人教备战中考数学二模试题分类汇编——旋转综合附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、旋转 真题与模拟题分类汇编(难题易错题)
1.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB
=42,设点F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′. (1)求抛物线C 的函数表达式;
(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.
【答案】(1)2
142
y x =-+;(2)2<m <23)m =6或m 173. 【解析】
试题分析:(1)由题意抛物线的顶点C (0,4),A (2,0),设抛物线的解析式为
24y ax =+,把A (220)代入可得a =1
2
-
,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为
()2142y x m =--,由()22142
14
2y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题
意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()
222(4280
20280m m m ⎧-->⎪⎪
>⎨⎪->⎪⎩
,
解不等式组即可解决问题;
(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得
M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.
试题解析:(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为
24y ax
=+,把A (22,0)代入可得a =1
2
-
,∴抛物线C 的函数表达式为21
42
y x =-+.
(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为
()2142y x m =--,由2142
1(4
2x y x y ⎧=-+⎪⎪⎨⎪=-⎪⎩,消去y 得到222280x mx m -+-= ,由题意,
抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()
222(4280
20280m m m ⎧-->⎪⎪
>⎨⎪->⎪⎩
,解得
2<m <22,∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.
理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .
由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-
+上,∴()2
12242
m m -=-++,解得m 173或173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.
情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-
+中,()2
12242
m m -=--+,解得m =6或0(舍弃),∴m =6
时,四边形PMP′N是正方形.
综上所述:m=6或m=17﹣3时,四边形PMP′N是正方形.
2.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.
【解析】
试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知
△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出
CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出
EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;
(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到
△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.
试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,
∴AF=AG,∠FAG=90°,
∵∠EAF=45°,
∴∠GAE=45°,
在△AGE与△AFE中,
,
∴△AGE≌△AFE(SAS);
(2)设正方形ABCD的边长为a.
将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.
则△ADF≌△ABG,DF=BG.
由(1)知△AEG≌△AEF,
∴EG=EF.
∵∠CEF=45°,
∴△BME、△DNF、△CEF均为等腰直角三角形,
∴CE=CF ,BE=BM,NF=DF,
∴a﹣BE=a﹣DF,
∴BE=DF,
∴BE=BM=DF=BG,
∴∠BMG=45°,
∴∠GME=45°+45°=90°,
∴EG2=ME2+MG2,
∵EG=EF ,MG=BM=DF=NF,
∴EF2=ME2+NF2;
(3)EF2=2BE2+2DF2.
如图所示,延长EF交AB延长线于M点,交AD延长线于N点,
将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.
由(1)知△AEH≌△AEF,
则由勾股定理有(GH+BE)2+BG2=EH2,
即(GH+BE)2+(BM﹣GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2
考点:四边形综合题
3.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.
(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.
他的证明思路如下:
第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
第二步:证明△APM≌△ANM,得MP=MM.
第一步:证明∠POM=90°,得OM2+OP2=MP2.
最后得到OM2+BN2=MN2.
请你完成第二步三角形全等的证明.
(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.
【解析】
【分析】
(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明
△APM≌△ANM,再利用勾股定理即可解决问题;
(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.
【详解】
(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
∵点A(0,4),B(4,4),
∴OA=AB,∠OAB=90°,
∵∠NAP=∠OAB=90°,∠MAN=45°,
∴∠MAN=∠MAP,
∵MA=MA,AN=AP,
∴△MAN≌△MAP(SAS).
(2)如图2中,结论仍然成立.
理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.
∵∠NAP=∠OAB=90°,∠MAN=45°,
∴∠MAN=∠MAP,
∵MA=MA,AN=AP,
∴△MAN≌△MAP(SAS),
∴MN=PM,
∵∠ABN=∠AOP=135°,∠AOB=45°,
∴∠MOP=90°,
∴PM2=OM2+OP2,
∴OM2+BN2=MN2;
(3)如图3中,若点B是MN的中点,求MN的长.
设MN=2x,则BM=BN=x,
∵OA=AB=4,∠OAB=90°,
∴OB=2,
∴OM =42﹣x , ∵OM 2+BN 2=MN 2. ∴(42﹣x)2+x 2=(2x)2,
解得x =﹣22+26或﹣22﹣26(舍弃) ∴MN =﹣42+46. 【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.
4.(探索发现)
如图,ABC ∆是等边三角形,点D 为BC 边上一个动点,将ACD ∆绕点A 逆时针旋转
60︒得到AEF ∆,连接CE .小明在探索这个问题时发现四边形ABCE 是菱形. 小明是这样想的:
(1)请参考小明的思路写出证明过程;
(2)直接写出线段CD ,CF ,AC 之间的数量关系:______________; (理解运用)
如图,在ABC ∆中,AD BC ⊥于点D .将ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,延长FE 与BC ,交于点G .
(3)判断四边形ADGF 的形状,并说明理由; (拓展迁移)
(4)在(3)的前提下,如图,将AFE ∆沿AE 折叠得到AME ∆,连接MB ,若
6AD =,2BD =,求MB 的长.
【答案】(1)详见解析;(2)CD CF AC +=;(3)四边形ADGF 是正方形;(4)
13【解析】 【分析】
(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE ,则四边形ABCE 是菱形; (2)先证明C 、F 、E 在同一直线上,再证明△BAD ≌△CAF (SAS ),则∠ADB=∠AFC ,BD=CF ,可得AC=CF+CD ;
(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;
(4)证明△BAM ≌△EAD (SAS ),根据BM=DE 及勾股定理可得结论. 【详解】
(1)证明:∵ABC ∆是等边三角形, ∴AB BC AC ==.
∵ACD ∆绕点A 逆时针旋转60︒得到AEF ∆, ∴60CAE =︒,AC AE =. ∴ACE ∆是等边三角形. ∴AC AE CE ==. ∴AB BC CE AE ===. ∴四边形ABCE 是菱形.
(2)线段DC ,CF ,AC 之间的数量关系:CD CF AC +=. (3)四边形ADGF 是正方形.理由如下: ∵Rt ABD ∆绕点A 逆时针旋转90︒得到AEF ∆, ∴AF AD =,90DAF ∠=︒. ∵AD BC ⊥,
∴90ADC DAF F ∠=∠=∠=︒. ∴四边形ADGF 是矩形. ∵AF AD =,
∴四边形ADGF 是正方形. (4)如图,连接DE .
∵四边形ADGF 是正方形, ∴6DG FG AD AF ====.
∵ABD ∆绕点A 逆时针旋转90︒得到AEF ∆,
∴BAD EAF ∠=∠,2BD EF ==,∴624EG FG EF =-=-=. ∵将AFE ∆沿AE 折叠得到AME ∆, ∴MAE FAE ∠=∠,AF AM =. ∴BAD EAM ∠=∠.
∴BAD DAM EAM DAM ∠+∠=∠+∠,即BAM DAE ∠=∠. ∵AF AD =, ∴AM AD =.
在BAM ∆和EAD ∆中,AM AD BAM DAE AB AE =⎧⎪
∠=∠⎨⎪=⎩
,
∴()BAM EAD SAS ∆≅∆. ∴222246213BM DE EG DG ==+=+=
【点睛】
本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.
5.如图(1)所示,将一个腰长为2等腰直角△BCD 和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED 绕点C 顺时针旋转至△CE’D’,旋转角为a .
(1)如图(2),旋转角a =30°时,点D ′到CD 边的距离D’A =______.求证:四边形ACED ′为矩形;
(2)如图(1),△CED 绕点C 顺时针旋转一周的过程中,在BC 上如何取点G ,使得GD’=E’D ;并说明理由.
(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1
【解析】
分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.
由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;
(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.
(3)分两种情况讨论即可.
详解:(1)D’A=1.理由如下:
过D′作D′N⊥CD于N.
∵∠NCD′=30°,CD′=CD=2,∴ND′= 1
2
CD′=1.
由已知,D’A∥CE,且D’A=CE=1,
∴四边形ACED’为平行四边形.
又∵∠DCE=90°,
∴四边形ACED’为矩形;
(2)如图,取BC中点即为点G,连接GD’.
∵∠DCE=∠D’CE’=90°,
∴∠DCE’=∠D’CG.
又∵D’C= DC,CG=CE’,
∴△DCE’≌△D’CG,
∴GD’=E’D.
(3)分两种情况讨论:①如图1.
∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角
=∠ECE′=180°+30°=210°.
②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.
点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.
6.已知Rt△DAB中,∠ADB=90°,扇形DEF中,∠EDF=30°,且DA=DB=DE,将Rt△ADB的边与扇形DEF的半径DE重合,拼接成图1所示的图形,现将扇形DEF绕点D按顺时针方向旋转,得到扇形DE′F′,设旋转角为α(0°<α<180°)
(1)如图2,当0°<α<90°,且DF′∥AB时,求α;
(2)如图3,当α=120°,求证:AF′=BE′.
【答案】(1)15°;(2)见解析.
【解析】
试题分析:(1)∵∠ADB=90°,DA=DB,∴∠BAD=45°,∵DF′∥AB,
∴∠ADF′=∠BAD=45°,∴α=45°﹣30°=15°;
(2)∵α=120°,∴∠ADE′=120°,∴∠ADF′=120°+30°=150°,∠BDE′=360°﹣90°﹣
120°=150°,∴∠ADF′=∠BDE′,在△ADF′和△BDE′中,,
∴△ADF′≌△BDE′,∴AF′=BE′.
考点:①旋转性质;②全等三角形的判定和性质.
7.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.
(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;
(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.
【答案】(1)1
3
;(2)不公平.
【解析】
试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.
试题解析:(1)共有12种等可能的结果,小于10的情况有4种,
所以指针所指区域内的数字和小于10的概率为1
3
.
(2)不公平,因为小颖获胜的概率为;
小亮获胜的概率为
5
12
.小亮获胜的可能性大,所以不公平.
可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.
8.(1)观察猜想
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是
_____;
(2)拓展探究
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.
【答案】(1)BG=AE.
(2)成立.
如图②,
连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.
正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如图②,连接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]
因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋转过程中,当AE为最大值时,AF=.
9.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;
②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想
∠AEB=θ是否成立?请说明理由.
【答案】(1)证明见解析;
(2)成立,理由见解析
【解析】
试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出
OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;
②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出
∠BEA=90°,即可得出结论;
(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式
,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相
等和三角形内角和定理即可得出∠AEB=θ.
试题解析:(1)证明:①∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵OA=OB,C、D为OA、OB的中点,
∴OC=OD,
∴OC′=OD′,
在△AOC′和△BOD′中,,
∴△AOC′≌△BOD′(SAS),
∴AC′=BD′;
②延长AC′交BD′于E,交BO于F,如图1所示:
∵△AOC′≌△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,∠OAC′+∠AFO=90°,
∴∠OBD′+∠BFE=90°,
∴∠BEA=90°,
∴AC′⊥BD′;
(2)解:∠AEB=θ成立,理由如下:如图2所示:
∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵CD∥AB,
∴,
∴,
∴,
又∠AOC′=∠BOD′,
∴△AOC′∽△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,
∴∠AEB=∠AOB=θ.
考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.
10.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C 重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.
当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE2OC;
当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是
否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
①②③
【答案】图②中OD+OE=2OC成立.证明见解析;图③不成立,有数量关系:OE-OD =2OC
【解析】
试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC 与OD、OE的关系;最后转化得到结论.
试题解析:图②中OD+OE=2OC成立.
证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.
有△CPD≌△CQE,
∴DP=EQ,
∵OP=OD+DP,OQ=OE-EQ,
又∵OP+OQ=2OC,
即OD+DP+OE-EQ=2OC,
∴OD+OE=2OC.
图③不成立,
有数量关系:OE-OD2OC
过点C分别作CK⊥OA,
CH⊥OB,
∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,
∴CK=CH,∠CKD=∠CHE=90°,
又∵∠KCD与∠HCE都为旋转角,
∴∠KCD=∠HCE,
∴△CKD≌△CHE,
∴DK=EH,
∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,
由(1)知:OC,
∴OD,OE,OC满足
OC.
点睛:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.。