朝阳区2016届高三一模数学试题及答案
北京市朝阳区高三年级第一次综合练习数学试卷(理工类)答案

北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,21()sin 22x f x x =+1sin 2x x = sin()3xπ=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由21()sin 22x f x x ωω=+ 1sin 2x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+. 又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;4448(4)C P X C ===所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分 17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AAC C ⊥平面11AA B B , 所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1ABAA A =,所以AC ⊥平面11AA B B .由已知11//AC AC ,所以11AC ⊥平面11AA B B .因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA AB AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,17⋅〈〉===⋅m n m n m n. 所以二面角P AM B --的余弦值为17.………………………………9分 (Ⅲ)存在点P ,使得直线1AC //平面AMP . 设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意). 又1(2,0,2)AC =-,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1AC //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,.……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e1)2e 0aag x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]aa a+=-+.设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=. 所以12PF F ∆的周长为4+易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y,则12x x +=,21284m x x -=, 1y =,2y =. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x -+-====2=0==.因为120k k +=,所以PMN PNM ∠=∠.所以PM PN =. ………………………………………………………14分20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列, 且115k c a ==,22231k c a k ==-, 所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列, 故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。
2016 朝阳高三一模 数学 理 答案

北京市朝阳区高三年级第一次综合练习答案数学试卷(理工类)2016.3一、选择题:本大题共8小题,每小题5分,共40分. 1.答案:D 2. 答案:D 3.答案:A 4.答案:B 5.答案:C 6.答案:D 7.答案:A 8.答案:C二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.答案:1010.答案:21n a n =-,(3)(411)n n ++11.答案:)4π 12.答案:3(,]4-∞ 13.答案:3(0,)414.答案:121||i i i a b =-∑ 22三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)解析:解:(Ⅰ)当1ω=时,21()sin 22x f x x =+1sin 2x x = sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z . 解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由21()sin 22x f x x ωω=+-1sin 2x x ωω= sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=. 则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解析:解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4.由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;4448(4)C P X C ===所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解析:解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AAC C ⊥平面11AA B B , 所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A = , 所以AC ⊥平面11AA B B .由已知11//AC AC ,所以11AC ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA AB AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,⋅〈〉===⋅m n m n m n .所以二面角P AM B --的余弦值为17.………………………………9分 (Ⅲ)存在点P ,使得直线1AC //平面AMP . 设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩ n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =- ,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--= n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1AC //平面AMP .…………14分18.(本小题满分13分)解析: 解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数;当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,.……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==. 依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+--(0)x >,则2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>,()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减,所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e1)2e 0aa g x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a ag x a a a a++=--+--=--212[e 2(1)]a a a +=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线. (3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解析:解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=, 112m y +=,222my +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x -+-===28)(m m ----+==220==.因为120k k +=,所以PMN PNM ∠=∠.所以PM PN =. ………………………………………………………14分20.(本小题满分13分)解析:解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数. 显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列, 且115k c a ==,22231k c a k ==-, 所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列, 故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个. …………………………………………………………………………………………13分。
朝阳区2016届高三一模数学试题及复习资料

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3第一局部(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅C .M N U =D .()U M N ⊆3.>e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan a c b B +-=,则角B 的值为 A . 3π B . 6πC .233ππ或D . 566ππ或6.某工厂一年中各月份的收入、支出状况的统计如图所示,下列说法中错.误.的是A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的改变率与4至5月份的收入的改变率一样D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=月23 4 1 5 6 89 1711(第4题7题侧视A.0r << B.0r <<C.0r < D.0r <<第二局部(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 二项式251()x x+的绽开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标...为 .12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界), 则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项实力特征加以描绘.每名学生的第i (1,2,,12i =)项实力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项实力特征分别记为1212(,,,)A a a a =,1212(,,,)B b b b =,则,A B两名学生的不同实力特征项数为 (用,i i a b 表示).假如两个同学不同实力特征项数不少于7,那么就说这两个同学的综合实力差异较大.若该班出名3学生两两综合实力差异较大,则这3名学生两两不同实力特征项数总与的最小值为 .三、解答题:本大题共6小题,共80分.解容许写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数21()sin 22xf x x ωω=,0ω>.(Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值. 16.(本小题满分13分)为理解学生暑假阅读名著的状况,一名老师对某班级的全部学生进展了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之与为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列与数学期望;(Ⅲ)试推断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需写出结论). 17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由. 18.(本小题满分13分)AMPCBA 1C1B1已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点P 与椭圆:C 22142x y +=.(Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率;(Ⅱ)若直线:l20(0)y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x 轴分别交于M ,N 两点,求证:PM PN =. 20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且nn k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有多数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)当1ω=时,21()sin 222x f x x =+-令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z (7)分(Ⅱ)由21()sin 22xf x x ωω= 因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. (13)分16.(本小题满分13分)解:(Ⅰ)设事务A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之与为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====;所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=. (10)分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A =, 所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B .因为AP ⊂平面11AA B B , 所以11AC AP ⊥.…………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示.由已知 11111222AB AC AA A B AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,⋅〈〉===⋅m n m n m n.所以二面角P AM B --.………………………………9分(Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (明显0λ=不符合题意).又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x xx+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,明显函数()f x 在区间[]1,2上恒大于零;(2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a -上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分(Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01ak x =+,切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<.故方程()0g x =无解,即不存在0x 满意①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增,所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aa g x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点. 取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]aa a+=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,明显不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当a ≤时,不存在过点P(13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+.易得椭圆的离心率=c e a =4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并留意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=,明显直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN=. ………………………………………………………14分20.(本小题满分13分)解:(Ⅰ)视察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列}{n a 是递增的整数数列,且等比数列以2为首项,明显最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128. (ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31nn k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数. 明显11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列, 且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+. 只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,明显12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有多数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52 a 为首项的不同无穷等比数列有多数多个. …………………………………………………………………………………………13分。
北京市朝阳区2016届高三数学第一次综合练习(一模)试题文(含解析)

16.( 本小题总分值13 分〕数列a n 的前 n 项和 S n 2n 2 n ,n N .〔Ⅰ〕求数列a n 的通项公式;〔Ⅱ〕假设nn1 n ,求数列 b的前 n 项和T .bann解析 :〔Ⅰ〕由 S2n 2 n ,n当 n2 时, a n S nS n 1=2n 2 n2 n 2n 14n 3.1当 n 1 时,而4131 ,a 1 S 1 1,所以数列 a n 的通项公式 a n4n 3,nN .,,,,,,,,,6 分〔Ⅱ〕由〔Ⅰ〕可得 b n ( 1)na n( 1)n 4n 3 ,当 n 为偶数时,T n1 59 13 174n 34n2 n ,2当 n 为奇数时,n1 为偶数,T n T n 1 b n 1 2(n1) (4 n 1)2n 1.2n, n,综上, T n 为偶数,,,,,,,,,,13 分2n为奇数.1,n17. ( 本小题总分值 13 分 )某班建议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查 . 调查结果如下表 :阅读名著的本数1 2 3 4 5 男生人数 3 1 2 1 3 女生人数13312〔Ⅰ〕试根据上述数据,求这个班级女生阅读 名著 的平均本数 ;〔Ⅱ〕假设从阅读5 本名著 的学生中任选 2 人交流读书心得, 求选到男生和女生各 1 人的概率 ;〔Ⅲ〕试判断该班男生阅读名著本数的方差s 12与女生阅读名著本数的方差 s 2 2 的大小〔只需写出结论〕.〔注:方差 s21[( x 1 x )2 (x 2 x)2(x nx) 2 ] ,其中x 为nx 1 x 2,,, x n 的平均数〕7解析 :〔Ⅰ〕女生阅读 名著 的平均本数3 本.x10,,,,,,,,,,3 分〔Ⅱ〕设事件A ={从阅读5本名著 的学生中任取 2 人,其中男生和女生各1 人}.男生阅读 5 本名著的 3 人分别记为a 1 , a 2 , a 3,女生阅读5本名著的2人分别记为 b 1, b 2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a 1 ,a 2 , a 1, a 3 , a 2 ,a 3 ,b 1 ,b 2, a 1 , b 1 , a 1,b 2 ,a 2 ,b 1 , a 2 , b 2 , a 3, b 1 , a 3 ,b 2.其中男生和女生各1 人共有 6 个结果,分别是:a 1,b 1, a 1, b 2, a 2 ,b 1, a 2 ,b 2, a 3 , b 1, a 3, b 2.那么 P 〔A 〕63 .,,,,,,,,,,10 分10 5〔 III 〕s 1 2 s 22.,,,,,,,,,, 13 分18. 〔本小题共 14 分〕如图,在三棱柱 ABCA 1BC 11中, AA 1底面 ABC ,BAC90 ,AB AC2 ,AA 13 .M , N 分别为 BC 和CC 1的中点,P 为侧棱BB 1上的动点.〔Ⅰ〕求证:平面 APMBBC CA 1B 1平面 ;1 1C 1P〔Ⅱ〕假设 P 为线段BB 1的中点,求证:AN 1 // 平面APM ;〔Ⅲ〕试判断直线 BC 1与平面APM 是否能够垂直.NAB假设能垂直,求PB 的值;假设不能垂直,请说明理由. CM解析 :〔Ⅰ〕由,M 为BC 中点,且AB AC ,所以AM BC .又因为 BB 1 // AA 1,且 AA 1 底面 ABC ,所以BB 1 底面 ABC .因为 AM底面 ABC ,所以BB 1AM ,又 BB 1 BC B ,所以 AM平面 BBC C .1 1又因为 AM平面 APM ,8解析 :〔Ⅰ〕女生阅读 名著 的平均本数3 本.x10,,,,,,,,,,3 分〔Ⅱ〕设事件A ={从阅读5本名著 的学生中任取 2 人,其中男生和女生各1 人}.男生阅读 5 本名著的 3 人分别记为a 1 , a 2 , a 3,女生阅读5本名著的2人分别记为 b 1, b 2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a 1 ,a 2 , a 1, a 3 , a 2 ,a 3 ,b 1 ,b 2, a 1 , b 1 , a 1,b 2 ,a 2 ,b 1 , a 2 , b 2 , a 3, b 1 , a 3 ,b 2.其中男生和女生各1 人共有 6 个结果,分别是:a 1,b 1, a 1, b 2, a 2 ,b 1, a 2 ,b 2, a 3 , b 1, a 3, b 2.那么 P 〔A 〕63 .,,,,,,,,,,10 分10 5〔 III 〕s 1 2 s 22.,,,,,,,,,, 13 分18. 〔本小题共 14 分〕如图,在三棱柱 ABCA 1BC 11中, AA 1底面 ABC ,BAC90 ,AB AC2 ,AA 13 .M , N 分别为 BC 和CC 1的中点,P 为侧棱BB 1上的动点.〔Ⅰ〕求证:平面 APMBBC CA 1B 1平面 ;1 1C 1P〔Ⅱ〕假设 P 为线段BB 1的中点,求证:AN 1 // 平面APM ;〔Ⅲ〕试判断直线 BC 1与平面APM 是否能够垂直.NAB假设能垂直,求PB 的值;假设不能垂直,请说明理由. CM解析 :〔Ⅰ〕由,M 为BC 中点,且AB AC ,所以AM BC .又因为 BB 1 // AA 1,且 AA 1 底面 ABC ,所以BB 1 底面 ABC .因为 AM底面 ABC ,所以BB 1AM ,又 BB 1 BC B ,所以 AM平面 BBC C .1 1又因为 AM平面 APM ,8解析:〔Ⅰ〕女生阅读名著的平均本数11323314+253 本.x10,,,,,,,,,, 3 分〔Ⅱ〕设事件 A ={从阅读5本名著的学生中任取 2 人,其中男生和女生各 1 人}.男生阅读 5 本名著的 3 人分别记为a1 , a2 , a3,女生阅读5本名著的2人分别记为b1, b2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a1 ,a2, a1, a3, a2 ,a3, b1 ,b2, a1 , b1, a1,b2,a2 , b1, a2 , b2, a3, b1, a3 ,b2.其中男生和女生各 1 人共有 6 个结果,分别是:a1, b1, a1, b2, a2 ,b1, a2 ,b2, a3 , b1, a3, b2.那么 P〔A〕63.,,,,,,,,,,10 分105〔 III 〕s12s22.,,,,,,,,,,13 分18.〔本小题共 14 分〕如图,在三棱柱 ABC A1BC11中, AA1底面 ABC ,BAC90 ,AB AC 2 ,AA13 .M , N分别为 BC 和CC1的中点,P为侧棱BB1上的动点.〔Ⅰ〕求证:平面 APM BBC C A1B1平面;11C1P 〔Ⅱ〕假设 P 为线段BB1的中点,求证:AN1 // 平面APM;〔Ⅲ〕试判断直线 BC1与平面APM是否能够垂直.NA B假设能垂直,求PB 的值;假设不能垂直,请说明理由.CM 解析:〔Ⅰ〕由,M 为BC中点,且AB AC,所以AM BC .又因为 BB1 // AA1,且 AA1底面 ABC ,所以BB1底面 ABC .因为 AM底面 ABC ,所以BB1AM ,又 BB1 BC B,所以 AM平面BBC C.11又因为 AM平面 APM ,解析:〔Ⅰ〕女生阅读名著的平均本数11323314+253 本.x10,,,,,,,,,, 3 分〔Ⅱ〕设事件 A ={从阅读5本名著的学生中任取 2 人,其中男生和女生各 1 人}.男生阅读 5 本名著的 3 人分别记为a1 , a2 , a3,女生阅读5本名著的2人分别记为b1, b2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a1 ,a2, a1, a3, a2 ,a3, b1 ,b2, a1 , b1, a1,b2,a2 , b1, a2 , b2, a3, b1, a3 ,b2.其中男生和女生各 1 人共有 6 个结果,分别是:a1, b1, a1, b2, a2 ,b1, a2 ,b2, a3 , b1, a3, b2.那么 P〔A〕63.,,,,,,,,,,10 分105〔 III 〕s12s22.,,,,,,,,,,13 分18.〔本小题共 14 分〕如图,在三棱柱 ABC A1BC11中, AA1底面 ABC ,BAC90 ,AB AC 2 ,AA13 .M , N分别为 BC 和CC1的中点,P为侧棱BB1上的动点.〔Ⅰ〕求证:平面 APM BBC C A1B1平面;11C1P 〔Ⅱ〕假设 P 为线段BB1的中点,求证:AN1 // 平面APM;〔Ⅲ〕试判断直线 BC1与平面APM是否能够垂直.NA B假设能垂直,求PB 的值;假设不能垂直,请说明理由.CM 解析:〔Ⅰ〕由,M 为BC中点,且AB AC,所以AM BC .又因为 BB1 // AA1,且 AA1底面 ABC ,所以BB1底面 ABC .因为 AM底面 ABC ,所以BB1AM ,又 BB1 BC B,所以 AM平面BBC C.11又因为 AM平面 APM ,解析:〔Ⅰ〕女生阅读名著的平均本数11323314+253 本.x10,,,,,,,,,, 3 分〔Ⅱ〕设事件 A ={从阅读5本名著的学生中任取 2 人,其中男生和女生各 1 人}.男生阅读 5 本名著的 3 人分别记为a1 , a2 , a3,女生阅读5本名著的2人分别记为b1, b2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a1 ,a2, a1, a3, a2 ,a3, b1 ,b2, a1 , b1, a1,b2,a2 , b1, a2 , b2, a3, b1, a3 ,b2.其中男生和女生各 1 人共有 6 个结果,分别是:a1, b1, a1, b2, a2 ,b1, a2 ,b2, a3 , b1, a3, b2.那么 P〔A〕63.,,,,,,,,,,10 分105〔 III 〕s12s22.,,,,,,,,,,13 分18.〔本小题共 14 分〕如图,在三棱柱 ABC A1BC11中, AA1底面 ABC ,BAC90 ,AB AC 2 ,AA13 .M , N分别为 BC 和CC1的中点,P为侧棱BB1上的动点.〔Ⅰ〕求证:平面 APM BBC C A1B1平面;11C1P 〔Ⅱ〕假设 P 为线段BB1的中点,求证:AN1 // 平面APM;〔Ⅲ〕试判断直线 BC1与平面APM是否能够垂直.NA B假设能垂直,求PB 的值;假设不能垂直,请说明理由.CM 解析:〔Ⅰ〕由,M 为BC中点,且AB AC,所以AM BC .又因为 BB1 // AA1,且 AA1底面 ABC ,所以BB1底面 ABC .因为 AM底面 ABC ,所以BB1AM ,又 BB1 BC B,所以 AM平面BBC C.11又因为 AM平面 APM ,。
2016年朝阳区高三数学一模试题及答案理

三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分 13 分) 已知函数 f ( x) =
1 ωx 3 ,ω > 0 . sin ω x + 3 cos 2 − 2 2 2
(Ⅰ)若 ω = 1 ,求 f ( x) 的单调递增区间; (Ⅱ)若 f ( ) = 1,求 f ( x) 的最小正周期 T 的表达式并指出 T 的最大值.
若学生 A, B 的十二项能力特征分别记为 A = (a1 , a2 , 两名学生的不同能力特征项数为
, a12 ) , B = (b1 , b2 , , b12 ) ,则 A, B
(用 ai , bi 表示).如果两个
同学不同能力特征项数不少于 7 ,那么就说这两个同学的综合能力差异较大.若该班有 3 名学生两 两综合能力差异较大,则这 3 名学生两两不同能力特征项数总和的最小值为 .
北京市朝阳区高三年级第一次综合练习
数学试卷(理工类)
(考试时间 120 分钟 满分 150 分)
2016.3
本试卷分为选择题(共 40 分)和非选择题(共 110 分)两部分
第一部分(选择题 共 40 分)
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出符合题目 要求的一项. 1. i 为虚数单位,复数 A. 1 − i
P( X = 2) =
P( X = 3) =
P( X = 4) =
所以随机变量 X 的分布列为
X P
0
1
2
3
4
1 8 18 8 1 70 35 35 35 70 1 16 36 16 1 随机变量 X 的均值 EX = 0 × + 1× + 2 × + 3 × + 4 × = 2 .…………10 分 70 70 70 70 70
2016年北京朝阳区高三一模数学(文)试卷答案与解析

a b
2
2
2 2 2 2 ∴ a b 2a b a b 2a b
∴ a b 0 ∴ab
4.B 【解析】 i 1 , S 1 S 3,i 2 S 8 ,i 3 S 19 , i 4 输出 S 19 5.C 【解析】 3a cos B b sin A 0
8.C 【解析】只需求圆心 0 , 1 到曲线 y
1 1 上的点的最短距离,取曲线上的点 a , , a 1 x 1
a 1
在线1对1 家教网 三好网中小学辅导http://www.sanhao.com
2016 高三一模
1 距离 d a 2 1 a 1
4
n 1 3 4n . 2 n 2n 2
1 2n .
若 n 为偶数时, Tn 1 5 (9) 13 7 4n 4n 3 4
1 2n, 故数列 bn 的前 n 项和 Tn 2 n,
2
3 x 3
【解析】 y 2 8x 焦点为 2 ,0
c 2 4 m2 1 , m 2 3 1 渐近线方程为: y x m
(优辅资源)北京市朝阳区高三数学(文)第一次综合练习(一模)试题(含解析)

北京市朝阳区2016届高三数学(文)第一次综合练习(一模)试题(含解析)(考试时间120分钟 满分150分)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知全集U =R ,集合{}3A x x =≤,{}2B x x =<,则()U B A =I ð A .{}2x x ≤ B .{}13x x ≤≤ C. {}23x x <≤ D .{}23x x ≤≤ 答案:D解析:考查补集与交集的运算。
因为{}U C B ≥=x|x 2,所以,()U B A =I ð{}23x x ≤≤。
2.已知i 为虚数单位,则复数2i1i+= A .1i + B .1i - C .1i -+ D .1i --答案:A解析:分母实数化,即分子与分母同乘以分母的其轭复数:222(1)111i i i i i i -==++-。
3.已知非零平面向量,a b ,“+=-a b a b ”是“⊥a b ”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:C解析:因为||||a b a b +=-r r r r ,平方:22()()a b a b +=-r r r r ,展开,合并同类项,得:0a b =r rg , 所以,a b ⊥r r。
4.执行如图所示的程序框图,输出的S 值为A. 42B. 19C. 8D. 3 答案:B解析:依次执行结果如下:S =2×1+1=3,i =1+1=2,i <4; S =2×3+2=8,i =2+1=3,i <4;S =2×8+1=19,i =3+1=4,i ≥4; 所以,S =19,选B 。
5.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若3cos sin 0a B b A +=,则B = A.π6B.π3 C. 2π3D.5π6答案:C解析:因为3cos sin 0a B b A +=,由正弦定理,得:3sin cos sin sin 0A B B A +=所以,3cos sin 0B B +=,即2sin()3B π+=0,所以,B =2π3。
北京市朝阳区高三数学第一次综合练习(一模)试题 理

北京市朝阳区高三年级第一次综合练习 数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð 3. “a b >”是“e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan 3a c b B ac +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或开始1,1i S ==4?i < 1i i =+2S S i =+输出S结束 否 是(第4题图)6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A .02r << B .1102r <<C .03r <<D .130r << 第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=L ______.万元 月O23430 1 10 20 5689 10 7111240 60 570 90 8收入支出(第7题图)正视图侧视图俯视图2 11111.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t =-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+u u u u r u u u r u u u r.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =L )项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =L ,1212(,,,)B b b b =L ,则,A B 两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分) 已知函数213()sin 3cos 22x f x x ωω=+-,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.人数 本数12345(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.性别男生 1 4 3 2 2 女生1331AMPCBA 1C 1B 119.(本小题满分14分)已知点(2,1)P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率; (Ⅱ)若直线:l 220(0)x y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案DDABCDAC二、填空题:(满分30分) 题号91011121314答案 10 21n a n =-,(3)(411)n n ++ (2,)4π3(,]4-∞3(0,)4121||ii i ab =-∑22(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+-13sin 2x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由213()sin 3222x f x x ωω=+-13sin 22x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====;2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====; 44481(4)70C P X C ===. 所以随机变量X 的分布列为随机变量X 的均值0123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分(Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A =I , 所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA A B AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rn n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以317cos ,1717⋅〈〉===⋅m n m n m n.所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=u u u r u u u r,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-u u u r.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rn n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ yxAMPC BA 1 C 1B 1z取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意). 又1(2,0,2)AC =-u u u r ,若1A C //平面AMP ,则10AC ⊥u u u rn . 所以10220AC λλ-⋅=--=u u u r n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-.综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aag x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a+=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20tu t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >.故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+.易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=, 112m y +=,222m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=211)(1)(x x -+-===28)(m m ----+=2=220==. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N , 即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。
2016北京市朝阳区高三(一模)数学(文)

2016北京市朝阳区高三(一模)数学(文)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.(5分)已知全集U=R,集合A={x|x≤3},B={x|x<2},则(∁U B)∩A=()A.{x|x≤2} B.{x|1≤x≤3} C.{x|2<x≤3} D.{x|2≤x≤3}2.(5分)设i是虚数单位,则复数等于()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)已知非零平面向量,,“|+|=|﹣|”是“⊥”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.35.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若,则B=()A.B.C. D.6.(5分)已知某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.B.C.D.7.(5分)某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()(注:结余=收入﹣支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元8.(5分)若圆x2+(y﹣1)2=r2与曲线(x﹣1)y=1没有公共点,则半径r的取值范围是()A.0<r<B.0<r<C.0<r<D.0<r<二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)已知函数则f(f(﹣1))= .10.(5分)已知双曲线过抛物线y2=8x的焦点,则此双曲线的渐近线方程为.11.(5分)已知递增的等差数列{a n}(n∈N*)的首项a1=1,且a1,a2,a4成等比数列,则数列{a n}的通项公式a n= ;a4+a8+a12+…+a4n+4= .12.(5分)已知不等式组表示的平面区域为D.若直线y=a(x+1)与区域D有公共点,则实数a的取值范围是.13.(5分)已知圆C:(x﹣3)2+(y﹣5)2=5,过圆心C的直线l交圆C于A,B两点,交y轴于点P.若A恰为PB 的中点,则直线l的方程为.14.(5分)甲乙两人做游戏,游戏的规则是:两人轮流从1(1必须报)开始连续报数,每人一次最少要报一个数,最多可以连续报7个数(如,一个人先报数“1,2”,则下一个人可以有“3”,“3,4”,…,“3,4,5,6,7,8,9”等七种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)在区间上的最大值和最小值.16.(13分)已知数列{a n}的前n项和,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若,求数列{b n}的前n项和T n.17.(13分)某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如表:阅读名著的本数 1 2 3 4 5男生人数 3 1 2 1 3女生人数 1 3 3 1 2(Ⅰ)试根据上述数据,求这个班级女生阅读名著的平均本数;(Ⅱ)若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率;(Ⅲ)试判断该班男生阅读名著本数的方差与女生阅读名著本数的方差的大小(只需写出结论).(注:方差,其中为x1x2,…x n的平均数)18.(14分)如图,在三棱柱ABC﹣A 1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,.M,N分别为BC 和CC1的中点,P为侧棱BB1上的动点.(Ⅰ)求证:平面APM⊥平面BB1C1C;(Ⅱ)若P为线段BB1的中点,求证:A1N∥平面APM;(Ⅲ)试判断直线BC1与平面APM是否能够垂直.若能垂直,求PB的值;若不能垂直,请说明理由.19.(14分)已知椭圆C:的焦点分别为F1,F2.(Ⅰ)求以线段F1,F2为直径的圆的方程;(Ⅱ)过点P(4,0)任作一条直线l与椭圆C交于不同的两点M,N.在x轴上是否存在点Q,使得∠PQM+∠PQN=180°?若存在,求出点Q的坐标;若不存在,请说明理由.20.(13分)已知函数(k∈R).(Ⅰ)若k=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)设k≤0,若函数f(x)在区间上存在极值点,求k的取值范围.数学试题答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.【解答】全集U=R,集合A={x|x≤3},B={x|x<2},则(∁U B)∩A={x|x≤3}∩{x|x≥2}={x|2≤x≤3},故选:D.2.【解答】===1+i.故选:A.3.【解答】非零平面向量,,“|+|=|﹣|”⇔=⇔=0⇔“⊥”,∴非零平面向量,,“|+|=|﹣|”是“⊥”的充要条件.故选:C.4.【解答】模拟执行程序,可得i=1,S=1满足条件i<4,S=3,i=2满足条件i<4,S=8,i=3满足条件i<4,S=19,i=4不满足条件i<4,退出循环,输出S的值为19.故选:B.5.【解答】在△ABC中,∵,∴,又∵,∴sinB=﹣cosB,∴tanB=﹣.∴B=.故选:C.6.【解答】由由三视图得该几何体的直观图如图:其中矩形ABCD的边长AD=,AB=2,高PO=1,AO=OB=1,则PA=PB=,PD=PC===,PH=,则四棱锥的侧面S=S△PAB+S△PAD+S△PCD+S△PBC=2×1+×+2×2+=3+,故选:B.7.【解答】由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A正确,由图可知,结余最高为7月份,为80﹣20=60,故B正确,由图可知,1至2月份的收入的变化率为与4至5月份的收入的变化率相同,故C正确,由图可知,前6个月的平均收入为(40+60+30+30+50+60)=45万元,故D错误,故选:D.8.【解答】圆的圆心为(0,1),半径为r设圆与曲线y=相切的切点为(m,n),可得n=,①y=的导数为y′=﹣,可得切线的斜率为﹣,由两点的斜率公式可得•(﹣)=﹣1,即为n﹣1=m(m﹣1)2,②由①②可得n4﹣n3﹣n﹣1=0化为(n2﹣n﹣1)(n2+1)=0,即有n2﹣n﹣1=0,解得n=或,则有或.可得此时圆的半径r==.结合图象即可得到圆与曲线没有公共点的时候,r的范围是(0,).故选:C.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.【解答】由分段函数的表达式得f(﹣1)=(﹣1)2=1,则f(1)=log2(1+3)=log24=2,f(f(﹣1))=f(1)=2,故答案为:210.【解答】抛物线y2=8x的焦点(2,0),代入双曲线方程,可得,解得m=4,双曲线方程为:.渐近线方程为:.故答案为:.11.【解答】记递增的等差数列{a n}的公差为d(d>0),由a1=1可知,a2=1+d,a4=1+3d,又∵a1,a2,a4成等比数列,∴=a1a4,即(1+d)2=1+3d,整理得:d2=d,解得:d=1或d=0(舍),∴数列{a n}是首项、公差均为1的等差数列,∴a n=n,∴数列{a4n+4}是首项为4、公差为4的等差数列,∴a4+a8+a12+…+a4n+4=4(n+1)+•4=2n2+6n+4,故答案为:n,2n2+6n+4.12.【解答】满足约束条件不等式组的平面区域如图示:因为y=a(x+1)过定点(﹣1,0).所以当y=a(x+1)过点B,由,解得A(3,3),得到3=a(3+1),解得a=,又因为直线y=a(x+1)与平面区域D有公共点.所以 0≤a≤故答案为:.13.【解答】由题意可得,C(3,5),直线L的斜率存在可设直线L的方程为y﹣5=k(x﹣3)令x=0可得y=5﹣3k,即P(0,5﹣3k),设A(x1,y1),B(x2,y2)联立直线与圆的方程,消去y可得(1+k2)x2﹣6(1+k2)x+9k2+4=0由方程的根与系数关系可得,x1+x2=6,x1x2=①∵A为PB的中点∴x2=2x1②把②代入①可得x2=4,x1=2,x1x2==8∴k=±2∴直线l的方程为y﹣5=±2(x﹣3),即2x﹣y﹣1=0或2x+y﹣11=0.故答案为:2x﹣y﹣1=0或2x+y﹣11=0.14.【解答】∵至少拿1个,至多拿7个,∴两人每轮总和完全可控制的只有8个,∴把零头取掉后,剩下的就是8的倍数了,这样无论对手怎么拿,都可以保证每一轮(每人拿一次后)都是拿走8个,即先取4个,以后每次如果乙报a,甲报8﹣a即可,保证每一轮两人报的和为8即可,最终只能甲抢到100.故先开始甲应取4个.故答案为:1,2,3,4.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】(Ⅰ)由三角函数公式化简可得:f(x)====.∵f(x)的最小正周期为,解方程可得ω=1;(Ⅱ)由(Ⅰ)可知.∵,∴.∴.当,即时,f(x)取得最大值是;当,即时,f(x)取得最小值是.∴f(x)在区间的最大值为,最小值为16.【解答】(Ⅰ)由,当n≥2时,.当n=1时,a1=S1=1,而4×1﹣3=1,所以数列{a n}的通项公式a n=4n﹣3,n∈N*.…(6分)(Ⅱ)由(Ⅰ)可得,当n为偶数时,,当n为奇数时,n+1为偶数,T n=T n+1﹣b n+1=2(n+1)﹣(4n+1)=﹣2n+1.综上,…(13分)17.【解答】(Ⅰ)女生阅读名著的平均本数为本;…(3分)(Ⅱ)设事件A={从阅读5本名著的学生中任取2人,其中男生和女生各1人},男生阅读5本名著的3人分别记为a1,a2,a3,女生阅读5本名著的2人分别记为b1,b2;从阅读5本名著的5名学生中任取2人,共有10个结果,分别是:{a1,a2},{a1,a3},{a2,a3},{b1,b2},{a1,b1},{a1,b2},{a2,b1},{a2,b2},{a3,b1},{a3,b2};其中男生和女生各1人共有6个结果,分别是:{a1,b1},{a1,b2},{a2,b1},{a2,b2},{a3,b1},{a3,b2};则;…(10分)( III)男生阅读名著本数的平均数是=×(1×3+2×1+3×2+4×1+5×3)=3,方差是=×[3×(﹣2)2+(﹣1)2+2×02+12+3×22]=2.6;女生阅读名著本数的平均数是=3,方差=×[(﹣2)2+3×(﹣1)2+3×02+12+2×22]=1.6;所以.…(13分)18.【解答】(Ⅰ)由已知,M为BC中点,且AB=AC,所以AM⊥BC.又因为BB1∥AA1,且AA1⊥底面ABC,所以BB1⊥底面ABC.因为AM⊂底面ABC,所以BB1⊥AM,又BB1∩BC=B,所以AM⊥平面BB1C1C.又因为AM⊂平面APM,所以平面APM⊥平面BB1C1C.…(5分)(Ⅱ)取C1B1中点D,连结A1D,DN,DM,B1C.由于D,M分别为C1B1,CB的中点,所以DM∥A1A,且DM=A1A.则四边形A1AMD为平行四边形,所以A1D∥AM.又A1D⊄平面APM,AM⊂平面APM,所以A1D∥平面APM.由于D,N分别为C1B1,C1C的中点,所以DN∥B1C.又P,M分别为B1B,CB的中点,所以MP∥B1C.则DN∥MP.又DN⊄平面APM,MP⊂平面APM,所以DN∥平面APM.由于A1D∩DN=D,所以平面A1DN∥平面APM.由于A1N⊂平面A1DN,所以A1N∥平面APM.…10分解:(Ⅲ)假设BC1与平面APM垂直,由PM⊂平面APM,则BC1⊥PM.设PB=x,.当BC1⊥PM时,∠BPM=∠B1C1B,所以∽Rt△∠B1C1B,所以.由已知,所以,得.由于,因此直线BC1与平面APM不能垂直.…(14分)19.【解答】( I)因为a2=4,b2=2,所以c2=2.所以以线段F1F2为直径的圆的方程为x2+y2=2.…(3分)( II)若存在点Q(m,0),使得∠PQM+∠PQN=180°,则直线QM和QN的斜率存在,分别设为k1,k2.等价于k1+k2=0.依题意,直线l的斜率存在,故设直线l的方程为y=k(x﹣4).由,得(2k2+1)x2﹣16k2x+32k2﹣4=0.因为直线l与椭圆C有两个交点,所以△>0.即(16k2)2﹣4(2k2+1)(32k2﹣4)>0,解得.设M(x1,y1),N(x2,y2),则,,y1=k(x1﹣4),y2=k(x2﹣4).令,(x1﹣m)y2+(x2﹣m)y1=0,(x1﹣m)k(x2﹣4)+(x2﹣m)k(x1﹣4)=0,当k≠0时,2x1x2﹣(m+4)(x1+x2)+8m=0,所以,化简得,,所以m=1.当k=0时,也成立.所以存在点Q(1,0),使得∠PQM+∠PQN=180°.…(14分)20.【解答】(Ⅰ)若k=1,函数f(x)的定义域为{x|x≠1},.则曲线y=f(x)在点(0,f(0))处切线的斜率为f'(0)=3.而f(0)=1,则曲线y=f(x)在点(0,f(0))处切线的方程为y=3x+1.…(3分)(Ⅱ)函数f(x)的定义域为{x|x≠k},.(1)当k>0时,由x≠k,且此时,可得.令f'(x)<0,解得或,函数f(x)为减函数;令f'(x)>0,解得,但x≠k,所以当,时,函数f(x)也为增函数.所以函数f(x)的单调减区间为,,单调增区间为,.(2)当k=0时,函数f(x)的单调减区间为(﹣∞,0),(0,+∞).当k=﹣2时,函数f(x)的单调减区间为(﹣∞,﹣2),(﹣2,+∞).当﹣2<k<0时,由2k+k2<0,所以函数f(x)的单调减区间为(﹣∞,k),(k,+∞).即当﹣2≤k≤0时,函数f(x)的单调减区间为(﹣∞,k),(k,+∞).(3)当k<﹣2时,此时.令f'(x)<0,解得或,但x≠k,所以当x<k,,时,函数f(x)为减函数;令f'(x)>0,解得,函数f(x)为增函数.所以函数f(x)的单调减区间为(﹣∞,k),,,函数f(x)的单调增区间为.…(9分)(Ⅲ)(1)当﹣2≤k≤0时,由(Ⅱ)问可知,函数f(x)在(,2)上为减函数,所以不存在极值点;(2)当k<﹣2时,由(Ⅱ)可知,f(x)在上为增函数,在上为减函数.若函数f(x)在区间上存在极值点,则,解得﹣4<k<﹣3或1<k<2,所以﹣4<k<﹣3.综上所述,当﹣4<k<﹣3时,函数f(x)在区间上存在极值点.…(13分)。
2016朝阳一模理

北京市朝阳区高三年级第一次综合练习数学试卷(理工类)2016.3一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. i 为虚数单位,复数2i1i +=A .1i -B .1i --C .1i -+D .1i + 2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是A .M N N =B .()UMN =∅ðC .M N U =D .()U M N ⊆ð3.“a b >”是“e e a b >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c 若222()tan 3a c b B ac +-=, 则角B 的值为A . 3πB . 6πC . 233ππ或D . 566ππ或A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元(注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r的取值范围是A .02r <<B .1102r <<C .03r <<D .1302r <<二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 二项式251()x x +的展开式中含4x 的项的系数是 (用数字作答). 10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t =-⎧⎨=⎩为参数).以原点O 为极点,12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =)项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =,1212(,,,)B b b b =,则,A B 两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数213()sin 3cos 222x f x x ωω=+-,0ω>.(Ⅰ)若1ω=,求()f x 的单调递增区间; (Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X,求随机变量X的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s与女学生阅读名著本数的方差22s的大小(只需写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点. (Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余 弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由. AMPCBA 1C 1B 118.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点(2,1)P 和椭圆:C 22142x y +=.(Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率; (Ⅱ)若直线:l 220(0)x y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x 轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且nn k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小,(ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式; (Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3 一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案 DDABCDAC二、填空题:(满分30分) 题号 9 10 11 12 13 14答案1021n a n =-,(3)(411)n n ++(2,)4π3(,]4-∞3(0,)4121||ii i ab =-∑22(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+-13sin cos 22x x=+sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z.所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .………7分(Ⅱ)由213()sin 3cos 222x f x x ωω=+-13sin cos 22x x ωω=+sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π……13分16.解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 .由题意可知,13+417()=12896P A ⨯⨯=⨯.……4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;44481(4)70C P X C ===. 所以随机变量X 的分布列为X 0 1234P170 835 1835835 170随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=.......10分(Ⅲ)21s >22s (13)分17解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥.又因为1AC AA ⊥且1AB AA A =,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B.因为AP ⊂平面11AA B B ,所以11AC AP ⊥.……4分(Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示.由已知11111222AB AC AA A B AC =====,所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m .设平面APM 的一个法向量为(,,)x y z =n , 由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0,30. 2x y y z +=⎧⎪⎨+=⎪⎩取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以3317cos ,1717⋅〈〉===⋅m n m n m n.所以二面角P AM B --的余弦值为31717……9分[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-,所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n , 由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n .所以10220AC λλ-⋅=--=n .所以23λ=.所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…14分18.解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x +'=+=.(1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增;(2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数;当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,……4分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零;(2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a -上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-.(3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零……8分(Ⅲ)设切点为000,ln )x x a x +(,则切线斜率1ak x =+,切线方程为0000(ln )(1)()ay x a x x x x -+=+-.因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-.即001(ln 1)20a x x +--=………①令1()(ln 1)2g x a x x =+-- (0)x >,则2211(1)()()a x g x a x x x -'=-=.(1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减,所以函数()g x 的最大值为(1)20g =-<.故方程()0g x =无解,即不存在0x 满足①式.因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增,所以函数()g x 的最小值为(1)20g =-<. 取21+1e e ax =>,则221112()(1e 1)2e 0aag x a a a ----=++--=>.故()g x 在(1,)+∞上存在唯一零点. 取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a +=-+.设21(1)t t a =+>,()e 2tu t t =-,则()e 2t u t '=-.当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >.故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线. (3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线……13分19.解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为(2,1)P 是椭圆C 上的点,由椭圆定义得124PF PF +=. 所以12PF F ∆的周长为422+.易得椭圆的离心率2=2c e a =……4分(Ⅱ)由22220,1,42x y m x y ⎧-+=⎪⎨+=⎪⎩得2242280x mx m ++-=因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y ,则1222x x m +=-,21284m x x -=,1122x my +=,2222x m y +=.显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则1212121122y y k k x x --+=+--12211222(1)(2)(1)(2)22(2)(2)x m x mx x x x ++--+--=--122112(22)(2)(22)(2)2(2)(2)x m x x m x x x +--++--=--1212121222(4)()22422[2()2]x x m x x m x x x x +-+-+=-++2121222(8)(4)228216244442[2()2]m m m m x x x x ----+=-++2121222(8)(4)22821628[2()2]m m m m x x x x ----+=-++2212122216222828216208[2()2]m m m m x x x x --+-+==-++.因为120k k +=,所以PMN PNM ∠=∠.所以PM PN =.………14分20(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4. (ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n nb -=⋅.又31nn k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N .再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥, 故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231kc a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数.取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.。
2016年北京朝阳一模文科数学试题及答案

北京市朝阳区2016届高三第一次综合练习(一模)数学(文)试题(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知全集U =R ,集合{}3A x x =≤,{}2B x x =<,则()U B A =I ðA .{}2x x ≤B .{}13x x ≤≤ C. {}23x x <≤ D .{}23x x ≤≤ 2.已知i 为虚数单位,则复数2i 1i+= A .1i + B .1i - C .1i -+ D .1i --3.已知非零平面向量,a b ,“+=-a b a b ”是“⊥a b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为 A. 42 B. 19 C. 8 D. 35.在ABC ∆中,角,,A B C 所对的边分别为,,a b ccos sin 0B b A +=,则B = A. π6B. π3C.2π3D.5π66.已知某四棱锥的三视图如图所示,则该四棱锥的侧面积是A. 3+B.C. 1+D.1+7. 某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月份C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)8. 若圆222(1)x yr +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是A .0r << B.02r <<C .0r <<D .0r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知函数22log (3),0,(), 0,x x f x x x +≥⎧=⎨<⎩则((1))f f -= .月正视图俯视图 侧视图10.已知双曲线221x y m-=过抛物线28y x =的焦点,则此双曲线的渐近线方程为 . 11.已知递增的等差数列}{n a ()n *∈N 的首项11=a ,且1a ,2a ,4a 成等比数列,则数列}{n a 的通项公式n a = ;48124+4+n a a a a +++L =____.12.已知不等式组0,,290y y x x y ≥⎧⎪≤⎨⎪+-≤⎩表示的平面区域为D .若直线()1y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知圆22:(3)(5)5C x y -+-=,过圆心C 的直线l 交圆C 于,A B 两点,交y 轴于点P . 若A 恰为PB 的中点,则直线l 的方程为 .14.甲乙两人做游戏,游戏的规则是:两人轮流从1(1必须报)开始连续报数,每人一次最少要报一个数,最多可以连续报7个数(如,一个人先报数“1,2”,则下一个人可以有“3”, “3,4”,…,“3,4,5,6,7,8,9”等七种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()2sin cos()3f x x x ωωπ=+(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求()f x 在区间[,]62ππ-上的最大值和最小值. 16.(本小题满分13分)已知数列{}n a 的前n 项和22n S n n =-,n *∈N . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若()1nn n b a =-,求数列{}n b 的前n 项和n T .17. (本小题满分13分)某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如下表:(Ⅰ)试根据上述数据,求这个班级女生阅读名著的平均本数;(Ⅱ)若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率; (Ⅲ)试判断该班男生阅读名著本数的方差21s 与女生阅读名著本数的方差22s 的大小(只需写出结论).(注:方差2222121[()()()]n s x x x x x x n=-+-++-K ,其中x 为1x 2x ,…… n x 的平均数)18.(本小题共14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90BAC ∠=︒,2AB AC ==,1AA =,M N 分别为BC 和1CC 的中点,P 为侧棱1BB 上的动点.(Ⅰ)求证:平面APM ⊥平面11BB C C ;(Ⅱ)若P 为线段1BB 的中点,求证:1//A N 平面APM ; (Ⅲ)试判断直线1BC 与平面APM 是否能够垂直. 若能垂直,求PB 的值;若不能垂直,请说明理由. 19.(本小题共14分)已知椭圆:C 22142x y +=的焦点分别为12,F F . (Ⅰ)求以线段12F F 为直径的圆的方程;(Ⅱ)过点(4,0)P 任作一条直线l 与椭圆C 交于不同的两点,M N .在x 轴上是否存在点Q ,使得180PQM PQN ∠+∠=︒?若存在,求出点Q 的坐标;若不存在,请说明理由.20. (本题满分13分) 已知函数()e xk x f x k x+=⋅-()k ∈R . (Ⅰ)若1,k =求曲线()y f x =在点()0(0)f ,处的切线方程; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)设0k ≤,若函数()f x在区间上存在极值点,求k 的取值范围.参考答案NAMPCBA 1C 1B 1一、选择题:(满分40分)二、填空题:(满分30分)三、解答题:(满分80分) 15. (本小题满分13分)解:(Ⅰ)()2sin cos()3f x x x ωωπ=+12sin (cos )2x x x ωωω= 2sin cos x x x ωωω=1sin 22x x ωω=- sin(2)3x ωπ=+因为()f x 的最小正周期为2T ω2π==π,则1ω=. …………………6分(Ⅱ)由(Ⅰ)可知()sin(2)3f x x π=+因为,6x ππ-≤≤2所以0233x π4π≤+≤. 则sin(2)13x π≤+≤. 当232x ππ+=,即12x π=时,()f x 取得最大值是1 当233x π4π+=,即2x π=时,()f x 取得最小值是()f x 在区间[,]62ππ-的最大值为1,最小值为 …………………13分 16. (本小题满分13分)解:(Ⅰ)由22n S n n =-,当2n ≥时,()()221=22114 3.-⎡⎤=------=-⎣⎦n n n a S S n n n n n当1n =时,111,a S ==而4131⨯-=,所以数列{}n a 的通项公式43n a n =-,n *∈N . ………………………6分 (Ⅱ)由(Ⅰ)可得()(1)(1)43,=-=--n n n n b a n当n 为偶数时,()159********,2n nT n n =-+-+-++-=⨯=L 当n 为奇数时,1n +为偶数,112(1)(41)2 1.n n n T T b n n n ++=-=+-+=-+ 综上,2,,21,.n n n T n n ⎧=⎨-+⎩为偶数为奇数 …………………………13分17.(本小题满分13分)解:(Ⅰ)女生阅读名著的平均本数11323314+25310x ⨯+⨯+⨯+⨯⨯==本.…………………………3分 (Ⅱ)设事件A ={从阅读5本名著的学生中任取2人,其中男生和女生各1人}.男生阅读5本名著的3人分别记为123,,a a a ,女生阅读5本名著的2人分别记为12,.b b 从阅读5本名著的5名学生中任取2人,共有10个结果,分别是: {}12,a a ,{}13,a a ,{}23,a a ,{}12,b b ,{}11,a b ,{}12,a b ,{}21,a b ,{}22,a b ,{}31,a b ,{}32,a b .其中男生和女生各1人共有6个结果,分别是:{}11,a b ,{}12,a b ,{}21,a b ,{}22,a b ,{}31,a b ,{}32,a b .则63105P A ==(). …………………………10分 (III )2212s s >. …………………………13分18. (本小题满分14分) 证明:(Ⅰ)由已知,M 为BC 中点,且AB AC =,所以AM BC ⊥.又因为11//BB AA ,且1AA ⊥底面ABC ,所以1BB ⊥底面ABC . 因为AM ⊂底面ABC ,所以1BB AM ⊥, 又1BB BC B =I , 所以AM⊥平面11BB C C . 又因为AM⊂平面APM ,所以平面APM⊥平面11BB C C . ……………………5分(Ⅱ)取11C B 中点D ,连结1A D ,DN ,DM ,1B C . 由于D ,M 分别为11C B ,CB 的中点, 所以DM //1A A ,且DM =1A A .则四边形1A AMD 为平行四边形,所以1A D //AM . 又1A D ⊄平面APM ,AM ⊂平面APM , 所以1A D //平面APM .由于D ,N 分别为11C B ,1C C 的中点, 所以DN //1B C .又P ,M 分别为1B B ,CB 的中点, 所以MP //1B C . 则DN //MP .又DN ⊄平面APM ,MP ⊂平面APM , 所以DN //平面APM .由于1A D I =DN D ,所以平面1A DN //平面APM . 由于1A N ⊂平面1A DN ,所以1//A N 平面APM . ……………10分 (III )假设1BC 与平面APM 垂直, 由PM ⊂平面APM ,NAMPCBA 1C 1B 1D则1BC PM ⊥.设PB x =,x ∈.当1BC PM ⊥时,11BPM B C B ∠=∠, 所以Rt PBM ∆∽11Rt B C B ∆∠,所以111C B PB MB BB =.由已知111MB C B BB ====,得3x =.由于3x =∉, 因此直线1BC 与平面APM 不能垂直. …………………………………………14分19. (本小题满分13分)解:(I )因为24a =,22b =,所以22c =.所以以线段12F F 为直径的圆的方程为222x y +=.……………………………3分 (II )若存在点(,0)Q m ,使得180PQM PQN ∠+∠=︒, 则直线QM 和QN 的斜率存在,分别设为1k ,2k . 等价于120k k +=.依题意,直线l 的斜率存在,故设直线l 的方程为(4)y k x =-.由22(4)142y k x x y =-⎧⎪⎨+=⎪⎩,得2222(21)163240k x k x k +-+-=.因为直线l 与椭圆C 有两个交点,所以0∆>. 即2222(16)4(21)(324)0k k k -+->,解得216k <. 设11(,)M x y ,22(,)N x y ,则21221621k x x k +=+,212232421k x x k -=+,11(4)y k x =-,22(4)y k x =-.令1212120y y k k x m x m+=+=--, 1221()()0,x m y x m y -+-=1221()(4)()(4)0x m k x x m k x --+--=,当0k ≠时,12122(4)()80x x m x x m -+++=,所以22324221k k -⨯+2216(4)8021k m m k -+⨯+=+, 化简得,28(1)021m k -=+,所以1m =.当0k =时,也成立.所以存在点(1,0)Q ,使得180PQM PQN ∠+∠=︒.……………………………14分 20. (本小题满分13分)解:(Ⅰ)若1k =,函数()f x 的定义域为{}1x x ≠,22e (3)()=1)x x f x x -'-(.则曲线()y f x =在点()0(0)f ,处切线的斜率为(0)=3f '.而(0)=1f ,则曲线()y f x =在点()0(0)f ,处切线的方程为31y x =+. ……………3分(Ⅱ)函数()f x 的定义域为{}x x k ≠,222e (2)()=)x k k x f x k x +-'-(. (1)当0k >时,由x k ≠,k >,可得k <<令()0f x '<,解得x <或x >,函数()f x 为减函数;令()0f x '>,解得x <,但x k ≠,所以当x k <<,k x <<()f x 也为增函数. 所以函数()f x的单调减区间为∞(-,,+)∞,单调增区间为)k (,k (.(2)当0k =时,函数()f x 的单调减区间为∞(-,0),+∞(0,).当2k =-时,函数()f x 的单调减区间为2∞(-,-),2+∞(-,).当20k -<<时,由220k k +<,所以函数()f x 的单调减区间为k ∞(-,),+k ∞(,). 即当20k -≤≤时,函数()f x 的单调减区间为k ∞(-,),+k ∞(,).(3)当2k <-时,此时k >.令()0f x '<,解得x <或x >,但x k ≠,所以当x k <,k x <<x >时,函数()f x 为减函数;令()0f x '>,解得x <,函数()f x 为增函数.所以函数()f x 的单调减区间为k ∞(-,),k (,)+∞,函数()f x 的单调增区间为(. …………9分(Ⅲ)(1)当20k -≤≤时,由(Ⅱ)问可知,函数()f x 在上为减函数,所以不存在极值点;(2)当2k <-时,由(Ⅱ)可知,()f x 在(上为增函数,在)+∞上为减函数.若函数()f x 在区间<解得43k -<<-或12k <<, 所以43k -<<-.综上所述,当43k -<<-时,函数()f x 在区间上存在极值点.…………13分。
2016朝阳高三一模理科数学

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅ðC .MN U = D .()UM N ⊆ð3. “a b >”是“e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .3 5.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan 3a c b B ac +-=,则角B 的值为A .3π B .6π C .233ππ或D . 566ππ或 6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元(注:结余=收入-支出)万元 月O23 430 1 10 2 5689 10 7111240 60 570 908收入支出开始1,1i S ==4?i <1i i =+2S S i =+输出S 结束 否 是(第4题图)(第7题图)正视图侧视图俯视图2 11 17.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13 B .12 C .1 D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A .02r << B .1102r <<C .03r <<D .1302r << 第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答). 10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 . 13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界), 则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =)项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =,1212(,,,)B b b b =,则,A B两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数213()sin 3cos 222x f x x ωω=+-,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望; (Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论). 17.(本小题满分14分)人数 本数 性别 1 2 3 4 5 男生 1 4 3 2 2 女生 0 1 3 3 1如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值; (Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)AMPCBA 1C 1B 1已知点(2,1)P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率; (Ⅱ)若直线:l 220(0)x y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x 轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案D DA BCDA C二、填空题:(满分30分)题号 91011121314答案1021n a n =-,(3)(411)n n ++(2,)4π 3(,]4-∞3(0,)4121||ii i ab =-∑22(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+-13sin cos 22x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由213()sin 3cos 222x f x x ωω=+- 13sin cos 22x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分) 解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 .由题意可知, 13+417()=12896P A ⨯⨯=⨯.………………………………………4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====; 44481(4)70C P X C ===. 所以随机变量X 的分布列为X0 1 2 3 4 P170 835 1835 835 170随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分(Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1ABAA A =,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示.由已知 11111222AB AC AA A B AC =====,所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,PBA 1C 1B 1z1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P . 易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以3317cos ,1717⋅〈〉===⋅m n m n m n. 所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,.……………………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<.故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aa g x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a+=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为(2,1)P 是椭圆C 上的点,由椭圆定义得124PF PF +=. 所以12PF F ∆的周长为422+. 易得椭圆的离心率2=2c e a =.………………………………………………………4分 (Ⅱ)由22220,1,42x y m x y ⎧-+=⎪⎨+=⎪⎩得2242280x mx m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y ,则1222x x m +=-,21284m x x -=, 1122x m y +=,2222x m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k , 则1212121122y y k k x x --+=+-- 12211222(1)(2)(1)(2)22(2)(2)x m x m x x x x ++--+--=-- 122112(22)(2)(22)(2)2(2)(2)x m x x m x x x +--++--=-- 1212121222(4)()22422[2()2]x x m x x m x x x x +-+-+=-++ 2121222(8)(4)228216244442[2()2]m m m m x x x x ----+=-++ 2121222(8)(4)22821628[2()2]m m m m x x x x ----+=-++ 2212122216222828216208[2()2]m m m m x x x x --+-+==-++. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分 20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4. (ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分 (Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。
2016北京市朝阳区高三(一模)数 学(理)

2016北京市朝阳区高三(一模)数学(理)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)i是虚数单位,=()A.1﹣i B.﹣1﹣i C.1+i D.﹣1+i2.(5分)已知全集U=R,函数y=ln(x﹣1)的定义域为M,集合N={x|x2﹣x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)3.(5分)“”是“e a>e b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.35.(5分)在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.或C.D.或6.(5分)某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()(注:结余=收入﹣支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元7.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.1 D.8.(5分)若圆x2+(y﹣1)2=r2与曲线(x﹣1)y=1没有公共点,则半径r的取值范围是()A.0<r<B.0<r<C.0<r<D.0<r<二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)二项式(x2+)5的展开式中含x4的项的系数是(用数字作答).10.(5分)已知等差数列{a n}(n∈N*)中,a1=1,a4=7,则数列{a n}的通项公式a n= ;a2+a6+a10+…+a4n+10= .11.(5分)在直角坐标系xOy中,曲线C1的方程为x2+y2=2,曲线C2的参数方程为(t为参数).以原点O 为极点,x轴非负半轴为极轴,建立极坐标系,则曲线C1与C2的交点的极坐标为.12.(5分)不等式组所表示的平面区域为D.若直线y=a(x+1)与区域D有公共点,则实数a的取值范围是.13.(5分)已知M为△ABC所在平面内的一点,且.若点M在△ABC的内部(不含边界),则实数n 的取值范围是.14.(5分)某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i(i=1,2,…,12)项能力特征用x i表示,,若学生A,B的十二项能力特征分别记为A=(a1,a2,…,a12),B=(b1,b2,…,b12),则A,B两名学生的不同能力特征项数为(用a i,b i表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数,ω>0.(Ⅰ)若ω=1,求f(x)的单调递增区间;(Ⅱ)若,求f(x)的最小正周期T的表达式并指出T的最大值.16.(13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如表.1 2 3 4 5 男生 1 4 3 2 2 女生0 1 3 3 1(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望; (Ⅲ)试判断男学生阅读名著本数的方差与女学生阅读名著本数的方差的大小(只需写出结论).17.(14分)如图,在直角梯形AA 1B 1B 中,∠A 1AB=90°,A 1B 1∥AB ,AB=AA 1=2A 1B 1=2.直角梯形AA 1C 1C 通过直角梯形AA 1B 1B 以直线AA 1为轴旋转得到,且使得平面AA 1C 1C ⊥平面AA 1B 1B .M 为线段BC 的中点,P 为线段BB 1上的动点. (Ⅰ)求证:A 1C 1⊥AP ;(Ⅱ)当点P 是线段BB 1中点时,求二面角P ﹣AM ﹣B 的余弦值; (Ⅲ)是否存在点P ,使得直线A 1C ∥平面AMP ?请说明理由.18.(13分)已知函数f(x)=x+alnx,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x∈[1,2]时,都有f(x)>0成立,求a的取值范围;(Ⅲ)试问过点P(1,3)可作多少条直线与曲线y=f(x)相切?并说明理由.19.(14分)已知点和椭圆C:.(Ⅰ)设椭圆的两个焦点分别为F1,F2,试求△PF1F2的周长及椭圆的离心率;(Ⅱ)若直线l:与椭圆C交于两个不同的点A,B,直线PA,PB与x轴分别交于M,N两点,求证:|PM|=|PN|.20.(13分)已知等差数列{a n}的通项公式.设数列{b n}为等比数列,且.(Ⅰ)若b1=a1=2,且等比数列{b n}的公比最小,(ⅰ)写出数列{b n}的前4项;(ⅱ)求数列{k n}的通项公式;(Ⅱ)证明:以b1=a2=5为首项的无穷等比数列{b n}有无数多个.数学试题答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.【解答】===1+i,故选C.2.【解答】由x﹣1>0,解得:x>1,故函数y=ln(x﹣1)的定义域为M=(1,+∞),由x2﹣x<0,解得:0<x<1,故集合N={x|x2﹣x<0}=(0,1),∴∁U N={x|x≥1或x≤0},∴M⊆(∁U N),故选:D.3.【解答】∵“”⇔a>b⇒“e a>e b”,反之不成立,例如取a=2,b=﹣1.∴“”是“e a>e b”的充分不必要条件.故选:A.4.【解答】模拟执行程序,可得i=1,S=1满足条件i<4,S=3,i=2满足条件i<4,S=8,i=3满足条件i<4,S=19,i=4不满足条件i<4,退出循环,输出S的值为19.故选:B.5.【解答】∵cosB=,∴a2+c2﹣b2=2accosB,代入已知等式得:2ac•cosBtanB=ac,即sinB=,则B=或.6.【解答】由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A正确,由图可知,结余最高为7月份,为80﹣20=60,故B正确,由图可知,1至2月份的收入的变化率为与4至5月份的收入的变化率相同,故C正确,由图可知,前6个月的平均收入为(40+60+30+30+50+60)=45万元,故D错误,故选:D.7.【解答】由三视图可知:该几何体为如图所示的三棱锥,CB⊥侧面PAB.该几何体的体积V=××1=.故选:A.8.【解答】圆的圆心为(0,1),半径为r设圆与曲线y=相切的切点为(m,n),可得n=,①y=的导数为y′=﹣,可得切线的斜率为﹣,由两点的斜率公式可得•(﹣)=﹣1,即为n﹣1=m(m﹣1)2,②由①②可得n4﹣n3﹣n﹣1=0化为(n2﹣n﹣1)(n2+1)=0,即有n2﹣n﹣1=0,解得n=或,则有或.可得此时圆的半径r==.r的范围是(0,).故选:C.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.【解答】二项式(x2+)5的展开式中通项公式为 T r+1= x10﹣2r x﹣r=x10﹣3r.令 10﹣3r=4,可得 r=2,∴展开式中含x4的项的系数是=10,故答案为10.10.【解答】∵等差数列{a n}(n∈N*)中,a1=1,a4=7,∴a4=1+3d=7,解得d=2,∴a n=1+(n﹣1)×2=2n﹣1,∴a2=1+2=3,a6=1+5×2=11,a6﹣a2=8,∴a2+a6+a10+…+a4n+10=×3+×8=(n+3)(4n+11).故答案为:2n﹣1,(n+3)(4n+11).11.【解答】将曲线C2的参数方程(t为参数)代入曲线C1的方程为x2+y2=2,可得(2﹣t)2+t2=2,解得t=1,可得交点的直角坐标为(1,1),由x=ρcosθ,y=ρsinθ,tanθ=,可得ρ==,tanθ=1,0<θ<,可得θ=.可得交点的极坐标为(,).故答案为:(,).12.【解答】作出不等式组对应的平面区域图示:因为y=a(x+1)过定点C(﹣1,0).当a≤0时,直线y=a(x+1)与区域D有公共点,满足条件.当a>0时,当直线y=a(x+1)过点A时,由公共点,由得,即A(3,3),代入y=a(x+1)得4a=3,a=,又因为直线y=a(x+1)与平面区域D有公共点.此时0<a≤.综上所述,a≤.故答案为:.13.【解答】如图,由得:;∴;∴;∴;∴;∴实数n的取值范围是.故答案为:.14.【解答】若第i(i=1,2,…,12)项能力特征相同,则差为0,特征不相同,绝对值为1,则用x i表示A,B两名学生的不同能力特征项数为=|a1﹣b1|+|b2﹣c2|+…+|c12﹣a12|=,设第三个学生为C=(c1,c2,…,c12),则d i=|a i﹣b i|+|b i﹣c i|+|c i﹣a i|,1≤i≤12,∵d i的奇偶性和(a i﹣b i)+(b i﹣c i)+(c i﹣a i)=0一样,∴d i是偶数,3名学生两两不同能力特征项数总和为S=d1+d2+…+d12为偶数,又S≥7×3=21.则S≥22,取A=(0,1,1,0,1,1,0,1,1,0,1,1),B=(1,0,1,1,0,1,1,0,1,1,0,1),C=(1,1,0,1,1,0,1,1,0,1,1,1),则不同能力特征数总和恰好为22,∴最小值为22,故答案为:,22三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】解:(Ⅰ)当ω=1时,==.令.解得.所以f(x)的单调递增区间是.…(7分)(Ⅱ)由==.因为,所以.则,n∈Z.解得.又因为函数f(x)的最小正周期,且ω>0,所以当ω=时,T的最大值为4π.…(13分)16.【解答】(Ⅰ)设事件A:从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4.由题意可知,.…(4分)(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4.由题意可得,,,,.所以随机变量X的分布列为X 0 1 2 3 4P随机变量X的均值.…(10分)(Ⅲ).…(13分)17.【解答】(Ⅰ)证明:由已知∠A1AB=∠A1AC=90°,且平面AA1C1C⊥平面AA1B1B,所以∠BAC=90°,即AC⊥AB.又因为AC⊥AA1且AB∩AA1=A,所以AC⊥平面AA1B1B.因为AP⊂平面AA1B1B,所以A1C1⊥AP.…(4分)(Ⅱ)由(Ⅰ)可知AC,AB,AA1两两垂直.分别以AC,AB,AA1为x轴、y轴、z轴建立空间直角坐标系如图所示.由已知 AB=AC=AA1=2A1B1=2A1C1=2,所以A(0,0,0),B(0,2,0),C(2,0,0),B1(0,1,2),A1(0,0,2).因为M为线段BC的中点,P为线段BB1的中点,所以.易知平面ABM的一个法向量=(0,0,1).设平面APM的一个法向量为=(x,y,z),由,得取y=2,得=(﹣2,2,﹣3).由图可知,二面角P﹣AM﹣B的大小为锐角,所以===.所以二面角P﹣AM﹣B的余弦值为.…(9分)(Ⅲ)存在点P,使得直线A1C∥平面AMP.设P(x1,y1,z1),且,λ∈[0,1],则(x1,y1﹣2,z1)=λ(0,﹣1,2),所以x1=0,y1=2﹣λ,z1=2λ.所以.设平面AMP的一个法向量为=(x0,y0,z0),由,得取y0=1,得(显然λ=0不符合题意).又,若A1C∥平面AMP,则.所以.所以.所以在线段BB1上存在点P,且时,使得直线A1C∥平面AMP.…(14分)18.【解答】(Ⅰ)函数f(x)的定义域为{x|x>0}..(1)当a≥0时,f′(x)>0恒成立,函数f(x)在(0,+∞)上单调递增;(2)当a<0时,令f′(x)=0,得x=﹣a.当0<x<﹣a时,f′(x)<0,函数f(x)为减函数;当x>﹣a时,f′(x)>0,函数f(x)为增函数.综上所述,当a≥0时,函数f(x)的单调递增区间为(0,+∞).当a<0时,函数f(x)的单调递减区间为(0,﹣a),单调递增区间为(﹣a,+∞).…(4分)(Ⅱ)由(Ⅰ)可知,(1)当﹣a≤1时,即a≥﹣1时,函数f(x)在区间[1,2]上为增函数,所以在区间[1,2]上,f(x)min=f(1)=1,显然函数f(x)在区间[1,2]上恒大于零;(2)当1<﹣a<2时,即﹣2<a<﹣1时,函数f(x)在[1,﹣a)上为减函数,在(﹣a,2] 上为增函数,所以f(x)min=f(﹣a)=﹣a+aln(﹣a).依题意有f(x)min=﹣a+aln(﹣a)>0,解得a>﹣e,所以﹣2<a<﹣1.(3)当﹣a≥2时,即a≤﹣2时,f(x)在区间[1,2]上为减函数,所以f(x)min=f(2)=2+aln2.依题意有f(x)min=2+aln2>0,解得,所以.综上所述,当时,函数f(x)在区间[1,2]上恒大于零.…(8分)(Ⅲ)设切点为(x0,x0+alnx0),则切线斜率,切线方程为.因为切线过点P(1,3),则.即.…①令(x>0),则.(1)当a<0时,在区间(0,1)上,g′(x)>0,g(x)单调递增;在区间(1,+∞)上,g′(x)<0,g(x)单调递减,所以函数g(x)的最大值为g(1)=﹣2<0.故方程g(x)=0无解,即不存在x0满足①式.因此当a<0时,切线的条数为0.(2)当a>0时,在区间(0,1)上,g′(x)<0,g(x)单调递减,在区间(1,+∞)上,g′(x)>0,g(x)单调递增,所以函数g(x)的最小值为g(1)=﹣2<0.取,则.故g(x)在(1,+∞)上存在唯一零点.取,则=.设,u(t)=e t﹣2t,则u′(t)=e t﹣2.当t>1时,u′(t)=e t﹣2>e﹣2>0恒成立.所以u(t)在(1,+∞)单调递增,u(t)>u(1)=e﹣2>0恒成立.所以g(x2)>0.故g(x)在(0,1)上存在唯一零点.因此当a>0时,过点P(1,3)存在两条切线.(3)当a=0时,f(x)=x,显然不存在过点P(1,3)的切线.综上所述,当a>0时,过点P(1,3)存在两条切线;当a≤0时,不存在过点P(1,3)的切线.…(13分)19.【解答】(Ⅰ)由题意可知,a2=4,b2=2,所以c2=2.因为是椭圆C上的点,由椭圆定义得|PF1|+|PF2|=4.所以△PF1F2的周长为.易得椭圆的离心率.…(4分)(Ⅱ)证明:由得.因为直线l与椭圆C有两个交点,并注意到直线l不过点P,所以解得﹣4<m<0或0<m<4.设A(x1,y1),B(x2,y2),则,,,.显然直线PA与PB的斜率存在,设直线PA与PB的斜率分别为k1,k2,则======.因为k1+k2=0,所以∠PMN=∠PNM.所以|PM|=|PN|.…(14分)20.【解答】(Ⅰ)观察数列{a n}的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列{a n}是递增的整数数列,且等比数列以2为首项,显然最小公比不能是,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知b1=2,公比q=4,所以.又,所以,即.再证k n为正整数.显然k1=1为正整数,n≥2时,,即,故为正整数.所以,所求通项公式为;(Ⅱ)证明:设数列{c n}是数列{a n}中包含的一个无穷等比数列,且,,所以公比.因为等比数列{c n}各项为整数,所以q为整数.取k2=5m+2(m∈N*),则q=3m+1,故.只要证是数列{a n}的项,即证3k n﹣1=5•(3m+1)n﹣1.只要证(n∈N*)为正整数,显然k1=2为正整数.又n≥2时,,即,又因为k1=2,5m(3m+1)n﹣2都是正整数,故n≥2时,k n也都是正整数.所以数列{c n}是数列{a n}中包含的无穷等比数列,其公比q=3m+1有无数个不同的取值,对应着不同的等比数列,故数列{a n}所包含的以a2=5为首项的不同无穷等比数列有无数多个.。
a北京市朝阳区2016届高三第一次综合练习(一模)数学理试题(解析版)

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i + 答案:D解析:分母实数化,即分子与分母同乘以分母的其轭复数:222(1)111i i i i i i-==++-。
2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅ðC .M N U =D .()U M N ⊆ð答案:D解析:∵函数 y =ln(x -1)的定义域M ={}|1x x >,N ={}|01x x <<,又U =R ∴{}|1U C N x x =≥≤或x 0,∴M N =∅,故 A ,C 错误,D 显然正确。
3. “a b >”是“e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A 解析:由a b >,知0a b >≥,又xy e =是增函数,所以,a b e e >,由a b e e >知a b >,但,a b 取负值时,,a b 无意义, 故选A 。
4. 执行如图所示的程序框图,输出的S 值为 A .42B .19C .8D .3答案:B解析:依次执行结果如下:S =2×1+1=3,i =1+1=2,i <4; S =2×3+2=8,i =2+1=3,i <4; S =2×8+1=19,i =3+1=42,i ≥4; 所以,S =19,选B 。
2016北京市朝阳区高三(一模)数学(理)

2016北京市朝阳区高三(一模)数学(理)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)i是虚数单位,=()A.1﹣i B.﹣1﹣i C.1+i D.﹣1+i2.(5分)已知全集U=R,函数y=ln(x﹣1)的定义域为M,集合N={x|x2﹣x<0},则下列结论正确的是()A.M∩N=N B.M∩(?U N)=?C.M∪N=U D.M?(?U N)3.(5分)“”是“ea>e b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.35.(5分)在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.或C.D.或6.(5分)某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()(注:结余=收入﹣支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元7.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.1 D.8.(5分)若圆x2+(y﹣1)2=r2与曲线(x﹣1)y=1没有公共点,则半径r的取值范围是()A.0<r<B.0<r<C.0<r<D.0<r<二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)二项式(x2+)5的展开式中含x4的项的系数是(用数字作答).10.(5分)已知等差数列{a n}(n∈N*)中,a1=1,a4=7,则数列{a n}的通项公式a n= ;a2+a6+a10+…+a4n+10= .11.(5分)在直角坐标系xOy中,曲线C1的方程为x2+y2=2,曲线C2的参数方程为(t为参数).以原点O 为极点,x轴非负半轴为极轴,建立极坐标系,则曲线C1与C2的交点的极坐标为.12.(5分)不等式组所表示的平面区域为D.若直线y=a(x+1)与区域D有公共点,则实数a的取值范围是.13.(5分)已知M为△ABC所在平面内的一点,且.若点M在△ABC的内部(不含边界),则实数n 的取值范围是.14.(5分)某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i(i=1,2,…,12)项能力特征用x i表示,,若学生A,B的十二项能力特征分别记为A=(a1,a2,…,a12),B=(b1,b2,…,b12),则A,B两名学生的不同能力特征项数为(用a i,b i表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数,ω>0.(Ⅰ)若ω=1,求f(x)的单调递增区间;(Ⅱ)若,求f(x)的最小正周期T的表达式并指出T的最大值.16.(13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如表.1 2 3 4 5男生 1 4 3 2 2女生0 1 3 3 1(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X,求随机变量X的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差与女学生阅读名著本数的方差的大小(只需写出结论).17.(14分)如图,在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2.直角梯形AA1C1C通过直角梯形AA1B1B以直线AA1为轴旋转得到,且使得平面AA1C1C⊥平面AA1B1B.M为线段BC的中点,P为线段BB1上的动点.(Ⅰ)求证:A1C1⊥AP;(Ⅱ)当点P是线段BB1中点时,求二面角P﹣AM﹣B的余弦值;(Ⅲ)是否存在点P,使得直线A1C∥平面AMP?请说明理由.18.(13分)已知函数f(x)=x+alnx,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x∈[1,2]时,都有f(x)>0成立,求a的取值范围;(Ⅲ)试问过点P(1,3)可作多少条直线与曲线y=f(x)相切?并说明理由.19.(14分)已知点和椭圆C:.(Ⅰ)设椭圆的两个焦点分别为F1,F2,试求△PF1F2的周长及椭圆的离心率;(Ⅱ)若直线l:与椭圆C交于两个不同的点A,B,直线PA,PB与x轴分别交于M,N两点,求证:|PM|=|PN|.20.(13分)已知等差数列{a n}的通项公式.设数列{b n}为等比数列,且.(Ⅰ)若b1=a1=2,且等比数列{b n}的公比最小,(ⅰ)写出数列{b n}的前4项;(ⅱ)求数列{k n}的通项公式;(Ⅱ)证明:以b1=a2=5为首项的无穷等比数列{b n}有无数多个.数学试题答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.【解答】===1+i,故选C.2.【解答】由x﹣1>0,解得:x>1,故函数y=ln(x﹣1)的定义域为M=(1,+∞),由x2﹣x<0,解得:0<x<1,故集合N={x|x2﹣x<0}=(0,1),∴?U N={x|x≥1或x≤0},∴M?(?U N),故选:D.3.【解答】∵“”?a>b?“ea>e b”,反之不成立,例如取a=2,b=﹣1.∴“”是“ea>e b”的充分不必要条件.故选:A.4.【解答】模拟执行程序,可得i=1,S=1满足条件i<4,S=3,i=2满足条件i<4,S=8,i=3满足条件i<4,S=19,i=4不满足条件i<4,退出循环,输出S的值为19.故选:B.5.【解答】∵cosB=,∴a2+c2﹣b2=2accosB,代入已知等式得:2ac?cosBtanB=ac,即sinB=,则B=或.故选:B.6.【解答】由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A正确,由图可知,结余最高为7月份,为80﹣20=60,故B正确,由图可知,1至2月份的收入的变化率为与4至5月份的收入的变化率相同,故C正确,由图可知,前6个月的平均收入为(40+60+30+30+50+60)=45万元,故D错误,故选:D.7.【解答】由三视图可知:该几何体为如图所示的三棱锥,CB⊥侧面PAB.该几何体的体积V=××1=.故选:A.8.【解答】圆的圆心为(0,1),半径为r设圆与曲线y=相切的切点为(m,n),可得n=,①y=的导数为y′=﹣,可得切线的斜率为﹣,由两点的斜率公式可得?(﹣)=﹣1,即为n﹣1=m(m﹣1)2,②由①②可得n4﹣n3﹣n﹣1=0化为(n2﹣n﹣1)(n2+1)=0,即有n2﹣n﹣1=0,解得n=或,则有或.可得此时圆的半径r==.结合图象即可得到圆与曲线没有公共点的时候,r的范围是(0,).故选:C.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.【解答】二项式(x2+)5的展开式中通项公式为 T r+1= x10﹣2r x﹣r=x10﹣3r.令 10﹣3r=4,可得 r=2,∴展开式中含x4的项的系数是=10,故答案为10.10.【解答】∵等差数列{a n}(n∈N*)中,a1=1,a4=7,∴a4=1+3d=7,解得d=2,∴a n=1+(n﹣1)×2=2n﹣1,∴a2=1+2=3,a6=1+5×2=11,a6﹣a2=8,∴a2+a6+a10+…+a4n+10=×3+×8=(n+3)(4n+11).故答案为:2n﹣1,(n+3)(4n+11).11.【解答】将曲线C2的参数方程(t为参数)代入曲线C1的方程为x2+y2=2,可得(2﹣t)2+t2=2,解得t=1,可得交点的直角坐标为(1,1),由x=ρcosθ,y=ρsinθ,tanθ=,可得ρ==,tanθ=1,0<θ<,可得θ=.可得交点的极坐标为(,).故答案为:(,).12.【解答】作出不等式组对应的平面区域图示:因为y=a(x+1)过定点C(﹣1,0).当a≤0时,直线y=a(x+1)与区域D有公共点,满足条件.当a>0时,当直线y=a(x+1)过点A时,由公共点,由得,即A(3,3),代入y=a(x+1)得4a=3,a=,又因为直线y=a(x+1)与平面区域D有公共点.此时0<a≤.综上所述,a≤.故答案为:.13.【解答】如图,由得:;∴;∴;∴;∴;∴实数n的取值范围是.故答案为:.14.【解答】若第i(i=1,2,…,12)项能力特征相同,则差为0,特征不相同,绝对值为1,则用x i表示A,B两名学生的不同能力特征项数为=|a1﹣b1|+|b2﹣c2|+…+|c12﹣a12|=,设第三个学生为C=(c1,c2,…,c12),则d i=|a i﹣b i|+|b i﹣c i|+|c i﹣a i|,1≤i≤12,∵d i的奇偶性和(a i﹣b i)+(b i﹣c i)+(c i﹣a i)=0一样,∴d i是偶数,3名学生两两不同能力特征项数总和为S=d1+d2+…+d12为偶数,又S≥7×3=21.则S≥22,取A=(0,1,1,0,1,1,0,1,1,0,1,1),B=(1,0,1,1,0,1,1,0,1,1,0,1),C=(1,1,0,1,1,0,1,1,0,1,1,1),则不同能力特征数总和恰好为22,∴最小值为22,故答案为:,22三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】解:(Ⅰ)当ω=1时,==.令.解得.所以f(x)的单调递增区间是.…(7分)(Ⅱ)由==.因为,所以.则,n∈Z.解得.又因为函数f(x)的最小正周期,且ω>0,所以当ω=时,T的最大值为4π.…(13分)16.【解答】(Ⅰ)设事件A:从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4.由题意可知,.…(4分)(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4.由题意可得,,,,.所以随机变量X的分布列为X 0 1 2 3 4P随机变量X的均值.…(10分)(Ⅲ).…(13分)17.【解答】(Ⅰ)证明:由已知∠A1AB=∠A1AC=90°,且平面AA1C1C⊥平面AA1B1B,所以∠BAC=90°,即AC⊥AB.又因为AC⊥AA1且AB∩AA1=A,所以AC⊥平面AA1B1B.由已知A1C1∥AC,所以A1C1⊥平面AA1B1B.因为AP?平面AA1B1B,所以A1C1⊥AP.…(4分)(Ⅱ)由(Ⅰ)可知AC,AB,AA1两两垂直.分别以AC,AB,AA1为x轴、y轴、z轴建立空间直角坐标系如图所示.由已知 AB=AC=AA1=2A1B1=2A1C1=2,所以A(0,0,0),B(0,2,0),C(2,0,0),B1(0,1,2),A1(0,0,2).因为M为线段BC的中点,P为线段BB1的中点,所以.易知平面ABM的一个法向量=(0,0,1).设平面APM的一个法向量为=(x,y,z),由,得取y=2,得=(﹣2,2,﹣3).由图可知,二面角P﹣AM﹣B的大小为锐角,所以===.所以二面角P﹣AM﹣B的余弦值为.…(9分)(Ⅲ)存在点P,使得直线A1C∥平面AMP.设P(x1,y1,z1),且,λ∈[0,1],则(x1,y1﹣2,z1)=λ(0,﹣1,2),所以x1=0,y1=2﹣λ,z1=2λ.所以.设平面AMP的一个法向量为=(x0,y0,z0),由,得取y0=1,得(显然λ=0不符合题意).又,若A1C∥平面AMP,则.所以.所以.所以在线段BB1上存在点P,且时,使得直线A1C∥平面AMP.…(14分)18.【解答】(Ⅰ)函数f(x)的定义域为{x|x>0}..(1)当a≥0时,f′(x)>0恒成立,函数f(x)在(0,+∞)上单调递增;(2)当a<0时,令f′(x)=0,得x=﹣a.当0<x<﹣a时,f′(x)<0,函数f(x)为减函数;当x>﹣a时,f′(x)>0,函数f(x)为增函数.综上所述,当a≥0时,函数f(x)的单调递增区间为(0,+∞).当a<0时,函数f(x)的单调递减区间为(0,﹣a),单调递增区间为(﹣a,+∞).…(4分)(Ⅱ)由(Ⅰ)可知,(1)当﹣a≤1时,即a≥﹣1时,函数f(x)在区间[1,2]上为增函数,所以在区间[1,2]上,f(x)min=f(1)=1,显然函数f(x)在区间[1,2]上恒大于零;(2)当1<﹣a<2时,即﹣2<a<﹣1时,函数f(x)在[1,﹣a)上为减函数,在(﹣a,2] 上为增函数,所以f(x)min=f(﹣a)=﹣a+aln(﹣a).依题意有f(x)min=﹣a+aln(﹣a)>0,解得a>﹣e,所以﹣2<a<﹣1.(3)当﹣a≥2时,即a≤﹣2时,f(x)在区间[1,2]上为减函数,所以f(x)min=f(2)=2+aln2.依题意有f(x)min=2+aln2>0,解得,所以.综上所述,当时,函数f(x)在区间[1,2]上恒大于零.…(8分)(Ⅲ)设切点为(x0,x0+alnx0),则切线斜率,切线方程为.因为切线过点P(1,3),则.即.…①令(x>0),则.(1)当a<0时,在区间(0,1)上,g′(x)>0,g(x)单调递增;在区间(1,+∞)上,g′(x)<0,g(x)单调递减,所以函数g(x)的最大值为g(1)=﹣2<0.故方程g(x)=0无解,即不存在x0满足①式.因此当a<0时,切线的条数为0.(2)当a>0时,在区间(0,1)上,g′(x)<0,g(x)单调递减,在区间(1,+∞)上,g′(x)>0,g(x)单调递增,所以函数g(x)的最小值为g(1)=﹣2<0.取,则.故g(x)在(1,+∞)上存在唯一零点.取,则=.设,u(t)=e t﹣2t,则u′(t)=e t﹣2.当t>1时,u′(t)=e t﹣2>e﹣2>0恒成立.所以u(t)在(1,+∞)单调递增,u(t)>u(1)=e﹣2>0恒成立.所以g(x2)>0.故g(x)在(0,1)上存在唯一零点.因此当a>0时,过点P(1,3)存在两条切线.(3)当a=0时,f(x)=x,显然不存在过点P(1,3)的切线.综上所述,当a>0时,过点P(1,3)存在两条切线;当a≤0时,不存在过点P(1,3)的切线.…(13分)19.【解答】(Ⅰ)由题意可知,a2=4,b2=2,所以c2=2.因为是椭圆C上的点,由椭圆定义得|PF1|+|PF2|=4.所以△PF1F2的周长为.易得椭圆的离心率.…(4分)(Ⅱ)证明:由得.因为直线l与椭圆C有两个交点,并注意到直线l不过点P,所以解得﹣4<m<0或0<m<4.设A(x1,y1),B(x2,y2),则,,,.显然直线PA与PB的斜率存在,设直线PA与PB的斜率分别为k1,k2,则======.因为k1+k2=0,所以∠PMN=∠PNM.所以|PM|=|PN|.…(14分)20.【解答】(Ⅰ)观察数列{a n}的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列{a n}是递增的整数数列,且等比数列以2为首项,显然最小公比不能是,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知b1=2,公比q=4,所以.又,所以,即.再证k n为正整数.显然k1=1为正整数,n≥2时,,即,故为正整数.所以,所求通项公式为;(Ⅱ)证明:设数列{c n}是数列{a n}中包含的一个无穷等比数列,且,,所以公比.因为等比数列{c n}各项为整数,所以q为整数.取k2=5m+2(m∈N*),则q=3m+1,故.只要证是数列{a n}的项,即证3k n﹣1=5?(3m+1)n﹣1.只要证(n∈N*)为正整数,显然k1=2为正整数.又n≥2时,,即,又因为k1=2,5m(3m+1)n﹣2都是正整数,故n≥2时,k n也都是正整数.所以数列{c n}是数列{a n}中包含的无穷等比数列,其公比q=3m+1有无数个不同的取值,对应着不同的等比数列,故数列{a n}所包含的以a2=5为首项的不同无穷等比数列有无数多个.。
2016年北京市朝阳区高三一模文科数学试卷含答案

北京市朝阳区高三年级第一次综合练习数学试卷(文史类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}3A x x =≤,{}2B x x =<,则()U B A =ð( ) A .{}2x x ≤ B .{}13x x ≤≤ C .{}23x x <≤ D .{}23x x ≤≤ 2.已知i 为虚数单位,则复数2i1i+= ( ) A .1i + B .1i - C .1i -+ D .1i --3.已知非零平面向量,a b ,“+=-a b a b ”是“⊥a b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4.执行如图所示的程序框图,输出的S 值为( ) A .42 B .19 C .8 D .35.在ABC ∆中,角,,A B C 所对的边分别为,,a b c cos sin 0B b A +=,则B =( ) A .π6B .π3C . 2π3D .5π66.已知某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A.3. C.1+ D.1+7.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元 (注:结余=收入-支出)8.若圆222(1)x y r+-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是() A .0r << B .0r <<C .0r <D .0r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知函数22log (3),0,(), 0,xx fx x x +≥⎧=⎨<⎩则((1))f f -= .10.已知双曲线221x y m-=过抛物线28y x =的焦点,则此双曲线的渐近线方程为 . 11.已知递增的等差数列}{n a ()n *∈N 的首项11=a ,且1a ,2a ,4a 成等比数列,则数列}{n a 的通项公式n a = ;48124+4+n a a a a +++ =_______.12.已知不等式组0,,290y y x x y ≥⎧⎪≤⎨⎪+-≤⎩表示的平面区域为D .若直线()1y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知圆22:(3)(5)5C x y -+-=,过圆心C 的直线l 交圆C 于,A B 两点,交y 轴于点P .若A 恰为PB 的中点,则直线l 的方程为 .14.甲乙两人做游戏,游戏的规则是:两人轮流从1(1必须报)开始连续报数,每人一次最少要报一个数,最多可以连续报7个数(如,一个人先报数“1,2”,则下一个人可以有“3”, “3,4”,…,“3,4,5,6,7,8,9”等七种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()2sin cos()3f x x x ωωπ=+(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求()f x 在区间[,]62ππ-上的最大值和最小值. 16.(本小题满分13分)已知数列{}n a 的前n 项和22n S n n =-,n *∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若()1nn n b a =-,求数列{}n b 的前n 项和n T .17.(本小题满分13分)某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如下表:(Ⅰ)试根据上述数据,求这个班级女生阅读名著的平均本数;(Ⅱ)若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率; (Ⅲ)试判断该班男生阅读名著本数的方差21s 与女生阅读名著本数的方差22s 的大小(只需写出结论).(注:方差2222121[()()()]n s x x x x x x n=-+-++- ,其中x 为1x 2x ,…… n x 的平均数)18.(本小题共14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90BAC ∠=︒,2AB AC ==,13AA ,M N 分别为BC 和1CC 的中点,P 为侧棱1BB 上的动点.(Ⅰ)求证:平面APM ⊥平面11BBC C ;(Ⅱ)若P 为线段1BB 的中点,求证:1//A N 平面APM ; (Ⅲ)试判断直线1BC 与平面APM 是否能够垂直. 若能垂直,求PB 的值;若不能垂直,请说明理由. 19.(本小题共14分)已知椭圆:C 22142x y +=的焦点分别为12,F F . (Ⅰ)求以线段12F F 为直径的圆的方程;(Ⅱ)过点(4,0)P 任作一条直线l 与椭圆C 交于不同的两点,M N .在x 轴上是否存在点Q ,使得180PQM PQN ∠+∠=︒?若存在,求出点Q 的坐标;若不存在,请说明理由. 20.(本题满分13分) 已知函数()e xk x f x k x+=⋅-()k ∈R . (Ⅰ)若1,k =求曲线()y f x =在点()0(0)f ,处的切线方程; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)设0k ≤,若函数()f x在区间上存在极值点,求k 的取值范围.北京市朝阳区高三年级第一次综合练习数学答案(文史类) 2016.3一、选择题:(满分40分)二、填空题:(满分30分)三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)()2sin cos()3f x x x ωωπ=+12sin (cos )2x x x ωωω=2sin cos x x x ωωω=1sin 22x x ωω=+sin(2)3x ωπ=+-.因为()f x 的最小正周期为2T ω2π==π,则1ω=.(Ⅱ)由(Ⅰ)可知()sin(2)3f x x π=+. 因为,6x ππ-≤≤2所以0233x π4π≤+≤.则sin(2)13x π≤+≤. 当232x ππ+=,即12x π=时,()f x 取得最大值是31当233x π4π+=,即2x π=时,()f x 取得最小值是3-()f x 在区间[,]62ππ-的最大值为31-3- 16.(本小题满分13分) 解:(Ⅰ)由22n S n n =-,当2n ≥时,()()221=22114 3.-⎡⎤=------=-⎣⎦n n n a S S n n n n n当1n =时,111,a S ==而4131⨯-=,所以数列{}n a 的通项公式43n a n =-,n *∈N .(Ⅱ)由(Ⅰ)可得()(1)(1)43,=-=--n n n n b a n 当n 为偶数时,()159********,2n nT n n =-+-+-++-=⨯= 当n 为奇数时,1n +为偶数,112(1)(41)2 1.n n n T T b n n n ++=-=+-+=-+ 综上,2,,21,.n n n T n n ⎧=⎨-+⎩为偶数为奇数17.(本小题满分13分)11323314+25⨯+⨯+⨯+⨯⨯(Ⅱ)设事件A ={从阅读5本名著的学生中任取2人,其中男生和女生各1人}. 男生阅读5本名著的3人分别记为123,,a a a ,女生阅读5本名著的2人分别记为12,.b b 从阅读5本名著的5名学生中任取2人,共有10个结果,分别是:{}12,a a ,{}13,a a ,{}23,a a ,{}12,b b ,{}11,a b ,{}12,a b , {}21,a b ,{}22,a b ,{}31,a b ,{}32,a b .其中男生和女生各1人共有6个结果,分别是:{}11,a b ,{}12,a b ,{}21,a b ,{}22,a b ,{}31,a b ,{}32,a b .则63105PA ==(). (Ⅲ)2212s s >. 18.(本小题满分14分) 证明:(Ⅰ)由已知,M 为BC 中点,且AB AC =,所以AM BC ⊥. 又因为11//BB AA ,且1AA ⊥底面ABC ,所以1BB ⊥底面ABC . 因为AM ⊂底面ABC ,所以1BB AM ⊥, 又1BB BC B = , 所以AM ⊥平面11BBC C . 又因为AM ⊂平面APM , 所以平面APM ⊥平面11BBC C .(Ⅱ)取11C B 中点D ,连结1A D ,DN ,DM ,1B C .由于D ,M 分别为11C B ,CB 的中点,所以DM //1A A ,且DM =1A A . 则四边形1A AMD 为平行四边形,所以1A D//AM . 又1A D ⊄平面APM ,AM ⊂平面APM , 所以1A D//平面APM . 由于D ,N 分别为11C B ,1C C 的中点, 所以DN //1B C .又P ,M 分别为1B B ,CB 的中点, 所以MP //1B C . 则DN //MP .又DN ⊄平面APM ,MP ⊂平面APM , 所以DN //平面APM .由于1A D =DN D ,所以平面1A DN//平面APM . 由于1A N ⊂平面1A DN , 所以1//A N 平面APM .(Ⅲ)假设1BC 与平面APM 垂直, 由PM ⊂平面APM , 则1BC PM ⊥. 设PB x =,x ∈.当1BC PM ⊥时,11BPM BC B ∠=∠, 所以Rt PBM ∆∽11Rt B C B ∆∠,所以111C B PB MB BB =.由已知111MB C B BB ===,得x=由于3x=,因此直线1BC与平面APM不能垂直.19.(本小题满分13分)解:(I)因为24a=,22b=,所以22c=.所以以线段12F F为直径的圆的方程为222x y+=.(II)若存在点(,0)Q m,使得180PQM PQN∠+∠=︒,则直线QM和QN的斜率存在,分别设为1k,2k.等价于12k k+=.依题意,直线l的斜率存在,故设直线l的方程为(4)y k x=-.由22(4)142y k xx y=-⎧⎪⎨+=⎪⎩,得2222(21)163240k x k x k+-+-=.因为直线l与椭圆C有两个交点,所以0∆>.即2222(16)4(21)(324)0k k k-+->,解得216k<.设11(,)M x y,22(,)N x y,则21221621kx xk+=+,212232421kx xk-=+,11(4)y k x=-,22(4)y k x=-.令1212120y y k k x m x m +=+=--,1221()()0,x m y x m y -+-=1221()(4)()(4)0x m k x x m k x --+--=,当0k ≠时,12122(4)()80x x m x x m -+++=,所以22324221k k -⨯+2216(4)8021k m m k -+⨯+=+, 化简得,28(1)021m k -=+, 所以1m =. 当0k =时,也成立.所以存在点(1,0)Q ,使得180PQM PQN ∠+∠=︒. 20.(本小题满分13分)解:(Ⅰ)若1k =,函数()f x 的定义域为{}1x x ≠,22e (3)()=1)x x f x x -'-(. 则曲线()y f x =在点()0(0)f ,处切线的斜率为(0)=3f '.而(0)=1f ,则曲线()y f x =在点()0(0)f ,处切线的方程为31y x =+.(Ⅱ)函数()f x 的定义域为{}x x k ≠,222e (2)()=)x k k x f x k x +-'-(.(1)当0k >时,由x k ≠,k >,可得k <令()0f x '<,解得x <x >,函数()f x 为减函数;令()0f x '>,解得x <<x k ≠,所以当x k <<,k x <<时,函数()f x 也为增函数.所以函数()f x 的单调减区间为∞(-,,)∞,单调增区间为)k (,k (.(2)当0k =时,函数()f x 的单调减区间为∞(-,0),+∞(0,). 当2k =-时,函数()f x 的单调减区间为2∞(-,-),2+∞(-,). 当20k -<<时,由220k k +<,所以函数()f x 的单调减区间为k ∞(-,),+k ∞(,). 即当20k -≤≤时,函数()f x 的单调减区间为k ∞(-,),+k ∞(,).(3)当2k <-时,此时k >.令()0f x '<,解得x <或x >,但x k ≠,所以当x k <,k x <<,x >()f x 为减函数;令()0f x '>,解得x <<()f x 为增函数. 所以函数()f x 的单调减区间为k ∞(-,),22k k k +(,-),22,)k k ++∞(,函数()f x 的单调增区间为222,2)k k k k ++(-.(Ⅲ)(1)当20k -≤≤时,由(Ⅱ)问可知,函数()f x 在(3,22)上为减函数,所以不存在极值点;(2)当2k <-时,由(Ⅱ)可知,()f x 在222,2)k k k k ++(-上为增函数,在22)k k ++∞(上为减函数.若函数()f x 在区间,解得43k -<<-或12k <<,所以43k -<<-.综上所述,当43k -<<-时,函数()f x 在区间上存在极值点.。
北京市朝阳区高三一模数学(理科)带答案教学提纲

北京市朝阳区2016高三一模数学(理科)带答案北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}2N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅C .M N U =D .()U M N ⊆3. >e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c 若222()tan a c b B +-=,则角B 的值为A . 3π B . 6πC . 233ππ或 D . 566ππ或6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1 B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)xy r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是月 23 4 1 5 689 1711(第4题(第7题侧视俯视第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标...为 .12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界), 则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =)项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =,1212(,,,)B b b b =,则,A B两名学生的不同能力特征项数为(用,i ia b表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数21()sin222xf x xωω=+-,0ω>.(Ⅰ)若1ω=,求()f x的单调递增区间;(Ⅱ)若()13fπ=,求()f x的最小正周期T的表达式并指出T的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论). 17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围; A MPCBA 1C1B1(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点P 和椭圆:C 22142x y +=.(Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率;(Ⅱ)若直线:l 20(0)y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x 轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且nn k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)当1ω=时,21()sin 22x f x x =1sin 2x x =+sin()3x π=+. 令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z (7)分(Ⅱ)由21()sin 22xf x x ωω=1sin 2x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 .由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====;2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====; 4448(4)C P X C ===所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分(Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥.又因为1AC AA ⊥且1ABAA A =,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B , 所以11A C AP ⊥.…………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA A B AC =====,所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,17⋅〈〉===⋅m n m n m n.所以二面角P AM B --的余弦值为17.………………………………9分(Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-,所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP . (14)分18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x xx+'=+=.(1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零;(2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a -上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分(Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01ak x =+,切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x=+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式.因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增,所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aag x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点. 取2-1-21e<e ax =,则221122()(1e 1)2e 24a ag x a a a a++=--+--=--212[e 2(1)]a a a +=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-.当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线. (3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+.易得椭圆的离心率=2c e a =.………………………………………………………4分(Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y,则122x x +=-,21284m x x -=,112my +=,222m y +=.显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x -+===28)(m m ----+=2=220==.因为120k k +=,所以PMN PNM ∠=∠.所以PMPN=. ………………………………………………14分20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128. (ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31nn kn b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数. 显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列, 且115kc a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列, 故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个. …………………………………………………………………………………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是A .M N N =B .()U M N =∅ ðC .M N U =D .()U M N ⊆ð 3. “a b >”是“e e ab>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c 若222()tan 3a c b B ac +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月开始1,1i S ==4?i < 1i i =+ 2S S i =+输出S 结束 否 是(第4题图)C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A .02r << B .1102r <<C .03r <<D .1302r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答). 10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++= ______.万元 月O23430 110 20 5689 10 7111240 60 570 90 8收入支出(第7题图)正视图侧视图俯视图2 11111.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i = )项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a = ,1212(,,,)B b b b = ,则,A B 两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分) 已知函数213()sin 3cos 222x f x x ωω=+-,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.人数 本数性别12 3 4 5(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AAC C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11AC AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1AC //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;男生 1 4 3 2 2 女生1331AMPCBA 1C 1B 1(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点(2,1)P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率; (Ⅱ)若直线:l 220(0)x y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =. (Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案DDABCDAC二、填空题:(满分30分) 题号 9 10 11 12 13 14答案1021n a n =-,(3)(411)n n ++(2,)4π 3(,]4-∞3(0,)4121||ii i ab =-∑22(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+- 13sin cos 22x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由213()sin 3cos 222x f x x ωω=+- 13sin cos 22x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+. 又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知, 13+417()=12896P A ⨯⨯=⨯.………………………………………4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;44481(4)70C P X C ===. 所以随机变量X 的分布列为X 0 1 2 3 4P 1708351835835170随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分 17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AAC C ⊥平面11AA B B , 所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A = , 所以AC ⊥平面11AA B B .由已知11//AC AC ,所以11AC ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA AB AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以3317cos ,1717⋅〈〉===⋅m n m n m n. 所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1AC //平面AMP . 设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n ,yxAMPC BA 1 C 1B 1z由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩ n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =- ,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--= n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1AC //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e1)2e 0aag x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a ag x a a a a++=--+--=--212[e 2(1)]a a a +=-+.设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线. (3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =. 因为(2,1)P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为422+. 易得椭圆的离心率2=2c e a =.………………………………………………………4分 (Ⅱ)由22220,1,42x y m x y ⎧-+=⎪⎨+=⎪⎩得2242280x mx m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y ,则1222x x m +=-,21284m x x -=, 1122x m y +=,2222x m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则1212121122y y k k x x --+=+-- 12211222(1)(2)(1)(2)22(2)(2)x m x m x x x x ++--+--=-- 122112(22)(2)(22)(2)2(2)(2)x m x x m x x x +--++--=-- 1212121222(4)()22422[2()2]x x m x x m x x x x +-+-+=-++ 2121222(8)(4)228216244442[2()2]m m m m x x x x ----+=-++ 2121222(8)(4)22821628[2()2]m m m m x x x x ----+=-++ 2212122216222828216208[2()2]m m m m x x x x --+-+==-++. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分 20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N , 即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。