面解析几何知识点总结
平面解析几何知识点总结直线方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3) 直线的倾斜角α和斜率k 之间的对应关系每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下:3.直线方程的五种形式4.说明:k 1=k 2,且b 1≠b 2,则两直线平行;若斜率都不存在,还要判定是否重合. 5.利用一般式方程系数判断平行与垂直设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0. l 1⊥l 2⇔A 1A 2+B 1B 2=0. 6.三种距离公式 (1)两点间距离公式点A (x 1,y 1),B (x 2,y 2)间的距离:|AB |= (x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P (x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.说明:求解点到直线的距离时,直线方程要化为一般式. (3)两平行线间距离公式两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0 (C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2. 说明:求解两平行线间距离公式时,两直线x ,y 前系数要化为相同.圆的方程1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2;(3) 当D2+E2-4F<0时,该方程不表示任何图形.4. 直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A,B不全为0),圆为(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.5.(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).圆心距O1O2=d,则(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则(l2)2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=(1+k2)[(x1+x2)2-4x1x2].注意:常用几何法研究圆的弦的有关问题.椭圆1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.椭圆定义用集合语言表示如下:P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数.在椭圆定义中,特别强调到两定点的距离之和要大于|F 1F 2|.当到两定点的距离之和等于|F 1F 2|时,动点的轨迹是线段F 1F 2;当到两定点的距离之和小于|F 1F 2|时,动点的轨迹不存在. 2.椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 说明:当焦点的位置不能确定时,椭圆方程可设成Ax 2+By 2=1的形式,其中A ,B 是不相等的正常数,或设成x 2m 2+y 2n2=1(m 2≠n 2)的形式.3.椭圆中的弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a .双曲线1.双曲线的概念把平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.定点F 1,F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.用集合语言表示为:P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.说明:定义中,到两定点的距离之差的绝对值小于两定点间距离非常重要.令平面内一点到两定点F1,F2的距离的差的绝对值为2a(a为常数),则只有当2a<|F1F2|且2a≠0时,点的轨迹才是双曲线;若2a=|F1F2|,则点的轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a焦点在x轴上,若y2的系数为正,则焦点在y轴上.3.双曲线与椭圆的区别(1) 定义表达式不同:在椭圆中|PF1|+|PF2|=2a,而在双曲线中||PF1|-|PF2||=2a;(2) 离心率范围不同:椭圆的离心率e∈(0,1),而双曲线的离心率e∈(1,+∞);(3) a,b,c的关系不同:在椭圆中a2=b2+c2,a>c;而在双曲线中c2=a2+b2,c>a.抛物线1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.这个定点F 叫作抛物线的焦点,这条定直线l 叫作抛物线的准线. 用集合语言描述:P ={M ||MF |d=1},即P ={M ||MF |=d }.注意:抛物线的定义中不可忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线. 2.抛物线的标准方程与几何性质。
高中数学解析几何知识点总结
高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。
平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。
在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。
1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。
常见的坐标系有直角坐标系和极坐标系两种。
直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。
平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。
例如,点A(x,y)表示了点A在坐标系中的位置。
极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。
在极坐标系中,点的坐标表示为(r,θ)。
2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。
当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。
另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。
3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。
在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。
4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。
这些曲线都有各自的方程形式,在解析几何中有着重要的应用。
5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面我们来详细总结一下这部分的重要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。
当倾斜角为 90°时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。
高中数学解析几何知识点归纳总结
高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。
- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。
- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。
2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。
- 点法式方程:通过平面上一点和法向量来确定平面方程。
- 一般式方程:由平面的法向量和一个常数项确定平面方程。
3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。
- 点向式方程:通过直线上一点和方向向量来确定直线方程。
- 一般式方程:由直线的法向量和一个常数项确定直线方程。
4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。
5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。
6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。
- 空间中的球面与圆的方程可以通过中心点和半径来确定。
7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。
- 二次曲线的方程可以通过焦点、直径等要素来确定。
以上是高中数学解析几何的一些主要知识点。
通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
高中数学解析几何知识点总结大全
高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k(1).倾斜角为︒90的直线没有斜率。
(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k ,则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o 90=α;斜率不存在; 二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y =注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线; ②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+by a x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
高中数学解析几何知识点总结
高中数学解析几何知识点总结一、基本概念1. 点、直线和平面•点:在平面上,点是最基本的几何对象,可以用坐标表示。
在空间中,点可以用三维坐标表示。
•直线:由无数个点连成的无限延伸的轨迹,可以由两个不重合的点唯一确定。
•平面:由无数点在同一平面上组成。
2. 基本图形•线段:连接两点的线段,有起点和终点,可以用线段的长度表示。
•射线:一个起点和一个终点在同一条直线上的线段,有起始点但没有终结点。
•角:由两条半直线和公共端点组成,以顶点为中心点,夹在两条半直线之间。
二、坐标系与向量1. 坐标系•笛卡尔坐标系:直角坐标系,是一个由两条垂直的坐标轴组成的平面,用于表示点的位置。
•极坐标系:以一个点为极点,在此点设一根射线作为极轴,并规定每一个点到该射线的距离和与该射线正方向所成角度来表示该点的坐标。
2. 向量•向量的定义:向量是有大小和方向的量,表示一段膨胀或者收缩的箭头。
•向量的运算:向量可以做加法和乘法运算,具备平移、缩放和旋转的特性。
•向量的表示:向量可以用有序数组、列矩阵或坐标表示。
三、直线与圆1. 直线的方程•点斜式方程:通过已知点和斜率来表示直线的方程。
•斜截式方程:通过截距和斜率来表示直线的方程。
•两点式方程:通过两个已知点来表示直线的方程。
•一般式方程:直线的一般方程为Ax + By + C = 0。
2. 圆的方程•标准方程:圆的标准方程为(x−a)2+(y−b)2=r2,其中(a,b)为圆心坐标,r为半径长度。
•一般方程:圆的一般方程为x2+y2+Dx+Ey+F=0。
四、曲线与曲面1. 二次曲线•椭圆:由平面上到两个定点的距离之和为常数的点的轨迹组成。
•抛物线:由平面上到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。
•双曲线:有两个定点F1和F2称为焦点,对于任意一点P的到两个焦点的距离之差是常数。
2. 二次曲面•椭球面:由空间中到两个定点的距离之和为常数的点的轨迹组成。
•抛物面:由空间中到一个定点的距离与到一条定直线的距离相等的点的轨迹组成。
高考数学中的平面解析几何知识点整理
高考数学中的平面解析几何知识点整理平面解析几何是高中数学的重要知识点,也是高考数学必考的部分。
平面解析几何涉及坐标系、直线、圆、双曲线、椭圆、抛物线等内容,需要注重理论的掌握、题目的练习和解题技巧的提高。
本篇文章就高考数学中平面解析几何的知识点进行整理和总结,帮助学生更好地应对高考数学。
一、坐标系坐标系是平面解析几何的基础,需要掌握笛卡尔坐标系和极坐标系。
笛卡尔坐标系是平面上以两条相互垂直的直线为坐标轴,确定一点的位置需要用到两个数,称为该点的坐标。
极坐标系是以圆心为原点,以极轴为基准线的坐标系。
一个点在极坐标系中的坐标表示为(r,θ),其中r为该点到圆心的距离,θ为该点与极轴正方向的夹角。
二、直线直线是平面解析几何中最基本也最重要的图形。
直线的斜率、截距和两点式都是需要掌握的公式。
斜率表示直线在笛卡尔坐标系中的倾斜程度,截距表示直线与坐标轴的交点,两点式表示直线经过的两个点的坐标。
三、圆圆是平面上与一个点距离相等的点的集合。
圆的一般式、标准式、参数式都是需要掌握的公式。
一般式表示圆心坐标为(h,k),半径为r的圆,标准式表示圆心在原点,半径为r的圆,参数式表示圆心坐标为(a,b),半径为r的圆,其中参数t在区间[0,2π)内变化。
四、椭圆椭圆是平面上到两个固定点F1和F2距离之和等于常数2a的点的集合。
椭圆的标准式、参数式和离心率都是需要掌握的公式。
标准式表示椭圆的长轴在x轴上,椭圆的中心在原点,离心率小于1;参数式表示椭圆的中心在(a,b)处,椭圆的长轴倾斜角度为θ,离心率小于1。
五、抛物线抛物线是平面上到一个定点F距离等于到另一个定点D的距离的平方的定点P的集合。
抛物线的标准式、参数式和焦距都是需要掌握的公式。
标准式表示抛物线的焦点在原点,开口朝上或朝下;参数式表示抛物线的焦点在(a,b)处,开口朝上或朝下。
六、双曲线双曲线是平面上到两个定点F1和F2距离之差等于常数2a的点的集合。
双曲线的标准式、参数式和离心率都是需要掌握的公式。
平面解析几何知识点总结
平面解析几何知识点总结在平面解析几何中,我们研究的是平面上的点、线和图形之间的关系,通过运用代数和几何的方法来解决相关问题。
本文将对平面解析几何的一些重要知识点进行总结,帮助读者更好地理解和掌握这一领域。
一、点的坐标表示平面解析几何中,用坐标表示点的位置是非常常见的。
一般情况下,我们使用直角坐标系来描述平面空间。
直角坐标系由两条相互垂直的坐标轴组成,通常记作x轴和y轴。
点在该坐标系中的位置可以通过一个有序数对(x, y)来表示,其中x是该点在x轴上的投影,y是该点在y轴上的投影。
二、直线的表示与性质1. 点斜式方程:对于已知一点P(x1, y1)和斜率k的直线L,可以使用点斜式方程y - y1 = k(x - x1)来表示该直线的方程式。
2. 截距式方程:对于已知直线L与x轴的截距a和与y轴的截距b的情况,可以使用截距式方程x/a + y/b = 1来表示该直线的方程式。
3. 斜截式方程:对于已知直线L的斜率k和与y轴的截距b的情况,可以使用斜截式方程y = kx + b来表示该直线的方程式。
4. 直线的性质:在平面解析几何中,直线有许多重要的性质,如平行、垂直、相交等。
其中,两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率的乘积为-1。
三、图形的表示与性质1. 点与点之间的距离:对于平面上的两个点A(x1, y1)和B(x2, y2),它们之间的距离可以使用勾股定理来计算,即d = √[(x2 - x1)² + (y2 -y1)²]。
2. 中点坐标:对于平面上的两个点A(x1, y1)和B(x2, y2),它们连线的中点的坐标可以通过取x轴和y轴的平均值来计算,即中点M的坐标为[(x1 + x2) / 2, (y1 + y2) / 2]。
3. 直线与直线的交点:两条直线的交点可以通过求解它们的方程组来确定。
如果两条直线有唯一交点,则它们必定相交于一点;如果两条直线重合,则它们有无数个交点;如果两条直线平行,则它们没有交点。
高中数学解析几何总结非常全
高中数学解析几何总结非常全解析几何是数学中一个非常重要的分支,它凭借着坐标系的引入和解析法的运用,把几何图形的特征用精确的数学语言描述。
本篇文章主要围绕高中数学解析几何的知识点进行总结,旨在帮助读者更好的掌握该学科。
一、平面直角坐标系平面直角坐标系指由二维直角坐标系(x,y) 和坐标平面上给定的一个原点(O) 共同构成的平面。
坐标系的基础知识对解析几何的学习至关重要,因此我们需要掌握如下概念:1. 笛卡尔坐标系平面直角坐标系又称为笛卡尔坐标系,是二维空间中的一种坐标系。
该坐标系中,平面上的任意一点P的坐标(x,y) 是由P点在x轴、y轴上的投影所确定的。
2. 坐标轴平面直角坐标系中的两条坐标轴分别是x轴和y轴,它们相交于坐标系的原点O。
3. 坐标变化在平面直角坐标系中,任意一点P(x,y) 关于x轴、y轴、原点O的对称点分别是P'(x,-y)、P'(-x,y) 和P'(-x,-y)。
二、直线及其方程解析几何中的直线是平面上的一种基本几何元素,由于它们的性质非常重要,因此直线及其方程的知识点也是解析几何中的核心内容。
我们需要掌握以下知识点:1. 直线的方程直线的一般式和斜截式是解析几何中最为常用的两种方程。
(1)直线的一般式:Ax+By+C=0在直线的一般式中,A、B、C 均为实数,其中 A 和 B 不同时为零。
(2)直线的斜截式:y=kx+b在直线的斜截式中,k 为直线的斜率,即斜线的倾斜程度。
斜率为0的直线是水平线,斜率为正数的直线是上升的,斜率为负数的直线是下降的。
2. 直线的截距式直线的截距式比较简单,它是指直线在x、y轴上截距所组成的一种方程形式,可以用来求解直线的截距。
3. 直线之间的关系直线之间的关系有平行、垂直等多种情况,我们需要掌握这些关系的性质和求解方法。
三、圆与圆的方程圆是解析几何中的另一个重要几何元素,它可以用一个点和一个距离来描述。
在本篇文章中,我们需要掌握以下知识点:1. 圆的一般式圆的一般式为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为圆的半径。
高中数学知识点归纳平面解析几何的性质与运算
高中数学知识点归纳平面解析几何的性质与运算高中数学知识点归纳——平面解析几何的性质与运算一、引言在高中数学学习中,平面解析几何是一门重要的数学分支,它将代数和几何相结合,通过运用坐标系的方法来研究平面上的几何性质和相互关系。
本文将对平面解析几何的性质与运算进行归纳总结。
二、平面解析几何的基本概念1. 坐标系平面解析几何中,常使用直角坐标系来描述平面上的点。
直角坐标系由两个相互垂直的轴组成,分别称为x轴和y轴。
点在坐标系中的位置可由其坐标表示,标有符号的数对(x, y)即表示点的坐标,其中x 表示横坐标,y表示纵坐标。
2. 距离公式在平面解析几何中,计算两点之间的距离是常见的操作。
根据勾股定理,可以得到点A(x₁, y₁)和点B(x₂, y₂)之间的距离公式:d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 斜率公式斜率是平面解析几何中的重要概念,表示直线的倾斜程度。
对于直线上的两点A(x₁, y₁)和B(x₂, y₂),可以使用斜率公式计算斜率:斜率k = (y₂ - y₁) / (x₂ - x₁)4. 中点公式平面解析几何中,中点是指线段的中点,可以通过中点公式求得。
对于线段的两个端点A(x₁, y₁)和B(x₂, y₂),中点的坐标为:中点M(x, y) = ((x₁+ x₂)/2 , (y₁+ y₂)/2)三、平面解析几何的性质1. 平行性质平面解析几何中,两条直线平行的判断条件之一是它们的斜率相等。
若两条直线的斜率分别为k₁和k₂,则当k₁= k₂时,两条直线平行。
2. 垂直性质两条直线垂直的判断条件之一是它们的斜率之积为-1。
若两条直线的斜率分别为k₁和k₂,则当k₁ * k₂ = -1时,两条直线垂直。
3. 距离性质平面解析几何中,根据距离公式可得,点P(x, y)到直线Ax + By +C = 0的距离为:d = |Ax + By + C| / √(A² + B²)4. 判定点是否在直线上对于直线Ax + By + C = 0和点P(x₀, y₀),若Ax₀ + By₀ + C = 0,则表明点P在直线上。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结平面解析几何是高中数学中的一门重要的数学分支,它研究平面上的点、直线和圆等几何图形的性质和关系。
本文将对高中数学中常见的平面解析几何知识点进行总结和归纳,以便于同学们更好地掌握和应用这些知识。
一、坐标与坐标系在平面解析几何中,我们常常使用直角坐标系来描述平面上的点的位置。
在直角坐标系中,平面上的每个点都可以用一对有序实数(x,y)表示,其中x表示点在x轴上的投影,y表示点在y轴上的投影。
这就是点的坐标。
1.1 直角坐标系的建立建立直角坐标系的方法有很多,其中一种常见的方法为选取两条相互垂直的直线作为坐标轴,它们的交点作为原点。
这两条直线称为x 轴和y轴,它们的正方向分别规定为向右和向上,形成了一个右手坐标系。
1.2 坐标的性质与运算在直角坐标系中,点的坐标具有以下性质:(1)两个点的坐标相等,当且仅当这两个点重合;(2)两个点的横坐标(纵坐标)相等,当且仅当这两个点在同一条竖直线(水平线)上;(3)两个点的坐标互为相反数,当且仅当这两个点关于坐标原点对称。
在直角坐标系中,我们可以进行坐标的运算,包括加减、数乘、求中点等。
比如,对于两个点A(x1, y1)和B(x2, y2),它们的中点C的坐标为[(x1 + x2) / 2, (y1 + y2) / 2]。
二、直线的方程在平面解析几何中,直线是最基本的几何图形之一。
我们可以通过直线上的一个点和直线的斜率来确定直线的方程。
在此基础上,本单位还会对三角函数解析式中的三角函数、三角方程进行探讨,希望对同学们理解和掌握这一知识点有所帮助。
2.1 一般式方程直线的一般式方程为Ax + By + C = 0,其中A、B、C为实数,且A和B不同时为0。
该方程中的A、B、C可以称为方程的系数。
2.2 斜率截距式方程直线的斜率截距式方程为y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
2.3 点斜式方程如果知道直线上的一点P(x0, y0)和直线的斜率k,我们可以利用点斜式方程来表示直线的方程,即y - y0 = k(x - x0)。
高中数学解析几何总结(非常全)
高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。
2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。
1)倾斜角为90度的直线没有斜率。
2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。
当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。
二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。
需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。
特别地,斜率存在且经过坐标原点的直线方程为y=kx。
需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
需要注意的是,不能表示与x轴和y轴垂直的直线。
4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。
反之,任何一个二元一次方程都表示一条直线。
首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。
高中解析几何知识归纳
高中解析几何知识归纳高中解析几何是数学中的一个重要组成部分,主要研究平面和空间中点、线、面之间的相互关系和位置关系。
以下是对高中解析几何知识点的详细介绍:一、平面解析几何1. 点:平面上的点用坐标系表示,有序数对(x, y)表示。
2. 直线:直线的方程一般形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
3. 圆:圆的标准方程为(x - h)²+ (y - k)²= r²,其中(h, k)为圆心坐标,r为半径。
4. 圆锥曲线:包括椭圆、双曲线和抛物线。
-椭圆:椭圆的标准方程为x²/a²+ y²/b²= 1,其中a为半长轴,b为半短轴。
-双曲线:双曲线的标准方程为x²/a²- y²/b²= 1,其中a为实轴半长,b为虚轴半长。
-抛物线:抛物线的标准方程为y²= 4ax或x²= 4ay,其中a为焦点到准线的距离。
二、空间解析几何1. 点:空间中的点用坐标系表示,有序数对(x, y, z)表示。
2. 直线:空间直线的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C不同时为0。
3. 平面:平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C 不同时为0。
4. 空间几何体:包括立方体、球、锥体、柱体等。
三、解析几何的基本公式和性质1. 点到直线的距离公式:d = |Ax1 + By1 + C| / √(A²+ B²),其中(x1, y1)为点的坐标。
2. 点到直线的距离性质:点到直线的距离等于点到直线的垂线的长度。
3. 直线与直线的交点公式:解直线方程组,得到交点的坐标。
4. 直线与圆的位置关系:直线与圆相交、相切或相离。
5. 圆与圆的位置关系:圆与圆相交、相切或相离。
高一平面解析几何知识点的梳理总结
高一平面解析几何知识点的梳理总结一、直线与向量
- 直线的方程:
- 一般式方程:$Ax + By + C = 0$
- 斜截式方程:$y = kx + b$
- 点斜式方程:$y - y_1 = k(x - x_1)$
- 向量的基本概念:
- 向量的定义和表示
- 向量的共线性和定比分点公式
- 向量的基本运算:加法、减法、数量乘法
- 直线与向量的关系:
- 平行关系的判定和性质
- 垂直关系的判定和性质
- 线段的中点坐标公式
- 直线的垂直平分线和角平分线的性质
二、三角形
- 三角形的基本概念:- 三角形的定义和分类- 三角形内角和定理
- 三角形外角和定理
- 三角形的性质:
- 等腰三角形的性质
- 相似三角形的性质
- 全等三角形的性质
- 内切圆和外接圆的性质- 三角形的边与角关系:- 角平分线的性质
- 中线的性质
- 高线的性质
- 圆心角与弧的关系
- 弧长与扇形面积公式三、圆
- 圆的基本概念:
- 圆的定义和性质
- 圆内接四边形和圆外接四边形的性质
- 半径、直径、弧长和扇形面积的关系
- 圆的切线和扇形:
- 切线的性质和切线定理
- 相切和内切圆的性质
- 扇形的性质和扇形面积公式
以上是高一平面解析几何的知识点梳理总结,希望能为您提供帮助。
平面解析几何高考复习知识点
平面解析几何高考复习知识点平面解析几何是数学中的一个分支,主要研究平面上的点、直线、圆、曲线等几何图形的性质和运算。
在高考中,平面解析几何通常是在数学试卷中占有一定的比重。
本文将介绍平面解析几何的高考复习知识点,包括坐标系、点的坐标、线的方程、圆的方程等内容。
一、坐标系1.笛卡尔坐标系:平面上的点可以用两个有序实数来表示,称为点的坐标。
一个点的坐标用有序对(x,y)表示,其中x为横坐标,y为纵坐标。
横纵坐标轴相互垂直,且原点的坐标为(0,0)。
2.极坐标系:平面上的点可以用极径和极角来表示。
极径为点到原点的距离,极角为点到横轴的角度。
极坐标系转换为直角坐标系的公式为:x = rcosθy = rsinθ3.参数方程:平面上的点可以用一个参数来表示。
参数方程为:x=x(t)y=y(t)4.直角坐标系与极坐标系的转换:r²=x²+y²tanθ = y/x二、点的坐标1.两点间的距离:设两点A(x₁,y₁)和B(x₂,y₂),则两点之间的距离d 为:d=√[(x₂-x₁)²+(y₂-y₁)²]2.中点:设两点A(x₁,y₁)和B(x₂,y₂),则两点连线的中点M的坐标为:x=(x₁+x₂)/2y=(y₁+y₂)/2三、线的方程1.一般式方程:形如Ax+By+C=0的线的方程。
其中A、B、C为实数,且A和B不同时为0。
2.点斜式方程:已知线上一点A(x₁,y₁)和该线的斜率k,线的方程可以表示为:y-y₁=k(x-x₁)3.斜截式方程:已知直线与y轴的交点为(0,b),直线的斜率为k,则直线的方程可以表示为:y = kx + b4.两点式方程:已知直线上两点A(x₁,y₁)和B(x₂,y₂),直线的方程可以表示为:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁)5.截距式方程:已知直线与x轴和y轴的截距分别为a和b,直线的方程可以表示为:x/a+y/b=1四、圆的方程1.标准方程:圆心为(h,k)、半径为r的圆的方程可以表示为:(x-h)²+(y-k)²=r²2.参数方程:圆心为(h,k)、半径为r的圆的参数方程为:x = h + rcosθy = k + rsinθ3.一般方程:圆心为(h,k)、半径为r的圆的一般方程可以表示为:x²+y²+Dx+Ey+F=0五、其他知识点1.直线与圆的位置关系:直线与圆相交、相切或相离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。
二.圆部分1.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x .(3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=.(2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D (3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是: ① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .2.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+=(其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解) 3.点与圆的位置关系: 点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种① P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.② P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③ P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔.【P到圆心距离d =4.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:圆心到直线距离为d (22B A C Bb Aa d +++=),由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .5.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,dO O =21条公切线外离421⇔⇔+>r r d ;无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .6.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x (1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数. 特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D xE E yF F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.7.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线x x =.8. 圆的参数方程:圆方程参数方程源于: 1cos sin 22=+θθ那么1)()2222=+--Rb y R a x (设:⎪⎪⎪⎩⎪⎪⎪⎨⎧==--θθcos )sin )Rb y R a x (( 得:⎪⎩⎪⎨⎧==++θθcos sin R b y R a x9.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减 即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 10.对称问题: (1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程. (2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1. ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点. 若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程. (3)其他对称:点(a,b)关于x 轴对称:(a,-b); 关于y 轴对称:(-a,b); 关于原点对称:(-a,-b);点(a,b)关于直线y=x 对称:(b,a); 关于y=-x 对称:(-b,-a); 关于y =x+m 对称:(b-m 、a+m); 关于y=-x+m 对称:(-b+m 、-a+m).11.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫⎝⎛++++33321321y y y x x x ,. 12.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α 两条异面线所成的角 ︒≤<︒900α三.椭圆部分1.椭圆定义:① 到两定点距离之和为一常数的平面几何曲线:即∣MO1∣+∣MO2∣=2a② 或定义:任意一条线段,在线段中任取两点(不包括两端点),将线段两端点置于这两点处,用一个钉子将线段绷直旋转一周得到的平面几何曲线即为椭圆。