差动保护的工作基本知识

合集下载

差动保护的基本原理

差动保护的基本原理

差动保护的基本原理差动保护是电力系统中常用的一种保护方式,用于检测电气设备发生故障时的电流差异,从而及时采取动作措施,防止故障扩大并保护设备安全运行。

本文将从差动保护的基本原理、差动保护的主要应用领域以及差动保护的发展趋势等方面进行详细介绍。

差动保护的基本原理差动保护是基于电流差动原理而建立的。

其基本原理是通过比较电流的进出差异来检测设备是否发生故障。

在理想情况下,正常工作时电流的进出应该是相等的,即电流之差为零。

如果设备发生故障,则电流发生偏差,进出电流之差将不为零,这时差动保护系统将发出动作信号,切断故障部分的电源,保护系统的正常运行。

差动保护系统主要由主保护和备用保护两部分组成。

主保护负责实现差动保护的主要功能,备用保护则在主保护系统发生故障时起到备份作用。

主保护系统通常由差动电流继电器、比较器以及动作执行器等组成。

差动电流继电器负责将进出电流进行比较,发现差异时输出信号给比较器,比较器再将信号转化为动作信号给动作执行器。

差动保护的主要应用领域差动保护广泛应用于电力系统的各个环节,包括发电厂、变电站以及配电网等。

在发电厂中,差动保护用于发电机组、变压器等设备的保护。

在变电站中,差动保护则用于变压器、电缆线路等高压设备的保护。

而在配电网中,差动保护主要应用于低压设备,如配电变压器、电缆线路等。

差动保护的发展趋势随着电力系统的不断发展和现代化要求的提高,差动保护也在不断演变和完善。

目前,差动保护已经实现了微机保护的发展,并结合了现代的通信技术。

微机保护使得差动保护系统的功能更加强大,可实现更精确的测量和判断。

通信技术的应用使得差动保护系统能够实现远程控制和监控,提高了运维效率和安全性。

此外,差动保护系统还在趋向智能化和自适应方向发展。

智能化差动保护系统能够实现自动分析故障类型和区域,准确识别故障类型并采取相应的保护措施。

自适应差动保护系统则能够根据电网的实际运行情况对差动保护参数进行动态调整,提高保护系统的适应性和准确性。

差动保护培训课件

差动保护培训课件

差动保护培训课件差动保护培训课件差动保护是电力系统中一项重要的保护措施,它可以有效地检测和保护电力系统中的故障,确保电力系统的安全稳定运行。

在电力系统中,各种故障可能会导致电流异常增大或异常减小,而差动保护的作用就是通过比较系统中的电流差异来判断是否存在故障,并及时采取保护动作,以避免故障扩大和对电力设备造成损坏。

差动保护的基本原理是根据电流的差异来判断系统中是否存在故障。

在差动保护系统中,通常会有一组差动保护继电器,它们通过接收来自电流互感器的电流信号,并进行比较和判断。

当系统中的电流差异超过设定的阈值时,差动保护继电器会发出保护信号,触发相应的保护动作。

差动保护的可靠性和准确性对电力系统的安全运行至关重要。

为了确保差动保护的有效性,需要进行相关的培训和学习。

差动保护培训课件就是为了满足这一需求而开发的教学材料。

差动保护培训课件通常包括以下内容:1. 差动保护的基本原理:介绍差动保护的基本原理和工作方式,包括电流互感器的使用、差动保护继电器的工作原理等。

2. 差动保护的类型和应用:介绍差动保护的不同类型和应用场景,包括线路差动保护、变压器差动保护、发电机差动保护等。

3. 差动保护的配置和设置:介绍差动保护系统的配置和设置方法,包括选择合适的互感器、设置保护阈值等。

4. 差动保护的故障分析和处理:介绍差动保护系统中常见的故障类型和处理方法,包括故障诊断、保护动作延时等。

5. 差动保护的维护和检修:介绍差动保护系统的维护和检修方法,包括定期检查、设备更换等。

通过差动保护培训课件的学习,人们可以了解差动保护的基本原理和工作方式,掌握差动保护的配置和设置方法,提高对差动保护系统的故障分析和处理能力,以及差动保护系统的维护和检修技能。

差动保护培训课件的开发和使用,不仅可以提高电力系统工作人员的技术水平和工作效率,还可以提高电力系统的运行安全性和可靠性。

通过培训和学习,人们可以更好地理解差动保护的重要性,掌握差动保护的操作技巧,提高对电力系统的保护能力,确保电力系统的安全稳定运行。

变压器纵差动保护的基本原理基础知识讲解

变压器纵差动保护的基本原理基础知识讲解

I
理想特性
1TA
2TA
Iunb I
Iunb Knp Kst 0.1Ik.max
措施:在定值计算中加以考虑
5. 带负荷调整变压器分接头产生的不平衡电流
nTA2 nT
nTA1
3
措施:在定值计算中加以考虑
6.2.3 具有制动特性的差动继电器
(Differential relay with restraint characteristic)
变压器纵差动保护的基本原理 基础知识讲解
nTA1 I1 . . I1
nT
nTA2 I2 . . I2
正常运行或外部故障时,应使
KD
Id
I1 I2 0
I1 I2
I1 I2 nTA1 nTA2
nTA2 nTA1
nT
nTA1 I1 . . I1
nT
nTA2 I2 . . I2
KD
Id
I1 I2
将变压器绕组接成三 角形的电流互感器二 次绕组接成星形
2. 三相变压器接线产生的不平衡电流
.
nTA1
.I
A
2
.
.
I
B2
.
. I
C2
I
A2
I
B2
3I
A
2
I
A
2
数值补偿:
I
A1
I
B1
I
C1
nT
I
A1
I
B1
I
C1
nTA 2
.
.I
A
2
.
. I
B
2
.
. I
C2
Id
Id
Id

主变差动保护的基本原理

主变差动保护的基本原理

主变差动保护的基本原理主变差动保护是一种用于保护电力系统主变压器的重要保护装置。

它通过检测主变两侧电流的差值,判断主变压器是否发生故障,并根据判断结果进行相应的保护动作。

主变差动保护具有灵敏、可靠、快速等特点,是保护主变压器安全运行的主要手段之一。

主变差动保护的基本原理如下:1.差动电流原理:主变差动保护是基于差动电流原理工作的。

在正常情况下,主变两侧的电流应当是相等的,即差动电流为零。

而当主变发生故障时,例如短路、接地等,主变两侧的电流就会发生不平衡,即出现差动电流。

2.电流传感器:主变差动保护装置通过电流传感器获取主变两侧的电流信息,这些电流传感器通常是电流互感器。

主变差动保护通常使用两个电流传感器,分别连接到主变两侧的线路上。

3.电流比较:主变差动保护对两侧电流进行比较,以判断是否发生故障。

通常,差动保护器会对两侧电流进行相位和幅值的比较。

如果主变两侧电流相等,没有差动电流,差动保护器则认为主变正常;而如果主变两侧电流不相等,存在差动电流,差动保护器则判断主变发生故障。

4.差动保护动作:当差动保护器判断主变发生故障时,它会触发保护动作,以隔离故障点并保护主变。

差动保护器的保护动作通常通过输出一个或多个触发信号来实现,触发信号可以用来操作断路器、闸刀等设备。

5.可靠性增强技术:为了提高主变差动保护的可靠性,常常采用一些增强技术。

例如,差动保护器可以通过设置延时、滞后等功能来抑制瞬时故障误动作。

此外,还可以使用同步电流补偿、零序电流补偿等技术来提高保护的精度和可靠性。

总结起来,主变差动保护通过检测主变两侧电流的差异,来判断主变是否发生故障,并触发相应的保护动作。

它具有灵敏、可靠的特点,是保护主变压器运行安全的重要手段之一。

同时,通过采用增强技术,可以进一步提高保护的可靠性和精度。

差动保护的工作基本知识

差动保护的工作基本知识

差动保护的⼯作基本知识1、变压器差动保护的⼯作原理与线路纵差保护的原理相同,都是⽐较被保护设备各侧电流的相位和数值的⼤⼩。

2、变压器差动保护与线路差动保护的区别:由于变压器⾼压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。

因此,为了保证纵差动保护的正确⼯作,须适当选择各侧电流互感器的变⽐,及各侧电流相位的补偿使得正常运⾏和区外短路故障时,两侧⼆次电流相等。

例如图8-5所⽰的双绕组变压器,应使8.3.2变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的⽅法(1)励磁涌流:在空载投⼊变压器或外部故障切除后恢复供电等情况下在空载投⼊变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

(2)产⽣励磁涌流的原因因为在稳态的情况下铁⼼中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。

但由于铁⼼中的磁通不能突变,因此将出现⼀个⾮周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁⼼中的磁通将达到2Φm+Φr,其幅值为如图8-6所⽰。

此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很⼤,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点:①励磁电流数值很⼤,并含有明显的⾮周期分量,使励磁电流波形明显偏于时间轴的⼀侧。

②励磁涌流中含有明显的⾼次谐波,其中励磁涌流以2次谐波为主。

③励磁涌流的波形出现间断⾓。

表8-1 励磁涌流实验数据举例(4)克服励磁涌流对变压器纵差保护影响的措施:采⽤带有速饱和变流器的差动继电器构成差动保护;②利⽤⼆次谐波制动原理构成的差动保护;③利⽤间断⾓原理构成的变压器差动保护;④采⽤模糊识别闭锁原理构成的变压器差动保护。

2、不平衡电流产⽣的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电⼒系统中变压器常采⽤Y,d11接线⽅式,因此,变压器两侧电流的相位差为30°,如下图所⽰,Y 侧电流滞后△侧电流30°,若两侧的电流互感器采⽤相同的接线⽅式,则两侧对应相的⼆次电流也相差30°左右,从⽽产⽣很⼤的不平衡电流。

线路的差动保护课件

线路的差动保护课件
根据保护对象的不同,差动保护可以分为变压器差动保护、 发电机差动保护、母线差动保护等。
பைடு நூலகம்
差动保护的应用场景
差动保护广泛应用于电力系统的变压器、发电机、母线等 关键设备的保护。
在变压器中,差动保护用于检测和隔离变压器绕组和引线 的短路故障。在发电机中,差动保护用于检测和隔离定子 绕组和转子绕组的短路故障。在母线中,差动保护用于检 测和隔离母线及其连接设备的短路故障。
模拟线路故障情况,测试线路差动保护装置 的故障检测和隔离能力。
现场测试
在电力系统中,对实际运行的线路差动保护 装置进行测试,验证其功能和性能。
耐压测试
对线路差动保护装置进行高电压测试,验证 其在高电压下的性能和稳定性。
线路差动保护的验证过程
功能验证
验证线路差动保护装置的基本功能,如故障 检测、隔离等是否正常。
某500kV超高压输电线路的差动保护测试
经过严格的功能和性能验证,该线路差动保护装置在超高压输电线路中表现出良好的性能和稳定性。
05
线路差动保护的发展趋 势与展望
线路差动保护技术的未来发展方向
数字化发展
利用数字信号处理技术提 高差动保护的可靠性和灵 敏度。
智能化发展
结合人工智能和大数据技 术,实现差动保护的智能 诊断和预警。
缺点
差动保护装置也存在一些缺点。例如,它容易受到电流互感器饱和和涌流的影响,导致误动作或拒动作。此外, 对于小电流接地系统,差动保护装置的应用也受到限制。
线路差动保护的关键技术
01
电流互感器选择
选择合适的电流互感器是差动保护的关键之一。电流互感器应具有高精
度、低饱和、低误差等特点,以保证差动保护的可靠性和准确性。

变压器差动保护

变压器差动保护

变压器差动保护一、引言:电力变压器对电力系统的安全稳定运行至关重要。

一旦发生故障遭到损坏,将会造成很大的经济损失,因此,对继电保护的要求很高,差动保护是变压器主保护之一,动作迅速、灵敏而且可靠。

该保护也是我们继电保护调试人员在工作中经常接触到的设备。

下面将介绍一些有关于差动保护方面的一些知识。

二、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35KV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。

简单地讲,就是输入的两端TA之间的设备。

由于差动保护对保护区外故障不会动作,因此差动保护不需要与区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作。

差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器主保护。

三、差动保护的原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。

差动保护把被保护的变压器看成是一个节点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。

在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的,从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。

当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过微机保护程序运行,各侧电流存在的相位差由软件自动进行校正,自动计算出各侧电流IH-(IM-IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流)则保护不动作。

光纤差动保护原理构成和动作结果基础知识讲解

光纤差动保护原理构成和动作结果基础知识讲解
19
七、案例共享
1、某电站35kV 高压开关柜PT间隔保险卡子爬电处理
保险卡子对绝 缘支座爬电
原理:光纤分相电流差动保护的基本原理是借助光纤通道,
实时地向对侧传递每相电流的采样数据,同时接收对侧的 电流采样数据,两侧保护利用本地和对侧电流数据经过 同步处理后分相进行差电流计算。
3
一、光纤差动保护原理
2、光纤差动保护优点
1)光纤纵联保护的优异性能皆源于其光纤通道,充分发挥光纤通道的高带宽、 高可靠性优点,最终使超高压成套线路保护装置发生很大的变化,而性能得以更 加完善。 2)光纤作为继电保护的通道介质具有不怕超高压与雷电电磁干扰、对电场绝缘 、频带宽和衰耗低等优点。 3)能够准确地区分内部与外部故障,不需要相邻线路在保护上配合,可以实现 全线速动。 4)简单可靠,继电保护四性“速动性、选择性、可靠性、灵敏性” 同时满足要 求。 5)能适应非全相、电力系统震荡等。 6)装置简单,易于集成化板件式运维,某一原件故障,可插拔式更换,便于检 修和维护。 7)稳定性高,TA、TV断线误动可能性低。
18
六、光纤差动保护动作处理
• 完整、准确记录报警信号及保护装置屏显示的信息。 • 检查后台机(或打印机)的保护动作事件记录。 • 打印故障录波的故障波形,及时从保护装置及故障录波器中导出并保
存故障录波数据文件。 • 及时上报现场主管领导或调度部门。 • 详细记录保护动作情况。 • 分析保护动作原因,判断保护动作正确性。 • 积极查找故障点,如有明显设备故障点,应及时保存图片资料。 • 整理保护动作分析报告,以速报形式上报上级管理部门。
15
三、光纤差动保护应用
3)设备运行操作 35KV线路光钎差动保护装置投入步骤 • 查线路保护装置全部出口压板在退出。 • 查线路保护装置全部保护功能压板在退出。 • 退出装置检修压板。 • 合上直流馈线盘至35KV保护盘电源开关。 • 合上UPS交流馈线盘至35KV保护盘电源开关。 • 合上保护盘后直流操作电源开关 • 合上保护盘后交流220V电源开关 • 合上保护盘后35KV线路TV电压引入开关。 • 查保护装置上电正常。 • 按规定投入功能保护压板。 • 按规定投入跳闸出口压板。 • 再次确认保护压板投入正确。 35KV 线路光纤纵差保护装置退出步骤 • 查保护装置无报警信息。 • 退出保护装置出口跳闸压板。 • 退出保护装置功能压板。 • 投入装置检修压板。 • 分开保护盘后35KV线路TV电压引入开关。 • 分开保护盘后交流220V电源开关。 • 分开保护盘后直流操作电源开关。 • 分开直流馈线盘至35KV保护盘电源开关。 • 分开UPS交流馈线盘至35KV保护盘电源开关。

差动保护基本原理

差动保护基本原理

差动保护基本原理1、母线差动保护基本原理母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的;因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同;如果母线发生故障,这一平衡就会破坏;有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器;如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围2、什么是差动保护为什么叫差动这样有什么优点差动保护是变压器的主保护,是按循环电流原理装设的;主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障;在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器;在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的;从理论上讲,正常运行及外部故障时,差动回路电流为零;实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为 Ik=I1-I2=Iumb要求不平衡点流应尽量的小,以确保继电器不会误动;当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零无电源侧,这是流过继电器的电流为I1与I2之和,即Ik=I1+I2=Iumb能使继电器可靠动作;变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线;由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作;3、为什么220KV高压线路保护用电压取母线TV不取线路TV事实上,两个电压都接入保护装置的,它们的作用各不相同母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别线路电压,一般用来重合闸的时候用,作为线路有压无压的判据现在220kV线路保护比较常用的就是一套光纤电流差动以及一套高频距离保护也有采用两套光纤电流,两套高频的比较少了4、变压器差动保护的基本原理1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小;2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同;因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等; 例如图8-5所示的双绕组变压器,应使1.全线速动保护在高压输电线路上,要求继电保护无时限地切除线路上任一点发生的故障;2.单侧测量保护无法实现全线速动所谓单侧测量保护是指保护仅测量线路某一侧的母线电压、线路电流等电气量;单侧测量保护有一个共同的缺点,就是无法快速切除本线路上的所有故障,最长切除时间为秒左右;由上图可以看出本线路末端故障k1与下线路始端故障k2两种情况下,保护测量到的电流、电压几乎是相同的;如果为了保证选择性,k2故障时保护不能无时限切除,则本线路末端k1故障时也就无法无时限切除;可见单侧测量保护无法实现全线速动的根本原因是考虑到互感器、保护均存在误差,不能有效地区分本线路末端故障与下线路始端故障; 3.双侧测量保护原理如何实现全线速动为了实现全线速动保护,保护判据由线路两侧的电气量或保护动作行为构成,进行双侧测量;双侧测量时需要相应的保护通道进行信息交换;双侧测量线路保护的基本原理主要有以下三种: 1以基尔霍夫电流定律为基础的电流差动测量; 2比较线路两侧电流相位关系的相位差动测量; 3比较两侧线路保护故障方向判别结果,确定故障点的位置;上图为电流差动保护原理示意图,保护测量电流为线路两侧电流相量和,也称差动电流;将线路看成一个广义节点,流入这个节点的总电流为零,正常运行时或外部故障时 ,线路内部故障时 ,即 ; 忽略了线路电容电流后,在下线路始端发生故障时,差动电流为零;在本线末端发生故障时,差动电流为故障点短路电流,有明显的区别,可以实现全线速动保护;电流差动原理用于线路纵联差动保护、线路光纤分相差动保护以及变压器、发电机、母线等元件保护上;上图为相位差动保护简称“相差保护”原理示意图,保护测量的电气量为线路两侧电流的相位差; 正常运行及外部故障时,流过线路的电流为“穿越性“的,相位差为1800;内部故障时,线路两侧电流的相位差较小;相位差动保护以线路两侧电流相位差小于整定值作为内部故障的判据,主要用于相差高频保护,由于该保护对通道、收发信机等设备要求较高,技术相对复杂,微机型线路保护已不采用相差高频保护原理;图为比较线路两侧保护对故障方向判别结果的纵联方向保护原理示意图;外部故障时远故障侧保护判别为正向故障,而近故障侧保护判别为反向故障;如果两侧保护均判别为正向故障,则故障在本线路上;由于纵联方向保护仅需由通道传输对侧保护的故障方向判别结果,属于逻辑量,对通道的要求较低,目前广泛应用于高压线路微机保护上;故障方向的判别既可以采用独立的方向元件各种方向纵联保护也可以利用零序电流保护、距离保护中的零序电流方向元件、方向阻抗元件完成纵联零序、纵联距离保护; 7.1.2纵联保护分类纵联保护按照通道类型、保护原理、信息含义等有多种分类方法; 1.按通道类型分类保护通道类型主要有:1导引线,两侧保护电流回路由二次电缆连接起来,用于线路纵差保护; 2载波通道,使用电力线路构成载波通道,用于高频保护; 3微波通道,用于微波保护; 4光纤通道,用于光纤分相差动保护; 2.按保护原理分类 1电流差动原理; 2纵联方向原理; 3.按通道传送信息含义分类上图a约定保护判明故障为反方向时,发出“闭锁信号”闭锁两侧保护,这就称为“闭锁式”纵联保护;图b则约定保护判明为正向故障时向对侧发出“允许信号”,保护启动后本侧判别为正向故障且收到对侧保护的允许信号时说明两侧保护均判别故障为正方向,动作于跳闸出口,这种方案为“允许式”纵联保护 . 纵联保护还可以在“跳闸信号“的基础上构成;线路两侧的Ⅰ段保护动作后跳开本侧断路器,同时向对侧保护发出”跳闸信号“,对侧保护收到跳闸信号后立即跳闸;只要线路两侧的Ⅰ段保护的保护区有重叠,就可以构成全线速动保护什么是差动保护差动保护是利用基尔霍夫电流定理工作的,通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器,按差接法接线,正常运行以及保护范围以外故障时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定.差动又分为横差和纵差;横差:在平行的双回线路上,由于阻抗相等,其电流和相位也相等,当一回线路故障时,流过两线路的故障电流大小将不等,利用双回线路这个特点构成的保护;纵差:比较线路双侧的电气量.什么是母线完全差动保护什么是母线不完全差动保护1、母线完全差动保护是将母线上所有的各连接元件的电流互感器按同名相、同极性连接到差动回路,电流互感器的特性与变比均应相同,若变比不能相同时,可采用补偿变流器进行补偿,满足ΣI=0;差动继电器的动作电流按下述条件计算、整定,取其最大值: 1、躲开外部短路时产生的不平衡电流;2、躲开母线连接元件中,最大负荷支路的最大负荷电流,以防止电流二次回路断线时误动; 2、母线不完全差动保护只需将连接于母线的各有电源元件上的电流互感器,接入差动回路,在无电源元件上的电流互感器不接入差动回路;因此在无电源元件上发生故障,它将动作;电流互感器不接入差动回路的无电源元件是电抗器或变压器。

母线差动保护原理

母线差动保护原理

母线差动保护原理母线差动保护是一种重要的电力系统保护,通常用于保护电力系统中的母线和变压器。

它的基本原理是,当电力系统中发生故障时,母线差动保护会检测到电流的不平衡,并自动切断相关的设备,以防止更严重的损坏。

一、母线差动保护的基本原理母线差动保护的基本原理是,当电力系统中发生故障时,在故障点附近的母线上会产生电流不平衡,这种不平衡电流会被母线差动保护装置检测到,从而自动切断相关的设备,以防止更严重的损坏。

母线差动保护装置由两部分组成,即差动检测部分和分闸部分。

差动检测部分由两个电流互感器组成,其中一个电流互感器分别连接到母线的两侧,另一个电流互感器连接到母线的中央,它们的输出电流可以检测到母线上的电流不平衡情况。

当检测到电流不平衡时,分闸部分就会自动切断相关的设备,以防止更严重的损坏。

二、母线差动保护的工作原理母线差动保护的工作原理是,当发生故障时,在母线上会产生电流不平衡,电流互感器会检测到这种电流不平衡,并将信号发送给母线差动保护装置,母线差动保护装置会根据信号的大小自动切断相关的设备,以防止更严重的损坏。

母线差动保护的工作原理可以通过下图来说明:图1 母线差动保护的工作原理从图中可以看出,当发生故障时,母线上会出现电流不平衡,电流互感器会检测到这种电流不平衡,并将信号发送给母线差动保护装置,母线差动保护装置会根据信号的大小自动切断相关的设备,以防止更严重的损坏。

三、母线差动保护的优点母线差动保护的优点有很多,其中最主要的优点是:(1)快速反应。

母线差动保护的反应速度非常快,可以在短时间内检测到电流的不平衡,从而及时切断相关的设备,以防止更严重的损坏。

(2)精确度高。

母线差动保护的精确度非常高,可以准确检测到母线上的电流不平衡,从而及时切断相关的设备,以防止更严重的损坏。

(3)容易安装。

母线差动保护装置安装简单,只需将电流互感器安装在母线的两侧和中央即可,无需额外的安装成本。

四、母线差动保护的应用母线差动保护的应用非常广泛,它可以用于保护电力系统中的母线和变压器,以及其他电力设备,如电机、负荷开关、断路器等。

差动保护工作原理

差动保护工作原理

差动保护工作原理差动保护是电力系统保护中常用的一种保护方式,主要用于检测电力系统中的故障情况,并采取措施防止故障扩大。

差动保护可以用于对各种电气设备进行保护,如变压器、发电机、母线等。

下面将详细介绍差动保护的工作原理。

差动保护是一种基于电流差值的保护方式。

其基本原理是通过比较同一电路的两个或多个点的电流,来判断电气设备是否存在故障。

差动保护一般采用主动式差动保护,也就是主动比较电流并判断是否存在故障,另外还有被动式差动保护,也就是被动接受其他装置的差动信号。

差动保护通常由一个差动继电器组成,该继电器上接入从变压器、发电机以及线路中取得的电流信号。

差动继电器接受这些电流信号,并通过比较这些信号的差异来判断电气设备是否存在故障。

差动保护的工作原理大致可以分为三个步骤:采样、比较和判定。

首先是采样。

差动继电器上接入从电气设备中取得的电流信号。

这些电流信号是通过采样装置采集而来的,通常采用电流互感器获取变压器、发电机以及线路中的电流信号。

采样装置会将采集的电流信号转换成适合差动继电器处理的信号,然后输入到差动继电器中。

接下来是比较。

差动继电器将接收到的电流信号进行比较,比较对象通常是同一电路中的两个或多个点的电流信号。

差动继电器会将这些电流信号进行差分运算,得到一个差值。

如果差值超过所设定的阈值,就会触发差动继电器的动作。

最后是判定。

差动继电器会根据比较得到的差值判断电气设备是否存在故障。

如果差值超过阈值,差动继电器会发出警报信号,并向对应的断路器或开关发送信号,将故障路段进行隔离。

如果差值在阈值之内,差动继电器则认为电气设备正常运行。

差动保护的工作原理中,要特别注意的是阈值的设定。

阈值的大小与电气设备的特性有关,通常需要根据设备的额定电流和故障特性来确定。

阈值设置过小,容易造成误动作,阈值设置过大,容易漏检故障。

差动保护相对来说是一种较为简单、可靠的保护方式。

它可以实时监测电气设备的工作情况,一旦发现故障可以迅速切除故障路段,保护系统的安全稳定运行。

差动保护的基本原理

差动保护的基本原理

差动保护的基本原理
嘿,朋友们!今天咱来唠唠差动保护的基本原理。

你想啊,差动保护就像是一个特别细心的守护者。

它的任务呢,就是时刻盯着电路的两端,就像一个警惕的哨兵。

咱平常家里用电,电流从这边进去,再从那边出来,正常情况下两边应该是差不多的呀。

可要是中间出了啥问题,比如有地方漏电啦,或者短路啦,那电流可就不一样咯!这时候差动保护就会察觉到:“哎呀,不对劲啊!”然后迅速行动起来,切断电源,保护咱们的电器设备和线路不受损害。

这就好比你有两个口袋,一个放进去 10 块钱,正常来说另一个口袋也应该掏出 10 块钱呀。

但要是只能掏出 8 块钱或者 12 块钱,那肯定是中间出岔子啦!
它的工作原理其实也不复杂,就是通过比较两端电流的差值来判断有没有问题。

如果差值超过了设定的范围,那就说明有情况啦,它可不会坐视不管哦!
而且啊,差动保护特别靠谱,它不会轻易误判。

就像一个经验丰富的老警察,不会随便冤枉好人。

它能精准地识别出真正的故障,然后果断出手。

你说要是没有差动保护,那得多危险啊!说不定啥时候电路出问题了,咱还不知道呢,电器就被烧坏了,那多心疼啊!
所以说啊,差动保护虽然看起来不起眼,但它的作用可大着呢!它就像我们生活中的隐形守护者,默默地保护着我们的用电安全。

咱可得好好感谢这个厉害的小卫士呀,有了它,我们才能安心地用电,不用担心电路出啥大毛病。

大家说是不是这个理儿呀!反正我觉得差动保护真的是太重要啦!。

变压器差动保护培训内容

变压器差动保护培训内容
备注:所谓保护装置启动实际就是一个准备状态,之后当装 置启动后才能进行下一步的动作,这个就是一个准备状态。
1.1 差流启动元件 差电流启动元件的判据为: |id|≥IQD; 其中:id 为差动电流,IQD 为差流启动门槛;
当任一相差动电流大于启动门坎时,保护启动; 适用保护:纵联差动保护。 1.2 差流突变量启动元件 差流突变量启动元件判据: │[id(k)-id(k-2n)]│≥IQD; id(k)为当前差动瞬时值,id(k-2n)为当前采样点前推二
五、 纵联比率差动保护与差动速断保护之间的 区别
一般情况下比率制动原理的差动保护作为电力变压器 主保护,但是在严重内部故障时,短路电流很大情况下, 它严重饱和使交流暂态传变严重恶化,它的二次侧基波电 流为零,高次谐波分量增大,发应二次谐波的判据误将比 率制动原理的差动保护闭锁,无法反应区内短路故障。
比例差动保护采用经傅氏变换后得到的电流有效值 进行差流计算,用来区分差流是由于内部故障还是外部
具体动作方程如下:
1. Id≥Iopmin,
Ir<
Is1
2. Id≥Iopmin+(Ir-Is1)*K1, Is1≤Ir<Is2
3. Id≥Iopmin+(Is2-Is1)*K1+(Ir-Is2)*k2, Ir≥Is2
依旧以龙泉光伏电站高低压侧CT变比为例。
高压侧平衡系数计算方法:
K=1000/1000=1 数
K代表高压侧平衡系
低压侧平衡系数计算方法:
K=1000/2000=5 数
K代表低压侧平衡系
平衡系数的作用:通过将其他侧的CT变比这算到基准侧, 以方便计算差流值。
2.6 变压器差动电流和制动电流计算方法:
变压器比率差动保护是以基尔霍夫定理为基本原 理,流进电流等于流出电流,广泛的采用的是比相

差动保护基本原理

差动保护基本原理

精心整理差动保护基本原理1、母线差动保护基本原理母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。

因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。

如果母线发生故障,这一平衡就会破坏。

有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。

如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围2、什么是差动保护?为什么叫差动?这样有什么优点?差动保护是变压器的主保护,是按循环电流原理装设的。

主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

I1与I2之和,即3、现在4、12、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。

因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。

例如图8-5所示的双绕组变压器,应使1.全线速动保护在高压输电线路上,要求继电保护无时限地切除线路上任一点发生的故障。

2.单侧测量保护无法实现全线速动所谓单侧测量保护是指保护仅测量线路某一侧的母线电压、线路电流等电气量。

单侧测量保护有一个共同的缺点,就是无法快速切除本线路上的所有故障,最长切除时间为0.5秒左右。

由上图可以看出本线路末端故障k1与下线路始端故障k2两种情况下,保护测量到的电流、电压几乎是相同的。

如果为了保证选择性,k2故障时保护不能无时限切除,则本线路末端k1故障时也就无法无时限切除。

可见单侧测量保护无法实现全线速动的根本原因是考虑到互感器、保护均存在误差,不能有效地区分本线路末端故障与下线路始端故障。

3.双侧测量保护原理如何实现全线速动为了实现全线速动保护,保护判据由线路两侧的电气量或保护动作行为构成,进行双侧测量。

差动保护工作原理(一)

差动保护工作原理(一)

差动保护工作原理(一)差动保护工作原理介绍什么是差动保护?差动保护是电力系统中一种常见的保护方式,用于检测和保护电气设备和电网免受电流故障的损害。

差动保护通过测量电流的进出差值来判断设备是否存在故障,并采取相应的保护措施,以防止设备损坏和电力系统的继续故障。

差动保护的原理差动保护的原理基于基尔霍夫电流定律和安培定律。

当电设备正常工作时,进出设备的电流应该是相等的。

如果设备发生故障,比如短路或接触不良,就会导致电流变得不平衡,差动保护系统会检测到这个差值,从而触发保护动作。

差动保护的具体工作流程差动保护的工作流程可以分为以下几个步骤:1.测量进出电流:差动保护系统通过电流互感器或电流传感器测量进出设备的电流。

2.计算差动电流:差动保护系统根据进出电流的测量值,计算出差动电流,即进出电流的差值。

3.设定差动电流动作值:根据设备的特性和保护要求,差动保护系统设置差动电流的动作值,一般是根据设备的额定电流和故障电流来确定。

4.比较差动电流和动作值:差动保护系统会将计算得到的差动电流与设定的差动电流动作值进行比较。

5.触发保护动作:如果差动电流超过了设定的差动电流动作值,差动保护系统会触发相应的保护动作,比如跳闸、报警等。

差动保护的优点和局限性优点:•高速动作:差动保护可以实时地检测电流的差值,实现对设备故障的快速判断和保护动作,从而减少故障对系统的影响。

•灵敏度高:差动保护的动作值可以根据设备的额定电流和故障电流进行设定,可以灵活地适应不同设备的保护需求。

•适用范围广:差动保护适用于各种电力系统,包括发电厂、变电站和配电系统等。

局限性:•误动作风险:差动保护系统可能受到设备的非故障电流(如启动电流)等因素的影响,导致误动作的风险。

•信号传输延迟:差动保护系统需要进行进出电流的测量和计算,信号传输的延迟可能导致保护动作的时效性降低。

•依赖额定电流:差动保护的动作值通常依赖于设备的额定电流,如果设备的额定电流设置不准确,就可能导致保护的准确性受到影响。

线路差动保护的原理及作用

线路差动保护的原理及作用

线路差动保护的原理及作用一、简介线路差动保护是电力系统中常用的一种保护方式,其作用是在发生线路故障时,及时切除故障点,保护电力系统安全运行。

本文将详细介绍线路差动保护的原理及作用。

二、线路差动保护的基本原理1.差动保护的概念差动保护是指通过比较电气设备两端电流值之间的差异来判断设备是否发生故障,并对故障进行切除或报警的一种保护方式。

在电力系统中,线路差动保护是最常见的一种。

2.差动保护原理(1)基本思想线路上各个相位之间存在着相互制约和协调配合的关系,如果出现故障,则这种关系就会被破坏。

因此,在正常情况下,线路两端电流值应该相等,如果出现故障,则两端电流值就会不相等。

利用这个特点,可以通过比较两端电流值之间的差异来判断是否发生了故障。

(2)测量方法为了测量两端电流值之间的差异,需要在两端分别接入一个互感器,并将其次级连接到一个差动保护装置上。

差动保护装置通过比较两个互感器次级电流值之间的差异来判断是否发生了故障。

(3)工作原理当线路正常运行时,两端电流值相等,差动保护装置输出为零。

当线路发生故障时,两端电流值不相等,差动保护装置输出一个信号,触发切除或报警。

三、线路差动保护的作用1.快速切除故障点线路差动保护可以快速切除故障点,避免故障扩大影响整个电力系统的安全运行。

2.提高电力系统的可靠性线路差动保护能够及时发现并切除故障点,有效地提高了电力系统的可靠性和稳定性。

3.节约维修成本通过及时切除故障点,可以避免因故障而导致设备损坏或更换,从而节约了维修成本和时间。

四、总结线路差动保护是一种常见的电力系统保护方式,在实际应用中具有重要作用。

其基本原理是通过比较电气设备两端电流值之间的差异来判断设备是否发生故障,并对故障进行切除或报警。

线路差动保护的作用包括快速切除故障点、提高电力系统的可靠性和节约维修成本。

差动保护知识点总结

差动保护知识点总结

差动保护知识点总结差动保护是电力系统中一种常见的电气保护装置,主要用于检测和保护电力系统中的发电机、变压器、母线等设备。

差动保护的作用是在设备内部发生故障时,能够迅速检测到故障并及时切断故障电路,保护设备和系统的安全运行。

在电力系统中,差动保护是非常重要的一部分,掌握差动保护的知识对于电力系统的稳定运行和设备的安全保护至关重要。

一、差动保护原理差动保护的基本原理是通过比较设备两端的电流,对两端电流的差值进行检测,当这个差值超出一定范围时,即视为设备内部发生故障,需要切断电路。

在差动保护中,通常使用比率系数和阈值等参数来确定差值的范围,并设置报警和动作信号。

差动保护主要有线性差动保护和非线性差动保护两种形式。

线性差动保护是指在一定电流范围内,设备两端电流之差与设备载流量成正比。

而非线性差动保护则指设备两端电流之差与设备在额定载流以下时成正比,在超过额定载流时成指数关系。

这两种差动保护的选择取决于具体的设备类型和应用场合。

二、差动保护的应用差动保护主要应用于发电机、变压器、母线等设备的保护。

发电机的差动保护是断路器和继电保护装置之间的一个重要环节,用于检测发电机线圈内部的短路、接地故障等情况。

变压器的差动保护则是用于检测变压器绕组内部的故障,如短路、接地等。

母线的差动保护主要是用于保护母线两端设备的并联运行,确保母线两侧设备的平衡运行。

此外,差动保护还可以应用于电力系统中的其他设备保护,如电网端口、电容器等。

差动保护在发电厂、变电站、工矿企业等电力系统中都有广泛的应用。

三、差动保护的特点1. 灵敏性高:差动保护能够灵敏地检测设备内部的故障,迅速切断电路,保护设备和系统的安全运行。

2. 可靠性好:差动保护的设计和运行经验丰富,经过长期的实践检验,具有较高的可靠性。

3. 抗干扰能力强:差动保护能够在电力系统复杂的工况下,依然能够正常工作,具有很强的抗干扰能力。

4. 适应性强:差动保护在不同类型的设备上都能够灵活应用,适应性较强。

叙述发电机差动保护的原理

叙述发电机差动保护的原理

叙述发电机差动保护的原理发电机差动保护是为了避免发电机故障时对电网造成严重影响而采取的一种保护措施,其基本原理如下:1. 工作原理当发电机出现内部故障时,会产生电流差动,即发电机入口和出口之间的电流存在差异。

差动保护就是根据电流差动情况,判断发电机是否存在故障,并迅速将故障发电机与电网隔离。

2. 电流差动比较差动保护通过比较发电机两端的电流,如果电流值存在差异超过一定百分比,表示发电机内部存在故障,这时保护装置就会动作隔离故障发电机。

3. 设置差动保护值差动保护动作值的设置应大于发电机正常运行时可能产生的最大误差,同时应小于发电机最轻度内部故障情况下可能出现的最小差动电流,以达到灵敏和可靠的保护。

4. 电流变压器配置需要在发电机入口和出口配置具有充分精度的互感器或电流互感器,来检测电流差异。

还需选择合适变比,满足保护要求。

5. 差动保护装置包括电流互感器、电流回路、差动继电器、时间延迟电路、鳃式负荷开关等部分组成。

继电器检测电流差异,执行保护动作的切断。

6. 多速发电机的差动保护多速发电机在不同转速下,其内部回路参数有较大变化,因此差动保护装置要能够对应多种工况,设置灵活的保护值。

7. 整定保护值需要对差动保护进行整定,通过发电机运行测试确定最佳的保护定值,以确保在故障时迅速动作,并避免误动作。

8. 系统协调差动保护要与发电机的其他保护系统协调配合,优先发挥差动保护的作用,其他保护起备用作用,形成完善的保护系统。

9.定期测试要定期对差动保护进行模拟测试和整定,确保其性能的参数设置都符合要求,能够可靠地在故障时起到隔离保护作用。

10. 差动保护的应用范围差动保护不仅用于发电机保护,也广泛应用于变压器、电动机、电力传输线路等电力设备的保护。

综上所述,这些就是发电机差动保护的主要原理。

它对保证电网安全运行具有重要作用。

变压器差动保护的基本原理

变压器差动保护的基本原理

变压器差动保护的基本原理
变压器差动保护的基本原理是通过对比变压器两侧电流的差值来判断是否存在故障。

差动保护装置通过将变压器两侧电流互相比较,如果两侧电流差值超过设定的阈值,即认为存在故障。

以下为具体的差动保护工作原理:
1. 差动电流计算:差动保护装置会分别测量变压器的高压侧和低压侧电流,并将两侧电流进行相减,得到差动电流值。

2. 零序电流过滤:在差动保护装置中还会对变压器的零序电流进行过滤,因为零序电流会对差动保护的准确性造成干扰。

3. 相位差检测:差动保护装置会检测变压器两侧电流的相位差,如果相位差超过设定的范围,即可能存在故障。

4. 阻抗滤波:为了提高差动保护的鲁棒性和灵敏性,差动保护装置通常会使用阻抗滤波器来滤除高频噪声和谐波。

5. 工作逻辑:差动保护装置会根据设定的差动电流阈值和相位差范围来判断是否存在故障。

如果差动电流超过阈值或者相位差超过范围,保护装置会发出报警信号或者执行故障切除动作,保护变压器的安全运行。

综上所述,变压器差动保护依靠对变压器两侧电流的差值进行监测和判断,通过特定的算法和逻辑来实现对变压器故障的及时保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。

因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。

例如图8-5所示的双绕组变压器,应使8.3.2变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的方法(1)励磁涌流:在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

(2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。

但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。

此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。

③励磁涌流的波形出现间断角。

表8-1 励磁涌流实验数据举例(4)克服励磁涌流对变压器纵差保护影响的措施:采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护。

2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y 侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

②电流互感器计算变比与实际变比不同由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。

【实例分析1】由电流互感实际变比与计算变比不等产生的不平衡电流分析在表8-2中,变压器型号、变比、Y,d11 接线。

计算由于电流互感器的实际变比与计算不等引起的不平衡电流。

计算结果如表8-2。

由表8-2可见,由于电流互感器的实际变比与计算变比不等,正常情况将产生0.21A的不平衡电流。

表8-2 计算变压器额定运行时差动保护臂中的不平衡电流电压侧(KV)38.5(40.4) 6.3额定电流(A)120(114.3)733电流互感器接线ΔY方式电流互感器计算733/5变比电流互感器的实300/5=60 1000/5=200际变比733/200=3.6差动臂的电流207.8/60=3.46(3.3)7不平衡电流 3.67-3.46(3.3)=0.21(0.37)③变压器各侧电流互感器型号不同由于变压器各侧电压等级和额定电流不同,所以变压器各侧的电流互感器型号不同,它们的饱和特性、励磁电流(归算至同一侧)也就不同,从而在差动回路中产生较大的不平衡电流。

④变压器带负荷调节分接头变压器带负荷调整分接头,是电力系统中电压调整的一种方法,改变分接头就是改变变压器的变比。

整定计算中,差动保护只能按照某一变比整定,选择恰当的平衡线圈减小或消除不平衡电流的影响。

当差动保护投入运行后,在调压抽头改变时,一般不可能对差动保护的电流回路重新操作,因此又会出现新的不平衡电流。

不平衡电流的大小与调压范围有关。

(2)暂态情况下的不平衡电流暂态过程中不平衡电流的特点:①暂态不平衡电流含有大量的非周期分量,偏离时间轴的一侧。

②暂态不平衡电流最大值出现的时间滞后一次侧最大电流的时间(根据此特点靠保护的延时来躲过其暂态不平衡电流必然影响保护的快速性,甚至使变压器差动保护不能接受)。

8.3.3减小不平衡电流的措施(1)减小稳态情况下的不平衡电流变压器差动保护各侧用的电流互感器,选用变压器差动保护专用的D级电流互感器;当通过外部最大稳态短路电流时,差动保护回路的二次负荷要能满足10%误差的要求。

(2)减小电流互感器的二次负荷这实际上相当于减小二次侧的端电压,相应地减少电流互感器的励磁电流。

减小二次负荷的常用办法有:减小控制电缆的电阻(适当增大导线截面,尽量缩短控制电缆长度);采用弱电控制用的电流互感器(二次额定电流为lA)等。

(3)采用带小气隙的电流互感器这种电流互感器铁芯的剩磁较小,在一次侧电流较大的情况下,电流互感器不容易饱和。

因而励磁电流较小,有利于减小不平衡电流。

同时也改善了电流互感器的暂态特性。

(4)减小变压器两侧电流相位不同而产生的不平衡电流采用相位补偿①采用适当的接线进行相位补偿法。

图8-10 Y,d11接线变压器差动保护接线图和相量图如变压器为Y,d11接线其相位补偿的方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器接成星形,如图8-10(a)所示,以补偿30°的相位差。

图中为星形侧的一次电流,为三角形侧的一次电流,其相位关系如图8-10(b)所示。

采用相位补偿接线后,变压器星形侧电流互感器二次回路侧差动臂中的电流分别为,它们刚好与三角形侧电流互感器二次回路中的电流同相位,如图8-10(c)所示。

这样,差回路中两侧的电流的相位相同。

②数值补偿变压器星形侧电流互感器变比变压器三角形侧电流互感器变比③软件校正微机保护中采用软件进行相位校正(5)减小电流互感器由于计算变比与标准变比不同而引起的不平衡电流采用数值补偿①采用自耦变流器。

②利用BCH型差动继电器中的平衡线圈。

③在变压器微机保护的软件中采用补偿系数使差动回路的不平衡电流为最小。

(6)由变压器两侧电流互感器型号不同而产生的不平衡电流在差动保护的整定计算中加以考虑。

(7)由变压器带负荷调整分接头而产生的不平衡电流在变压器差动保护的整定计算中考虑。

在稳态情况下,变压器的差动保护的不平衡电流可由下式决定(8)减小暂态过程中非周期分量电流的影响①差动保护采用具有速饱和特性的中间变流器,②选用带制动特性的差动继电器或间断角原理的差动继电器等,利用其它方法来解决暂态过程中非周期分量电流的影响问题。

8.3.4 和差式比率制动式差动保护原理1.双绕组变压器比率制动的差动保护原理。

(1)和差式比率制动的动作判据①差动电流:②制动电流:③差动保护动作的第一判据:④制动比率系数:⑤外部故障时,保护可靠地不动作。

应满足如下判据:⑥差动保护动作的第二判据2.比率制动特性的整定(1)最小启动电流I act0(2)拐点制动电流I brk0可选取(3)最大制动系数K brk.max和制动特性斜率S①最大制动系数②比率制动特性曲线如下图③比率制动系数的整定值D取0.3~0.5④比率制动特性的斜率S,由上图可知当I brk0《I brk.max和I act0《I brk.max,则上式可得即比率制动特性的折线BC过坐标原点,在任何制动电流下有相同的制动系数。

(4)内部故障灵敏度校验在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流(周期分量),同时计算相应的制动电流,由相应的比率制动特性查出对应与的起动电流则灵敏系数要求K sen>2.03.三绕组变压器比率制动的差动保护原理。

对于三绕组变压器,其差动保护的原理与双绕组变压器的差动保护原理相同,但差动电流和制动电流及最大不平衡电流应做相应的更改。

差动电流和制动电流分别为在有的变压器差动保护直接取三侧中最大电流为制动电流,即最大不平衡电流的计算公式如下:在微机保护中,考虑采用数值补偿系数后误差非常小Δm≈0,则上式为4.励磁涌流闭锁原理采用二次谐波制动原理在变压器励磁涌流中含有大量的二次谐波分量,一般约占基波分量的40%以上。

利用差电流中二次谐波所占的比率作为制动系数,可以鉴别变压器空载合闸时的励磁涌流,从而防止变压器空载合闸时保护的误动。

在差动保护中差电流的二次谐波幅值用表示,差电流中二次谐波所占的比率可表示为如下式:如选二次谐波制动系数为定值D3,那么只要大于定值D3,就可以认为是励磁涌流出现,保护不应动作。

在值小于D3,同时满足比率差动其他判据时才允许保护动作。

∴比率差动保护的第三判据应满足下式二次谐波制动系数D3,有0.15、0.2、0.25三种系数可选。

5.差动速断保护(1)采用差动速断保护的原因一般情况下比率制动原理的差动保护能作为电力变压器主保护,但是在严重内部故障时,短路电流很大的情况下,TA严重饱和使交流暂态传变严重恶化,TA的二次侧基波电流为零,高次谐波分量增大,反应二次谐波的判据误将比率制动原理的差动保护闭琐,无法反映区内短路故障,只有当暂态过程经一定时间TA 退出暂态饱和比率制动原理的差动保护才动作,从而影响了比率差动保护的快速动作,所以变压器比率制动原理的差动保护还应配有差动速断保护,作为辅助保护以加快保护在内部严重故障时的动作速度。

差动速断保护是差动电流过电流瞬时速动保护。

(2)差动速断的整定值按躲过最大不平衡电流和励磁涌流来整定6.变压器比率差动保护程序逻辑框图(1)变压器差动保护程序逻辑框图(2)变压器差动保护程序逻辑原理在程序逻辑框图中D1=I act0、D2=K rel I d/I brk为比率制动系数整定值,D3为二次谐波制动系数整定值。

可见比率差动保护动作的三个判据是“与”的关系(图8-14中的与门Y2),必须同时满足才能动作于跳闸。

而差动速断保护是作为比率差动保护的辅助保护。

其定值为D4=I act.s,在比率差动保护不能快速反映严重区内故障时,差动速断保护应无时延地快速出口跳闸。

因此这两种保护是“或”的逻辑关系(图8-14中的或门H3)。

比率差动保护在TA二次回路断线时会产生很大的差电流而误动作,所以必须经TA断线闭锁的否门再经与门Y3才能出口动作。

当TA断线时与门Y3被闭锁住,不能出口动作。

相关文档
最新文档