1J22高饱和磁感应强度软磁合金
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着非晶制备技术的发展和对非晶合金软磁性能的不断认识,Fe-Co非晶合金逐渐得到了材料研究者的特别关注和深入研究。按照Inoue提出的非晶形成3条经验法则,研究者在Fe-Co二元晶态合金中添加约20%(原子分数)不同配比的Si、B、C、P等类金属非磁性元素用于提高合金的非晶形成能力,其余约80%为Fe、Co、Ni 等磁性元素作为基体合金,从而研制出了Fe-Co基非晶软磁材料。
由于受非晶形成能力和制备过程中传热的限制,目前只能获得低维产品,工业应用的Fe-Co非晶软磁合金材料主要是通过对粒状、带状等低维非晶材料进行热挤压、热轧、热锻等后续加工来获得各种形状的产品。虽然,Fe-Co 基合金非晶带材已经广泛用于各种变压器和电感器,成为电力、电子和信息领域不可缺少的重要基础材料。但是其形状特征在某些方面也始终限制着它的许多应用。随着块体非晶材料制备技术的不断创新和发展,大体积块体非晶材料的出现为扩大Fe-Co非晶软磁合金的应用提供了基础。然而,与其它非晶态合金一样,Fe-Co基非晶软磁材料由于非晶态处于非平衡态,具有向平衡晶态转化的趋势,这种不稳定性限制了它的应用范围,一般只能在较低的温度下使用,因而提高非晶合金的稳定性已是当务之急。同时,Fe-Co 基非晶合金材料的矫顽力和高频损耗还有待于进一步降低,并且也存在脆性和可加工性差的缺点。
1.4.3 FeCo 纳米晶软磁材料
1988 年日本人Yoshizawa在FeSiB 合金基体中加入少量Cu和Nb,首先利用熔体急冷法制备出了非晶态合金,随后经过热处理得到了高磁导率、低损耗、低磁致伸缩的Fe基纳米晶材料(商品名为FINEMET)。虽然,由于其优异的软磁性能,Fe基纳米晶材料受到了各国材料科学工作者和产业界的关注。但是由于Fe 基纳米晶合金较低的居里温度(TC <300℃),限制了其在高温情况下的应用。20世纪90年代末期,Willard 用Co部分替代FeZrBCu非晶合金(商品名为NANOPERM)中的Fe得到了纳米晶非晶共存的FeCoZrBCu 合金(商品名为HITPERM)。由于该合金中非晶相和纳米晶相居里温度的提高,使材料的高温性能明显得到改善,使用温度可达600℃。此后,Fe-Co 基纳米晶合金得到了快速发展和应用。
1.5 本文的目的
1J22合金是一种具有较高的饱和磁化强度、磁导率、居里点、较低的矫顽力以及损耗小等优点的软磁合金,它适用于制造要求体积小、重量轻的元器件。已广泛用于飞行器电源变压器和机载雷达变压器、电磁铁极头、微电机转子、继电器、换能器、耳机振动膜等。
2015年10月份我司发展部了解到某公司有1J22合金带材的需求,而我司并不具备1J22合金的生产经验,对这种合金的了解和技术积累基本是一片空白。本文将从发展和应用、理化性能、加工工艺等方面系统的介绍1J22合金,为我司实现1J22合金的生产加工提供指导。
二、1J22高饱和磁感应强度软磁合金简介
2.1 1J22合金牌号
0.3
50 3.79~4.19 4.66~5.30 5.48~6.95 6.29~9.27 7.00~9.75 400 45.1~51.3 56.9~65.1 70.2~79.6 77.5~88.4 85.7~99.8 800 125.1~145 161.1~188 204~233 227~258 241~290.5 1000 177.5~206 234~266 297~334 332~374 369.5~434
2.4 1J22合金的尺寸及允许偏
表5 1J22尺寸及允许偏差
备注:根据GB/T 15002-1994
2.5 1J22合金的技术标准
GB/T 15001-1994 《软磁合金尺寸、外形、表面质量、实验方法和检验规则》
GB/T 15002-1994 《高饱和磁感应强度软磁合金技术条件》
A801/A801M-99 《UNS R30005和K92650锻造铁钴高饱和磁感应强度软磁合金规范》
2.6 1J22合金的应用
1J22是高饱和磁感应强度铁钴钒软磁合金,是现有的软磁合金中饱和磁感应强度最高的(Bs=2.45T),饱和磁致伸缩系数最大(60~100×10-6),居里点也很高(980℃),是居里点最高的软磁合金。由于饱和磁感应强度高,在制作同等功率的电机时,可大大缩小体积,在作电磁铁时,在同样截面积下能产生大的吸合力。由于居里点高,可使该合金能在其他软磁材料已经完全退磁的较高温度下工作,并保持良好的磁稳定性。由于有大的磁致伸缩系数,极适于作磁致伸缩换能器,输出能量高,工作效率也高。该合金电阻率低
(0.4μΩ·m),不宜在高频下使用。通过加入1.4~1.8的V元素,大大的改善了该合金的冷加工塑性,但V
的加入降低了磁性。
由于1J22合金具有上述特点,因此,他被用于要求高Bs(磁感应强度)、高λs(饱和磁致伸缩系数)和低频、高温下使用的铁磁原件。如电磁铁极头,磁控管中的端焊管,电话耳机耳膜振动膜,力矩马达转子、微电子转子、磁致伸缩换能器铁芯、电源变压器、继电器、换能器等……。
1J22铁钴钒软磁合金已生产、使用多年,性能稳定,材料较成熟。成品规格主要是热轧材、锻材、冷拉丝、冷轧带。但1J22合金同时存在价格较贵、易氧化、加工性能差等缺点,一定程度上限制了其使用范围。
三、1J22合金的生产工艺
3.1 1J22合金的冶炼和铸造
1J22合金熔炼与铸造工艺采用真空感应炉(VIM)熔炼。生产过程中如采用全新料冶炼时,由于含Co量高,气体较多,冶炼时很容易产生钢液溅射的现象,造成化学成分难于控制和粘结坩埚。因此在冶炼时可配入40~50%的返回料可以减少钢液的喷溅。配入的C也需在装料时全部加入坩埚中,这样可以避免在精炼时加C造成大量气体上升和钢液沸腾喷溅。
从《采用不同返回比试制软磁合金1J22热轧带材的研究》一文中可以看出,采用不同的返回比而制定的与其相应的工艺可以生产出符合GB/T 15001-94 和GB/T 15002-94标准的1J22合金热轧带材,且用不同的返回比生产出来的带材其性能也非常接近。随着返回比的增大,其带材成本也大幅下降。同时,如果全部采用全新料冶炼,锻造时容易出现肉眼可见的小裂纹,原因如下:全新料熔清后浮在钢水面上的炉渣较多(全新料加入的钒铁较多,而钒铁中的夹杂物较多,会形成较多的炉渣),而这些炉渣在真空浇注时残留在真空锭的表面,真空锭虽经剥皮并经局部打磨,但残留的个别未彻底清除微细缺陷在锻造时,容易产生应力集中而出现微小裂纹。
3.2 1J22合金锻坯的表面处理
1J22合金锻造后,锻坯进行修磨时,往往产生锻坯表面发纹或网裂,严重影响后续产品的质量。产生的原因主要是1J22合金在900~930℃附近发生α↔γ相转变,但是在470~640℃区间也会有γ相析出(α′↔α′+γ),采用砂轮修磨时往往因为局部过热,锻坯表面局部会出现发蓝现象,这会导致析出γ相,使锻坯的局部内应力增加,塑性降低,产生表面发纹。锻坯产生发纹的地方,愈是加重修磨,发纹愈是严重。所以在锻坯表面处理时可以采用轻微的修磨量或者用刨床去皮。
3.3 1J22合金的热加工及淬火工艺
3.3.1 1J22合金的热轧工艺
1J22合金热加工塑性良好,锻坯加热温度为1160~1180℃,保温时间15~20分钟,终轧温度大于850℃。热轧最终厚度一般控制在2.0~2.3mm左右。热轧带太厚,影响了热轧带的淬透性,在后续的冷轧过程中容易出现脆断和边裂;如热轧带太薄,又会影响到热轧的厚度精度及板形难以控制,影响到后续的冷轧加工。