(完整版)平行四边形性质培优
(完整版)平行四边形经典题型(培优提高)

1.平行四边形的性质:①平行四边形两组对边相等。
②平行四边形两组对角相等。
③平行四边形对角线互分均分。
2.平行四边形判断:定理 1、一组对边平行且相等的四边形是平行四边形定理 2、两组对边分别相等的四边形是平行四边形。
定理 3、对角线相互均分的四边形是平行四边形。
定理 4、两组对角分别相等的四边形是平行四边形。
3.三角形的中位线定理:三角形的中位线平行于第三边,而且等于第三边的一半。
4.逆定理 1:在三角形内,与三角形的两边订交,平行且等于三角形第三边一半的线段是三角形的中位线。
逆定理 2:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
第四节:中心对称图形讲堂练习1. 以下图形中,既是中心对称图形,又是轴对称图形的是()A .正三角形B .平行四边形C.等腰直角三角形D.正六边形2. 以下图形中,不是中心对称图形的是()3.以下图形中,既是轴对称图形又是中心对称图形的是().4.下三图是由三个相同的小正方形拼成的图形,请你再增添一个相同大小的小正方形,使所得的新图形分别为以下 A , B, C 题要求的图形,请画出表示图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.第五节:平行四边形的判断例题解说例 1:判断以下说法的正误,假如错误请画出反例图①一组对边平行,另一组对边相等的四边形是平行四边形。
( )②一组对边相等,另一组对边平行的四边形是平行四边形. ( )③一组对边平行,一组对角相等的四边形是平行四边形.( )④一组对边平行且相等的四边形是平行四边形.( )⑤两组邻角互补的四边形是平行四边形。
( )⑥相邻两个角都互补的四边形是平行四边形。
( )⑦对角互补的四边形是平行四边形( )⑧一条对角线分四边形为两个全等三角形,这个四边形是平行四边形( )⑨两条对角线相等的四边形是平行四边形( ) 例 2:以下图,平行四边形ABCD 中, M、N 分别为 AD、BC 的中点,连结 AN、DN、BM 、CM ,且 AN、 BM 交于点 P, CM 、 DN 交于点 Q.四边形 MGNP 是平行四边形吗?为何?变式 1:□ABCD 中, E 在 AB 上, F 在 CD 上,且 AE=CF, 求证: FM=NE ME=NFFDCNMA E B讲堂练习:1.点 A ,B,C,D 在同一平面内,从四个条件中( 1)AB=CD ,( 2)AB ∥ CD,( 3)BC=AD ,( 4) BC ∥ AD 中任选两个,使四边形ABCD 是平行四边形,这样的选法有()A . 3 种B. 4 种C. 5 种D. 6 种2.以下图,□ ABCD的对角线 AC、 BD 交于 O,EF 过点 O 交 AD 于 E,交 BC 于 F ,G是 OA的中点, H 是 OC 的中点,四边形 EGFH 是平行四边形,说明原因.3.如图:在四边形 ABCD 中, AD ∥BC ,且 AD >BC,BC=6cm ,AD=9cm ,P、Q 分别 A 、C 同时出发, P 以 1cm/s 的速度由 A 向D 运动,Q 以 2cm/s 的速度由 C 向 B 运动,__秒时直线 QP 将四边形截出一个平行四边形.4.如图,在 Rt△ ABC 中,∠ BAC=90°,AB=3 ,AC=4 ,将△ ABC 沿直线 BC 向右平移个单位获得△ DEF ,AC 与 DE 订交于 G 点,连结 AD , AE ,则以下结论中建立的是____.①四边形ABED 是平行四边形;②△AGD ≌△ CGE ;③△ ADE 为等腰三角形;④AC 均分∠ EAD .5.在平面直角坐标系 XOY 中,有 A( 3, 2), B (﹣ 1,﹣ 4 ), P 是 X 轴上的一点, Q是 Y 轴上的一点,若以点 A , B, P,Q 四个点为极点的四边形是平行四边形,则Q 点的坐标是_________.6. 如图 1,图 2,△ ABC 是等边三角形,D、E 分别是 AB 、BC 边上的两个动点(与点 A 、B、 C 不重合),一直保持BD=CE .(1)当点 D 、 E 运动到如图 1 所示的地点时,求证: CD=AE .(2)把图 1 中的△ACE 绕着 A 点顺时针旋转 60°到△ ABF的地点(如图2),分别连结DF、 EF.①找出图中全部的等边三角形(△ ABC 除外),并对此中一个赐予证明;②试判断四边形CDFE 的形状,并说明原因.7. 如图,以△ ABC 的三条边为边向BC 的同一侧作等边△ ABP、等边△ ACQ,等边△BCR,求证:四边形PAQR 为平行四边形。
数学数学平行四边形的专项培优练习题(含答案

数学数学平行四边形的专项培优练习题(含答案一、解答题1.如图,在Rt ABC 中,90ACB ∠=︒,过点C 的直线//MN AB ,D 为AB 边上一点,过点D 作DE BC ⊥,交直线MN 于E ,垂足为F ,连接CD 、BE(1)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由; (2)当D 为AB 中点时,A ∠等于 度时,四边形BECD 是正方形.2.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.3.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.4.在等边三角形ABC 中,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 的上方作菱形ADEF ,且∠DAF=60°,连接CF .(1)(观察猜想)如图(1),当点D 在线段CB 上时,①BCF ∠= ;②,,BC CD CF 之间数量关系为 .(2)(数学思考):如图(2),当点D 在线段CB 的延长线上时,(1)中两个结论是否仍然成立?请说明理由.(3)(拓展应用):如图(3),当点D 在线段BC 的延长线上时,若6AB =,13CD BC =,请直接写出CF 的长及菱形ADEF 的面积..5.在ABCD 中,以AD 为边在ABCD 内作等边ADE ∆,连接BE .(1)如图1,若点E 在对角线BD 上,过点A 作AH BD ⊥于点H ,且75DAB ∠=︒,AB 6=,求AH 的长度; (2)如图2,若点F 是BE 的中点,且CF BE ⊥,过点E 作MNCF ,分别交AB ,CD 于点,M N ,在DC 上取DG CN =,连接CE ,EG .求证:①CEN DEG ∆∆≌;②ENG ∆是等边三角形.6.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.7.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 . (2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.8.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =.(1)求证:QAB QMC ∠=∠(2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图29.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG =BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB =AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.10.已知:在矩形ABCD 中,点F 为AD 中点,点E 为AB 边上一点,连接CE 、EF 、CF ,EF 平分∠AEC .(1)如图1,求证:CF ⊥EF;(2)如图2,延长CE 、DA 交于点K, 过点F 作FG ∥AB 交CE 于点G 若,点H 为FG 上一点,连接CH,若∠CHG=∠BCE, 求证:CH=FK;(3)如图3, 过点H 作HN ⊥CH 交AB 于点N,若EN=11,FH-GH=1,求GK 长.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)四边形BECD 是菱形,理由见解析;(2)45︒【分析】(1)先证明//AC DE ,得出四边形BECD 是平行四边形,再“根据直角三角形斜边上的中线等于斜边的一半”证出CD BD =,得出四边形BECD 是菱形;(2)先求出45ABC ∠=︒,再根据菱形的性质求出90DBE ∠=︒,即可证出结论.【详解】解:当点D 是AB 的中点时,四边形BECD 是菱形;理由如下:∵DE BC ⊥,90DFE ∴∠=︒,∵90ACB ∠=︒,ACB DFB ∴∠=∠,//AC DE ∴,∵//MN AB ,即//CE AD ,∴四边形ADEC 是平行四边形,CE AD ∴=; D 为AB 中点,AD BD ∴=,BD CE ∴=,∵//BD CE ,∴四边形BECD 是平行四边形,∵90ACB ∠=︒,D 为AB 中点,12CD AB BD ∴==, ∴四边形BECD 是菱形;(2)当45A ∠=︒时,四边形BECD 是正方形;理由如下:∵90ACB ∠=︒,45A ∠=︒,45ABC ∴∠=︒,∵四边形BECD 是菱形,12ABC DBE ∴∠=∠, 90DBE ∴∠=︒,∴四边形BECD 是正方形.故答案为:45︒.【点睛】本题考查了平行四边形的判定、正方形的判定以及直角三角形的性质;根据题意证明线段相等和直角是解决问题的关键.2.(1)AG 2=GE 2+GF 2,理由见解析;(2 【分析】(1)结论:AG 2=GE 2+GF 2.只要证明GA=GC ,四边形EGFC 是矩形,推出GE=CF ,在Rt △GFC 中,利用勾股定理即可证明;(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .易证AM=BM=2x ,,在Rt △ABN 中,根据AB 2=AN 2+BN 2,可得1=x 2+(x )2,解得,推出BG=BN÷cos30°即可解决问题. 【详解】解:(1)结论:AG 2=GE 2+GF 2.理由:连接CG .∵四边形ABCD 是正方形,∴A 、C 关于对角线BD 对称,∵点G 在BD 上,∴GA=GC ,∵GE ⊥DC 于点E ,GF ⊥BC 于点F ,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC 是矩形,∴CF=GE ,在Rt △GFC 中,∵CG 2=GF 2+CF 2,∴AG 2=GF 2+GE 2.(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x ,MN=3x , 在Rt △ABN 中,∵AB 2=AN 2+BN 2,∴1=x 2+(2x+3x )2, 解得x=62-, ∴BN=62+, ∴BG=BN÷cos30°=3266+.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.3.(1)P (103,2);(2)(52,2)或(﹣52,2) 【分析】(1)根据已知条件得到C (5,3),设直线OC 的解析式为y =kx ,求得直线OC 的解析式为y=35x,设P(m,35m),根据S△POB=13S矩形OBCD,列方程即可得到结论;(2)设点P的纵坐标为h,得到点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,于是得到结论.【详解】(1)如图:∵矩形OBCD中,OB=5,OD=3,∴C(5,3),设直线OC的解析式为y=kx,∴3=5k,∴k=35,∴直线OC的解析式为y=35 x,∵点P在矩形的对角线OC上,∴设P(m,35 m),∵S△POB=13S矩形OBCD,∴12⨯5×35m=13⨯3×5,∴m=103,∴P(103,2);(2)∵S△POB=13S矩形OBCD,∴设点P的纵坐标为h,∴12h×5=133⨯⨯5,∴h=2,∴点P在直线y=2或y=﹣2上,作B 关于直线y =2的对称点E ,则点E 的坐标为(5,4),连接OE 交直线y =2于P ,则此时PO +PB 的值最小,设直线OE 的解析式为y =nx ,∴4=5n ,∴n =45, ∴直线OE 的解析式为y =45x , 当y =2时,x =52, ∴P (52,2), 同理,点P 在直线y =﹣2上,P (52,﹣2), ∴点P 的坐标为(52,2)或(﹣52,2). 【点睛】本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P 在位置是解题的关键.4.(1)①120°;② BC =CD +CF ;(2)不成立,见解析;(3)8,3【分析】(1)①根据菱形的性质以及等边三角形的性质,推出△ACF ≌△ABD ,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到CF=BD ,再根据BD+CD=BC ,即可得出CF+CD=BC ;(2)依据△ABD ≌△ACF ,即可得到∠ACF+∠BAC=180°,进而得到AB ∥CF ;依据△ABD ≌△ACF 可得BD=CF ,依据CD-BD=BC ,即可得出CD-CF=BC ;(3)依据≅△△ADB AFC ,即可得到8==+=CF BD BC CD ,利用ABC ∆是等边三角形,AH BC ⊥,可得132===BH HC BC ,即可得出HD 的长度,利用勾股定理即可求出AD 的长度,即可得出结论.【详解】解:(1) 在等边△ABC 中,AB=AC ,∠BAC=∠ACB=∠ABC=60°∴∠BAD+∠DAC=60°在菱形ADEF 中AD=AF∵∠DAF=∠DAC+∠FAC=60°∴∠CAF=∠DAB又∵AC=AB ,AF=AD∴△ACF ≌△ABD∴∠ACF=∠ABD=60°,CF=BD∴∠BCF=∠ACB+∠ACF=120°故答案为:120°②∵BC=BD+CD ,BD=CF∴BD=CF+CD故答案为:BC=CD+CF(2)不成立理由:∵ABC ∆是等边三角形∴60BAC ABC ACB ∠=∠=∠=,AB AC =又∵60DAF ∠=∴BAC BAF DAF BAF ∠-∠=∠-∠∴FAC DAB ∠=∠∵四边形ADEF 是菱形∴AD AF =∴≅△△ADB AFC∴DB FC =,18060120ACF ABD ∠=∠=-=∴1206060BCF ACF ACB ∠=∠-∠=-=∵BC CD BD =-∴BC CD CF =-(3)8=CF ,菱形ADEF 的面积是∵60BAC DAF ∠=∠=∴BAD CAF ∠=∠又∵AB AC =,AD AF =∴≅△△ADB AFC ∴16683CF BD BC CD ==+=+⨯=∴如图,过点A 作AH BC ⊥于点H ,连接FD∵ABC 是等边三角形,AH BC ⊥ ∴116322BH HC BC ===⨯= ∴325HD HC CD =+=+=∵22236927AH AB BH =-=-= ∴222725213AD AH DH ++=∴132221321326322AFD ADEF S S ∆==⨯⨯=菱形 【点睛】此题属于四边形综合题,主要考查了全等三角形的判定和性质,菱形的性质,等边三角形的判定和性质的综合运用,利用已知条件判定△DAB ≌△FAC 是解本题的关键.5.(1)3AH 2)①证明见解析;②证明见解析【分析】(1)根据等边三角形的性质得到∠DAE =60°,根据等腰三角形的性质得到∠DAH =∠EAH ,求出∠HAB =45°,根据等腰直角三角形的性质计算,得到答案;(2)①根据线段垂直平分线的性质得到CB =CE ,根据平行四边形的性质得到AD =BC ,得到DE =CE ,利用SAS 定理证明结论;②根据全等三角形的性质得到EN =EG ,根据等边三角形的判定定理证明即可.【详解】(l )∵ADE ∆是等边三角形,∴60DAE ∠=︒.∵AH BD ⊥,∴1302DAH HAE DAE ︒∠=∠=∠=. ∵75DAB ∠=︒,∴753045BAH BAD DAH ︒︒︒∠=∠-∠=-=. ∴232AB AH BH === (2)①∵点F 是BE 的中点,且CF BE ⊥,∴线段CF 是线段BE 的垂直平分线.∴CE CB =,ECF BCF ∠=∠.∵ADE ∆是等边三角形,∴DE AD =.∵四边形ABCD 是平行四边形,∴AD BC =,∴DE CE =.∴EDC ECD ∠=∠.在DEG ∆和CEN ∆中,DG CN GDE NCE DE CE =⎧⎪∠=∠⎨⎪=⎩,∴()CEN DEG SAS ∆∆≌.②由①知:CEN DEG ∆∆≌,∴EN EG =.∵AD BC ∥,∴180ADC BCD ︒∠+∠=.∵60ADE ∠=︒,∴120EDC BCD ︒∠+∠=.∵ECF BCF ∠=∠,EDC ECD ∠=∠,∴60DCF ∠=︒.∵CF MN ,∴60DNE DCF ∠=∠=︒.∴ENG ∆是等边三角形.【点睛】本题考查的是平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质,掌握平行四边形的性质定理、全等三角形的判定定理和性质定理是解题的关键.6.(1)见解析;(2;(3)2【分析】(1)由线段垂直平分线的性质可得BE=DE ,BF=DF ,可得∠EBD=∠EDB ,∠FBD=∠FDB ,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF ,可证BE ∥DF ,DE ∥BF ,可得四边形DEBF 是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF 的长;(3)过点D 作BC 的垂线,垂足为H ,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH 的长度,再利用底乘高得出结果.【详解】解:证明:(1)∵BD 平分∠ABC ,∴∠ABD=∠DBC ,∵EF 垂直平分BD ,∴BE=DE ,BF=DF ,∵∠EBD=∠EDB ,∠FBD=∠FDB ,∴∠EBD=∠BDF ,∠EDB=∠DBF ,∴BE ∥DF ,DE ∥BF ,∴四边形DEBF 是平行四边形,且BE=DE ,∴四边形BEDF 是菱形;(2)过点D 作DH ⊥BC 于点H ,∵四边形BEDF是菱形,∴BF=DF=DE=2,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=12DF=1,FH=3DH=3,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=1,∴FC=FH+CH=3+1;(3)过点D作BC的垂线,垂足为H,∵四边形BEDF是菱形,∠BDE=15°,∴∠DBF=∠BDF=∠ABD=15°,∴∠DFH=∠ABC=30°,∵DE=DF=2,∴DH=1,∴菱形BEDF的面积=BF×DH=2×1=2.【点睛】本题考查了菱形的判定和性质,线段垂直平分线的性质,直角三角形的性质等知识,掌握菱形的判定方法是本题的关键.7.(1332);(2)存在,点D的坐标为(0,3)或(231)或(0,-1);(3)OM=3221【分析】(1)过点B作BD⊥y轴于D,利用30°所对的直角边是斜边的一半和勾股定理求出OB,再利用30°所对的直角边是斜边的一半和勾股定理求出BD和OD即可得出结论;(2)根据题意和等边三角形的性质分别求出点A、B、C的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论;(3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角形的直角顶点分类讨论,分别画出对应的图形,利用直角三角形斜边上的中线等于斜边的一半、平行四边形的判定及性质、等腰三角形的判定及性质求解即可.【详解】解:(1)如图2,过点B 作BD ⊥y 轴于D由图1中,点A 的坐标为()1,0-,30ABO ∠=︒,∠AOB=90°∴OA=1,AB=2OA=2由勾股定理可得223AB OA -=∵将此直角三角板绕点O 顺时针旋转30∴∠BOD=30°∴BD=1322OB =∴2232OB BD -=∴点B 的坐标为(32,32) 332); (2)在图2的基础上继续将直角三角板绕点O 顺时针60︒,此时点A 落在y 轴上,点B落在x 轴上∴点A 的坐标为(0,1),点B 30)∵△ABC 为等边三角形∴∠ABC=60°,AB=BC=AC=2∴∠OBC=90°∴点C 32)设点D 的坐标为(a ,b )如图所示,若四边形ABCD 为菱形,连接BD ,与AC 交于点O∴点O既是AC的中点,也是BD的中点∴03322 12022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:3ab=⎧⎨=⎩∴此时点D的坐标为(0,3);当四边形ABDC为菱形时,连接AD,与BC交于点O∴点O既是AD的中点,也是BC的中点∴0332212022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:231ab⎧=⎪⎨=⎪⎩∴此时点D的坐标为(23,1);当四边形ADBC为菱形时,连接CD,与AB交于点O∴点O既是AB的中点,也是CD的中点∴03322 10222ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:1ab=⎧⎨=-⎩∴此时点D的坐标为(0,-1);综上:点D的坐标为(0,3)或(23,1)或(0,-1);(3)∵OB=3,∠ABO=30°∴OP=12OB=32∴BP=2232OB OP-=当∠OMB=90°时,如下图所示,连接BM∵F为OB的中点∴PF=12OB,MF=12OB,OF=BF∴PF=MF∴四边形OPBM为平行四边形∴OM=BP=32;当∠OBM=90°时,如下图所示,连接OM,∴∠PBM=∠PBO+∠OBM=120°∵点F为OB的中点∴FP=FB∴∠FPB=∠FBP=30°∴∠BMP=180°-∠PBM -∠FPB=30°∴∠BMP=∠BPM∴BM=BP=32在Rt △OBM 中,2=; 综上:OM=32或2. 【点睛】 此题考查的是直角三角形的性质、菱形的性质、平行四边形的判定及性质、等边三角形的性质,掌握30°所对的直角边是斜边的一半、勾股定理、直角三角形斜边上的中线等于斜边的一半、菱形的性质、平行四边形的判定及性质、等边三角形的性质是解决此题的关键.8.(1)见解析(2)见解析(3)15【分析】(1)根据四边形ABCD 是正方形,得到∠QBA =∠QBC ,进而可得△QBA ≌ △QBC ,∠QAB =∠QCB ,再根据CQ =MQ ,得到∠QCB =∠QMC ,即可求证;(2)根据∠QAB =∠QMC ,∠QMC +∠QMB =180°,得到∠QAB +∠QMB =180°,在四边形QABM 中,∠QAB +∠QMB +∠ABM +∠AQM =360°可得∠ABM +∠AQM =180°,再根据∠ABM =90°即可求解;(3)设正方形ABCD 的边长为a ,延长ND 至点H ,使DH =BM =2,证得△ADH ≌△ABM ,得到∠DAH =∠BAM ,且AH =AM ,由(2)知,△QAM 是等腰直角三角形,易得∠NAM =∠NAH ,进而得到△NAM ≌ △NAH ,在Rt △MNC 中,利用勾股定理得到6a =,即可求解.【详解】解:(1)∵四边形ABCD 是正方形∴∠QBA =∠QBC在△QBA 和△QBC 中BA BC QBA QBC QB QB =⎧⎪∠=∠⎨⎪=⎩∴△QBA ≌ △QBC (SAS )∴∠QAB =∠QCB又∵CQ =MQ∴∠QCB =∠QMC∴∠QAB =∠QMC (2)∵∠QAB =∠QMC又∵∠QMC +∠QMB =180°∴∠QAB +∠QMB =180°在四边形QABM 中∠QAB +∠QMB +∠ABM +∠AQM =360°∴∠ABM +∠AQM =180°而∠ABM =90°∴∠AQM =90°(3)设正方形ABCD 的边长为a ,则2MC a =-,3ND a =-延长ND 至点H ,使DH =BM =2易证△ADH ≌ △ABM∴∠DAH =∠BAM ,且AH =AM由(2)知,△QAM 是等腰直角三角形∴∠QAM =45°∴∠DAN +∠BAM =45°∴∠DAN +∠DAH =45°即∠NAH =45°∴∠NAM =∠NAH∴△NAM ≌ △NAH (SAS )∴NM =NH =()321a a -+=-在Rt △MNC 中,222MN MC NC =+∴()()222123a a -=-+∴6a = ∴11651522AMN AHN S S AD NH ==⋅=⨯⨯=【点睛】此题主要考查正方形的性质、全等三角形的判断和性质、四边形的内角和、等腰直角三角形的性质及勾股定理,灵活运用性质是解题关键.9.(1)①证明见解析;②60EBF ∠=︒;(2)3IH FH =;(3)222EG AG CE =+. 【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)3IH FH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =,EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩,BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒,3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩,DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.10.(1)证明见解析;(2)证明见解析;(3)CN=25.【解析】【分析】(1)如图,延长EF交CD延长线于点Q,先证明CQ=CE,再证明△FQD≌△FEA,根据全等三角形的对应边相等可得EF=FQ,再根据等腰三角形的性质即可得CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,证明四边形DFHP是矩形,继而证明△HPC≌△FMK,根据全等三角形的性质即可得CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,先证明得到FG=CG=GE,∠CGT=2α,再由FG是BC的中垂线,可得BG = CG,∠CGT=∠FGK=∠BGT=2α,再证明HN∥BG,得到四边形HGBN是平行四边形,继而证明△HNC≌△KGF,推导可得出HT=CT=TN ,由FH-HG=1,所以设GH=m,则BN=m,FH=m+1,CE=2FG=4m+2,继而根据22222=-=-,可得关于m的方程,解方程求得m的值即可求得答案. BC CN BN CE BE【详解】(1)如图,延长EF交CD延长线于点Q,∵矩形ABCD,AB∥CD,∴∠AEF=∠CQE,∠A=∠QDF,又∵EF 平分∠AEC ,∴∠AEF=∠CEF,∴∠CEF=∠CQE,∴CQ=CE,∵点F是AD中点,∴AF=DF,∴△FQD≌△FEA,∴EF=FQ,又∵CE=CQ,∴CF⊥EF;(2)分别过点F、H作FM⊥CE ,HP⊥CD,垂足分别为M、P,∵CQ=CE ,CF⊥EF,∴∠DCF=∠FCE,又∵FD⊥CD,∴FM=DF,∵FG//AB,∴∠DFH=∠DAC=90°,∴∠DFH=∠FDP=∠DPH=90°,∴四边形DFHP是矩形,∴DF=HP,∴FM= DF=HP,∵∠CHG=∠BCE,AD∥BC,FG∥CD,∴∠K=∠BCE=∠CHG=∠DCH,又∵∠FMK=∠HPC=90°,∴△HPC≌△FMK,∴CH=FK;(3)连接CN,延长HG交CN于点T,设∠DCF=α,则∠GCF=α,∵FG∥CD ,∴∠DCF=∠CFG,∴∠FCG=∠CFG,∴FG=CG,∵CF⊥EF,∴∠FEG+∠FCG=90°,∠CFG+∠GFE=90°,∴∠GFE=∠FEG,∴GF=FE,∴FG=CG=GE,∠CGT=2α,∵FG是BC的中垂线,∴BG = CG,∠CGT=∠FGK=∠BGT=2α,∵∠CHG=∠BCE=90°-2α,∠CHN=90°,∴∠GHN=∠FGK=∠BGT=2α,∴HN∥BG,∴四边形HGBN是平行四边形,∴HG=BN ,HN=BG = CG =FG ,∴△HNC ≌△KGF ,∴GK=CN ,∠HNC=∠FGK=∠NHT=2α,∴HT=CT=TN ,∵FH-HG=1,∴设GH=m ,则BN=m ,FH=m+1,CE=2FG=4m+2,∵GT=1122EN =,∴CN=2HT=11+2m , ∵22222BC CN BN CE BE =-=-,∴2222(112)(42)(11)m m m m +-=+-+ ∴1176m =-(舍去),27m =, ∴CN=GK=2HT=25.【点睛】 本题考查的是四边形综合题,涉及了等腰三角形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质,矩形的性质与判定,三角形外角的性质等,综合性较强,难度较大,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。
平行四边形的判定定理培优讲解及练习

平行四边形的判定定理【要点梳理】要点一、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 【典型例题】类型一、平行四边形的判定例1、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG ∥HE可用来证明四边形EGFH为平行四边形.【答案与解析】证明:∵四边形AECF为平行四边形,∴ AF∥CE.页1∵四边形DEBF为平行四边形,∴ BE∥DF.∴四边形EGFH为平行四边形.【变式】如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.【答案】证明:∵∠BAD的平分线交直线BC于点E,∴∠1=∠2,∵AB∥CD,∴∠1=∠F,∵CE=CF,∴∠F=∠3,∴∠1=∠3,∴∠2=∠3,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形.例2、如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【思路点拨】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.页2(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF 是平行四边形即可.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.【总结升华】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.例3、已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.求证:四边形PBQD是平行四边形.页3页 4【思路点拨】证明四边形是平行四边形有很多种方法,此题可由对角线互相平分来证明. 【答案与解析】证明:连接BD 交AC 与O 点,∵四边形ABCD 是平行四边形, ∴AO=CO,BO=DO , 又∵AP=CQ, ∴AP+AO=CQ+CO, 即PO=QO ,∴四边形PBQD 是平行四边形.【总结升华】本题主要考查平行四边形的判定,利用“对角线互相平分的四边形是平行四边形”来证明.举一反三:【变式1】如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF=DC ,连接CF .试说明:D 是BC 的中点.【答案】证明:∵AF∥BC ,∴∠AFE=∠DBE , ∵E 是AD 的中点, ∴AE=DE ,页 5在△AEF 和△DEB 中,∵ ∴△AEF ≌△DEB (AAS ), ∴AF=BD , ∵AF=DC , ∴BD=DC , ∴D 是BC 的中点.【变式2】如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE ,已知:∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF . (1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.【答案】证明:(1)∵Rt △ABC 中,∠BAC=30°, ∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB , ∴AB=2AF ∴AF=BC ,在Rt △AFE 和Rt △BCA 中,,∴Rt △AFE ≌Rt △BCA (HL ),,,,===AFE DBE AEF DEB AE DE ∠∠⎧⎪∠∠⎨⎪⎩页 6∴AC=EF ;(2)∵△ACD 是等边三角形, ∴∠DAC=60°,AC=AD , ∴∠DAB=∠DAC +∠BAC=90° 又∵EF ⊥AB , ∴EF ∥AD , ∵AC=EF ,AC=AD , ∴EF=AD ,∴四边形ADFE 是平行四边形.例4、如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F .求证:四边形AECF 是平行四边形.【思路点拨】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD 是平行四边形,可证OF=OE ,OA=OC ,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决. 【答案与解析】证明:∵四边形ABCD是平行四边形,∴OD=OB ,OA=OC , ∵AB ∥CD ,∴∠DFO=∠BEO ,∠FDO=∠EBO , ∴在△FDO 和△EBO 中,,===DFO BEO FDO EBO OD OB ∠∠⎧⎪∠∠⎨⎪⎩∴△FDO≌△EBO(AAS),∴OF=OE,∴四边形AECF是平行四边形.类型二、平行四边形的性质定理与判定定理的综合运用例1、如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系: ________________.(2)请证明你的猜想.【思路点拨】(1)BE平行且等于DF;(2)连接BD交AC于O,根据平行四边形的性质得出OA=OC,OD=OB,推出OE=OF,得出平行四边形BEDF即可.【答案与解析】(1)解:BE和DF的关系是:BE=DF,BE∥DF,故答案为:平行且相等.(2)证明:连接BD交AC于O,∵ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.【总结升华】本题考查了平行四边形的性质和判定的应用,能否熟练地运用平行四边形的性质和判定进行推理是你解决本题的关键,题型较好,通过此题培养了学生分析问题和解决问题的能力,同时培养了学生的观察能力和猜想能力.举一反三:【变式】如图,在ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.页7页 8【答案】解:猜想BE 与DF 的关系是BE=DF ,BE ∥DF ,理由是:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∵AE=CF , ∴AD-AE=BC-CF , 即DE=BF , ∵DE ∥BF ,∴四边形BFDE 是平行四边形, ∴BE=DF ,BE ∥DF .例2、如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE=PF ,且AP+AE=CP+CF . (1)求证:PA=PC .(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD 的面积.【思路点拨】(1)首先在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF ,可得PN=PM ,则易证四边形EMFN 是平行四边形,则可得ME=FN ,∠EMA=∠CNF ,即可证得△EAM ≌△FCN ,则可得PA=PC ;(2)由PA=PC ,EP=PF ,可证得四边形AFCE 为平行四边形,易得△PED ≌△PFB ,则可得四边形ABCD 为平行四边形,由AB=15,AD=12,∠DAB=60°,即可求得四边形ABCD 的面积. 【答案与解析】(1)证明:在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF . ∵AP+AE=CP+CF , ∴PN=PM . ∵PE=PF ,∴四边形EMFN 是平行四边形.∴ME=FN ,∠EMA=∠CNF.又∵∠AME=∠AEM,∠CNF=∠CFN,∴△EAM≌△FCN.∴AM=CN.∵PM=PN,∴PA=PC.(2)解:∵PA=PC,EP=PF,∴四边形AFCE为平行四边形.∴AE∥CF.∵∠PED=∠PFB,∠EPD=∠FPB,EP=PF,∴△PED≌△PFB.∴DP=PB.由(1)知PA=PC,∴四边形ABCD为平行四边形.∵AB=15,AD=12,∠DAB=60°,∴四边形ABCD的面积为90.【总结升华】此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质等知识.此题图形比较复杂,难度适中,解题的关键是数形结合思想的应用.例3、如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.【思路点拨】(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.【答案与解析】解:(1)四边形CDGE是平行四边.理由如下:如图1所示:3页9∵D、E移动的速度相同,∴BD=CE,∵DG∥AE,∴∠DGB=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DGB,∴BD=GD=CE,又∵DG∥CE,∴四边形CDGE是平行四边形;(2)BM+CF=MF;理由如下:如图2所示:由(1)得:BD=GD=CE,∵DM⊥BC,∴BM=GM,∵DG∥AE,∴GF=CF,∴BM+CF=GM+GF=MF.【总结升华】本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.举一反三【变式】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).【答案】页10∴ AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS),∴BE=DF;(2)四边形MENF是平行四边形.证明:由(1)可知:BE=DF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,∵DM=BN,∴△DMF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.例4、如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)【思路点拨】(1)先由平行四边形的性质,得AB=CD,AB∥CD,根据两直线平行内错角相等得∠GBE=∠HDF.再由SAS可证△GBE≌△HDF,利用全等的性质,证明∠GEF=∠HFE,从而得GE∥HF,又GE=HF,运用一组对边平行且相等的四边形是平行四边形得证.(2)仍成立.可仿照(1)的证明方法进行证明.【答案与解析】页11页 12∴AB=CD ,AB ∥CD ,∴∠GBE=∠HDF . 又∵AG=CH ,∴BG=DH . 又∵BE=DF ,∴△GBE ≌△HDF .∴GE=HF ,∠GEB=∠HFD ,∴∠GEF=∠HFE , ∴GE ∥HF ,∴四边形GEHF 是平行四边形.(2)解:仍成立.(证法同上)【总结升华】本题考查的知识点为:一组对边平行且相等的四边形是平行四边形. 举一反三 【变式】如图,ABCD 中,对角线AC ,BD 相交于O 点,AE ⊥BD 于E ,CF ⊥BD 于F ,BG ⊥AG 于G ,DH ⊥AC 于H .求证:四边形GEHF 是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=CO ,AB=CD ,AB ∥CD , ∴∠ABD=∠CDB ,∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AEB=∠CFD=90°, 在△ABE 和△CDF 中,∴△ABE ≌△CDF (AAS ), ∴BE=DF , ∴BO-BE=DO-DF , 即:EO=FO ,同理:△ABG ≌△CDH , ∴AG=CH , ∴AO-AG=CO-CH , ,===AB CD ABE CDF AEB CFD ∠∠∠∠⎧⎪⎨⎪⎩即:GO=OH,∴四边形GEHF是平行四边形.【课堂练习】一.选择题1.点P、Q、R是平面内不在同一条直线上的三个定点,点M是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有()A.1个 B.2个 C.3个 D.4个2. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ).A.1组 B.2组 C.3组 D.4组3. 下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比, 其中能识别四边形ABCD为平行四边形的是( ).A. 1:2:3:4B. 2:3:2:3C. 2:2:3:3D. 1:2:2:14. 如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形 B.矩形 C.菱形 D.梯形5. 已知一个凸四边形ABCD的四条边的长顺次是a、b、c、d,且a2+ab-ac-bc=0,b2+bc-bd-cd=0,那么四边形ABCD是()A.平行四边形 B.矩形 C.菱形 D.梯形页136. 如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲=乙=丙二.填空题7. 如图,E、F 是ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.8.如图,平行四边形ABCD的对角线交于点O,直线EF过点O且EF∥AD,直线GH过点O且GH∥AB,则能用图中字母表示的平行四边形共有______________个.9.如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则秒时四边形ADFE是平行四边形.页1410. 如图,已知等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AD,PF∥BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF=______________.11.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.12.如图,平行四边形ABCD中,AC、BD相交于点O,E、F、G、H分别是AB、OB、CD、OD 的中点.有下列结论:①AD=BC,②△DHG≌△BFE,③BF=HO,④AO=BO,⑤四边形HFEG是平行四边形,其中正确结论的序号是.三.解答题13.如图,在口ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:(1)△BEG≌△DFH;(2)四边形GEHF是平行四边形.14.在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,点F在边AC的延长线上,∠FEC=∠B,求证:四边形CDEF是平行四边形.页1515.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.【答案与解析】一.选择题1.【答案】C;【解析】解:如图,连接PQ、QR、PR,分别过P、Q、R三点作直线l∥QR、m∥PR、n∥PQ,分别交于点D、E、F,∵DP∥QR,DQ∥PR,∴四边形PDQR为平行四边形,同理可知四边形PQRF、四边形PQER也为平行四边形,故D、E、F三点为满足条件的M点,故选C.页162.【答案】C;【解析】①②③能判定平行四边形.3.【答案】B;【解析】平行四边形对角相等.∠A与∠C为对角,∠B与∠D为对角.4.【答案】A;【解析】∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.5.【答案】A;【解析】由a2+ab-ac-bc=0,可知(a+b)(a-c)=0,则a-c=0,即a=c;由b2+bc-bd-cd=0,可知(b+c)(b-d)=0;则b-d=0,即b=d.(其中a,b,c,d都是正数,a+b、b+c一定不等于0)由a=c;b=d知四边形ABCD的两组对边分别相等,则四边形ABCD是平行四边形.故选A.6.【答案】D;【解析】图1中,甲走的路线长是AC+BC的长度;延长AD和BF交于C,如图2,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;延长AG和BK交于C,如图3,与以上证明过程类似GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙,故选D.页17页 18二.填空题 7.【答案】BE=DF ;【解析】添加的条件是BE=DF ,理由是:连接AC 交BD 于O , ∵平行四边形ABCD , ∴OA=OC ,OB=OD , ∵BE=DF , ∴OE=OF ,∴四边形AECF 是平行四边形. 故答案为:BE=DF .8.【答案】18;【解析】图中平行四边形有:AEOG ,AEFD ,ABHG ,GOFD ,GHCD ,EBHO ,EBCF ,OHCF ,ABCD ,EHFG ,AEHO ,AOFG ,EODG ,BHFO ,HCOE ,OHFD ,OCFG ,BOGE .共18个.故答案为:18. 9.【答案】3;【解析】解:设t 秒时四边形ADFE 是平行四边形;理由:当四边形ADFE是平行四边形,则AE=DF,即t=9﹣2t,解得:t=3,故3秒时四边形ADFE是平行四边形.故答案为:3.10.【答案】8;【解析】过E点作EG∥PD,过D点作DH∥PF,∵PD∥AC,PE∥AD,∴PD∥GE,PE∥DG,∴四边形DGEP为平行四边形,∴EG=DP,PE=GD,又∵△ABC是等边三角形,EG∥AC,△BEG为等边三角形,∴EG=PD=GB,同理可证:DH=PF=AD,∴PD+PE+PF=BG+GD+AD=AB=8..11.【答案】平行四边形;12.【答案】①,②,③,⑤;【解析】解:平行四边形ABCD中,∴AD=BC,故①正确;∵平行四边形ABCD,∴DC∥AB,DC=AB,OD=OB,∴∠CDB=∠DBA,∵E、F、G、H分别是AB、OB、CD、OD的中点,∴DG=BE=AB,DH=BF=OD,∴②△DHG≌△BFE,故②正确;∵HO=DH,DH=BF,∴BF=HO,故③正确;平行四边形ABCD,OA=OC,OB=OD,故④错误;E、F、G、H分别是AB、OB、CD、OD的中点,∴HG∥OC,HG=OC,EF∥OA,EF=OA,∴HG∥EF,HG=EF,HEFG是平行四边形,故⑤正确;故答案为:①,②,③,⑤.三.解答题页1913.【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠ABE=∠CDF,∵AG=CH,∴BG=DH,在△BEG和△DFH中,,∴△BEG≌△DFH(SAS);(2)∵△BEG≌△DFH(SAS),∴∠BEG=∠DFH,EG=FH,∴∠GEF=∠HFB,∴GE∥FH,∴四边形GEHF是平行四边形.14.【解析】证明:∵在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,∴DE∥AC,CD=AB=AD=BD,∴∠B=∠DCE,∵∠FEC=∠B,∴∠FEC=∠DCE,∴DC∥EF,∴四边形CDEF是平行四边形.15.【解析】解:∵∠ACB=90°,DE⊥BC,页20∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=2在Rt△CDE中,由勾股定理∵D是BC的中点,∴BC=2CD=在Rt△ABC中,由勾股定理.∵D是BC的中点,DE⊥BC,∴EB=EC=4∴四边形ACEB的周长=AC+CE+BE+BA=10+.【课后作业】一.选择题1.如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A.(3,-1) B.(-1,-1) C.(1,1) D.(-2,-1)2.以不共线的三点A、B、C为顶点的平行四边形共有( )个.A.1B.2C.3D.无数CD==AB==页21页 223.A ,B ,C ,D 在同一平面内,从①AB ∥CD ,②AB=CD ,③BC ∥AD ,④BC=AD 这四个中任选两个作为条件,能使四边形ABCD 为平行四边形的选法有( ) A .6种 B .5种 C .4种 D .3种4. 如图,在▱ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形(不包括四边形ABCD )的个数共有( )A .9个B .8个C .6个D .4个5. 如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A. AE =CFB.DE =BFC. D.6.如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED 是平行四边形; ②△BCE 是等腰三角形; ③四边形ACEB 的周长是10+2; ④四边形ACEB 的面积是16. 则以上结论正确的是( )CBF ADE ∠=∠CFB AED ∠=∠A.①②③ B.①②④ C.①③④ D.②④二.填空题7.已知四边形ABCD的对角线相交于O,给出下列5个条件①AB∥CD ②AD∥BC③AB=CD ④∠BAD=∠DCB,从以上4个条件中任选2个条件为一组,能推出四边形ABCD为平行四边形的有____________组.8.在▱ABCD中,对角线相交于点O,给出下列条件:①AB=CD,AD=BC,②AD=AB,AD∥BC,③AB∥CD,AD∥BC,④AO=CO,BO=DO其中能够判定ABCD是平行四边形的有____________.9.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出______个平行四边形.10.如图,已知AB=CD,AD=CB,则∠ABC+∠BAD=___________度.11.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是.(只写出一种情况即可)12.如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.页23三.解答题13. 在ABCD中,对角线BD、AC相交于点O,BE=DF,过点O作线段GH交AD于点G,交BC于点H,顺次连接EH、HF、FG、GE,求证:四边形EHFG是平行四边形.14.如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE是平行四边形.15. 如图所示,已知△ABC是等边三角形,D、F两点分别在线段BC、AB上,∠EFB=60°,DC=EF.页24(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.【答案与解析】一.选择题1.【答案】D;【解析】A、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(3,-1)时,∴BO=AC1=2,∵A,C1,两点纵坐标相等,∴BO∥AC1,∴四边形OAC1B是平行四边形;故此选项正确;B、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(-1,-1)时,∴BO=AC2=2,∵A,C2,两点纵坐标相等,∴BO∥AC2,∴四边形OC2AB是平行四边形;故此选项正确;C、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,页25页 26当第四个点为(1,1)时, ∴BO=AC 1=2,∵A ,C 1,两点纵坐标相等, ∴C 3O=BC 3=, 同理可得出AO=AB=,进而得出C 3O=BC 3=AO=AB ,∠OAB=90°, ∴四边形OABC 3是正方形;故此选项正确;D 、∵以O (0,0)、A (1,-1)、B (2,0)为顶点,构造平行四边形, 当第四个点为(-1,-1)时,四边形OC 2AB 是平行四边形;∴当第四个点为(-2,-1)时,四边形OC 2AB 不可能是平行四边形; 故此选项错误.故选:D .2.【答案】C ;【解析】分别以AB ,BC ,AC 为对角线作平行四边形. 3.【答案】C ;【解析】根据平行四边形的判定,可以有四种:①与②,③与④,①与③,②与④都能判定四边形是平行四边形,故选C .4.【答案】B ;【解析】设EF 与NH 交于点O ,∵在▱ABCD 中,EF ∥AD ,HN ∥AB ,∴AD ∥EF ∥BC ,AB ∥NH ∥CD ,则图中的四边AEOH 、DHOF 、BEON 、CFON 、AEFD 、BEFC 、AHNB 、DHNC 和ABCD 都是平行四边形,共9个. 故选B .5.【答案】B ; 22页 27【解析】C 选项和D 选项均可证明△ADE ≌△CBF ,从而得到AE =CF ,EO =FO ,BO =DO ,所以可证四边形DEBF 是平行四边形.6.【答案】A ;【解析】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°, ∴AC∥DE, ∵CE∥AD,∴四边形ACED 是平行四边形,故①正确; ②∵D 是BC 的中点,DE⊥BC, ∴EC=EB,∴△BCE 是等腰三角形,故②正确; ③∵AC=2,∠ADC=30°, ∴AD=4,CD=2,∵四边形ACED 是平行四边形, ∴CE=AD=4, ∵CE=EB,∴EB=4,DB=2, ∴CB=4,∴AB==2,∴四边形ACEB 的周长是10+2故③正确; ④四边形ACEB 的面积:×2×4+×4×2=8,故④错误,故选:A .二.填空题 7.【答案】4;【解析】①和②根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和④,②和④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;所以能推出四边形ABCD为平行四边形的有四组.故答案为:4.8.【答案】①③④;【解析】∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴①正确;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∴②正确;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴③正确;∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴④正确;即其中能判定四边形ABCD是平行四边形的有①②③④,故答案为:①②③④.9.【答案】15;【解析】两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.10.【答案】180°;【解析】依题意得ABCD是平行四边形,∴AD∥BC,∴∠ABC+∠BAD=180°.11.【答案】AD=BC;【解析】∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故答案为:AD=BC.12.【答案】6;【解析】解:∵在△ABC中,AB=3,AC=4,BC=5,∴BC2=AB2+AC2,∴∠BAC=90°,页28页 29∵△ABD,△ACE 都是等边三角形, ∴∠DAB=∠EAC=60°, ∴∠DAE=150°.∵△ABD 和△FBC 都是等边三角形, ∴∠DBF+∠FBA=∠ABC+∠ABF=60°, ∴∠DBF=∠ABC. 在△ABC 与△DBF 中,∴△ABC≌△DBF(SAS ), ∴AC=DF=AE=4,同理可证△ABC≌△EFC, ∴AB=EF=AD=3,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). ∴∠FDA=180°﹣∠DAE=30°,∴S 口AEFD =AD•(DF ×)=3×(4×)=6. 即四边形AEFD 的面积是6. 故答案为:6.二.解答题 13.【解析】 证明:在ABCD 中AD ∥BC ,AO =CO ,BO =DO∴∠GAO =∠HCO 在△AGO 和△CHO 中∴△AGO ≌△CHO∴GO =HO 又∵BO =DO ,BE =DF GAO HCO AO CO GOA HOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴EO=FO∴四边形EHFG为平行四边形.14.【解析】证明:(1)如图1,∵OB=OC,∴∠ACE=∠DBF,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS);(2)如图2,∵∠ACE=∠DBF,∠DBG=∠DBF,∴∠ACE=∠DBG,∴CE∥BG,∵CE=BF,BG=BF,∴CE=BG,∴四边形BGCE是平行四边形.15.【解析】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°.页30又∵∠EFB=60°,∴ EF∥BC,即EF∥DC.又∵ DC=EF,∴四边形EFCD是平行四边形.(2)如图,连接BE.∵ BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴ BE=BF=EF,∠EBF=60°,∴ DC=EF=BE.∵△ABC是等边三角形,∴ AC=AB,∠ACD=60°.在△ABE和△ACD中,∵ AB=AC,∠ABE=∠ACD,BE=CD,∴△ABE≌△ACD,∴ AE=AD.页31。
第十九章 平行四边形的性质(培优)

第十九章平行四边形的性质(培优):1、叫做平行四边形,记作“”,读作“”。
2、在平行四边形ABCD中,如果∠A=150°,那么∠B= °,∠C= °。
3、下列性质中,平行四边形不一定具备的是()A、邻角互补B、邻角相等C、对角相等D、对边相等知识扩展:1.平行四边形的对边从位置上看是平行的,从数量上看是相等的。
2.利用对角线互相平分可以解决对角线或边的取值范围问题,在解答时应联系“三角形两边之和大于第三边,两边之差小于第三边”来解决。
3.过对角线交点画出的任意一条直线,把四边形分成大小相等的两个图形。
知识点1. 平行四边形的定义1、如图,在□ABCD中,已知∠ODA=900,AC=10cm,BD=6cm,则AD的长为()。
A. 4cmB. 5cmC. 6cmD. 8cm2.点A、B、C是平面内不在同一直线上的三点,点D是平面内任意一点,若A,B,C,D,四点恰好能够构成一个平行四边形,则在这个平面内符合这样条件的点D有() A. 1个 B. 2个 C. 3个 D. 4个知识点2. 平行四边形的性质3、在□ABCD中,对角线AC、BD相交于O,AC、BD的长分别为8cm、10cm,则AD长度xcm的取值范围是()A.2<x<6B.3<x<9C.1<x<9D.2<x<84、(2011年湘西)下列说法错误的是()A.两点之间,线段最短B.1500的补角是500C.全等三角形的对应边相等D.平行四边形的对边互相平行5、是□ABCD内的任意一点,若S□ABCD=6cm2,则图中阴影部分的面积为()A. 5 cm2B. 4cm2C. 3cm2D. 以上都不对18.(2009年广州中考)如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点4,则ΔCEF的周长为()E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=2(A)8 (B)9.5 (C)10 (D)11.5【1】.如图在□ABCD中,CE⊥AB,E为垂足,∠A=1250那么∠BCE的度数是()A.550B.350C.250D.300【2】如图所示,在□ABCD中,A1,A2,A3,A4和C1,C2,C3,C4分别为AB和CD的五等分点,B1,B2,和D1,D2,分别为BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则平行四边形ABCD的面积为()A. 2B. 35C.25D. 15【3】如图,□ABCD中,M,N分别在AC,AD上,且AM=2CM,DN=2AN,若⊿DMN的面积为4,则□ABCD的面积为。
八年级数学培优平行四边形

20第讲平行四边形考点?方法?破译. ⒈理解并掌握平行四边形的定义、性质、和判定方法,并运用它们进行计算与证明. ⒉理解三角形中位线定理并会应用.⒊了解平行四边形是中心对称图形经典?考题?赏析的延长作直线EF分别交DA中:如图在 ABCD,过对角线BD的中点O【例1】已知□N、F.、DC、BC的延长线于点E、M、线AB≌△,请加以证明;⑴观察图形并找出一对全等三角形:△⑵在⑴中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?【变式题组】01.如图,在 ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE和△DCF,□使BE =BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点上,点H在E、C两点之间,连接AE、AF.⑴求证:△ABE≌△FDA;⑵当AE⊥AF时,求∠EBH的度数.02.如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在□BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.是平行四边形.求证:四边形GEHF、CD上,以.点E在边AC,延长BC至D,使CD=BC中,03.如图,在△ABCAB=AC.,连接BG、DE作CG∥AB交EF于点GCE为邻边作CDFE.过点C□有怎样的数量关系?请说明理由;⑴∠ACB与∠DCG.⑵求证:△BCG≌△DCE⊥,BFBE的周长为20,⊥AD【例2】如图,ABCD□.ABCD则的面积为BECD,=2,BF=3.□变式题组】【的长.2.求EC,AE=3,DF=°,.如图,01ABCD中,BE⊥ADBF⊥CD,∠EBF=60□60°=2,∠MBN=BM的中点,N是DC的中点,=1,BN是ABCD02.在中,MAD□求BC的长.03.平行四边形ABCD中,AD=a,CD=b,过点B分别作AD边上的高H和CD边上的高H,ba.ABCD的面积AC=20厘米,求平行四边形已知H≥a, H≥b,对角线ba】【例3(1,0),A(0,1)B(-1,0),C如图:在平面直角坐标系中,有.三点三点构成平行四边形,请写出所B、C⑴若点D与A、有符合条件的点D的坐标;,求直线BD的解析式.⑵选择⑴中符合条件的一点D变式题组】【3x l,直线Bl交于x轴上同一点+3与01.如图,直线l:yy轴交于点A=-,与直线2122轴对称.与点A关于x交y轴于点C,且点C⑴求直线l的解析式;2⑵设D(0,-1),平行于y轴的直线x=t分别交直线l和l于点E、F.是否存在t21的值,使得以A、D、E、F为顶点的四边形是平行四边形,若存在,求出t 的值;若不存在,请说明理由.1x=上是y轴上一动点,在直线y,),B(30),P102.如图,在直角坐标系中,A(,02是否存在点Q,使A、B、P、Q为顶点的四边形为平行四边形?若存在,求出对应的Q点的坐标;若不存在,请说明理由.k的图象都经过点(1,1)1和反比例函数y.=x03.若一次函数y=2-2x⑴求反比例函数的解析式;⑵已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标;⑶利用⑵的结果,若点B的坐标为(2,0),且以点A、O、B、P为顶点的四边形是平行四边形,请你直接写出点P的坐标.【例4】如图1.在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明)(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE =HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于M、N,判断?OMN的形状,请直接写出结论.问题二:如图3,在?ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断?AGD的形状并证明.【解法指导】出现中点,联想到三角形中位线是常规思路,因为三角形中位线不仅能进行线段的替换,也可通过平行进行角的转移.】变式题组【.01.如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是 AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A、线段EF的长逐渐增大B、线段EF的长逐渐减小C、线段EF的长不变D、线段EF的长与点P的位置有关DA EPF B C R02.如图,在△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12,AC=22,则MD的长为().A.3B.4C.5D.6【例5】如图1,在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC,AM 与BN相交于点P,求证:∠BPM=45°.【解法指导】题中相等线段关联性不强,能否把相等的线段(或角)通过改变位置,将分散的条件集中,从而构造全等三角形解决问题.【变式题组】AB=AC,延长边AB到点D,延长CA到点E,连接DE,ABC如图,01.在等腰△中,若AD=BC =CE=DE,求∠BAC的度数.演练巩固反馈提高□ ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC01.如图,边于点E,则BE等于()A.2cm B.4cmcmD.8C.6cm□ABCD中,AC,BD为对角线,BC02.如图,=6,BC边上的高为4,则阴影部分的面积为().24.12 DB.6 CA.3的延长线于点并延长,交ABBC边的中点,连接DE03.如图,在四边形ABCD中,E为是平行四边形,你认为四个条件中可选择添加一个条件,使四边形ABCD=BF,F,AB)的是(.CDE∠F=∠=∠C D..=BC B.CD=BF C∠AAAD□于ADBD交相交于点O,OE⊥ABCD中,AB≠AD,AC,BD2004.如图,在周长为cm的)的周长为(E,则△ABE点 .10cm.8cm D.4Acm B.6cm C得颜色的花,.某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫605那么下列说法错误的是,GH∥AD∥EF∥DC,BC∥如果有AB紫花,橙花种植面积一定相等B.A.红花,绿花种植面积一定相等蓝花,黄花种植面积一定相等D.C.红花,蓝花种植面积一定相等CF?BE=DCl,下面四个结论中?AB=; ⊥ , ∥.如图,06l lBE∥CFBA⊥lDC2112□□S④S?=S),其中正确的有(=S DCFADEBCFEABCD△△个 .1 .2 .3 .4A个B 个C个D07.已知四边形ABCD,有以下四个条件:?AB∥CD?AB=CD?BC∥AD④BC=AD从这四个条件中任选两个,能使四边形ABCD为平行四边形的选法种数有()A.6种B.5种C.4种D.3种08.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=0BC,∠PEF=18,则∠PFE的度数为________向上翻折,ABEBE为折痕,将△中,点E在边AD中,以09..如图,平行四边形ABCD的长,则FC228,△FCB的周长为点A恰好落在CD上的F点,若△FDE的周长为_________ 为2.5BC向右平移将△ABC沿直线,AB=3,AC=4,°如图,在10.Rt△ABC中,∠BAC=90____ 则下列结论中成立的是,AE,DE相交于点G,连接AD,个单位得到△DEFAC与CGEAGD≌△ABED 四边形是平行四边;?△?平分∠ACEADADE为等腰三角形④?△□. AE边上一点,且AB=如图是ABCD中,EBC.11EADABC≌△求证(1).:△的度数.,求∠AED25,若(2).AE平分∠DAB∠EAC=°□ABCD内一点E满足ED⊥AD于D,且∠EBC=∠如图,12.EDC,∠ECB=45°,找出图中一相等的线段,并加以证明.条与EB顺时针旋转绕点D是AB边上的点,将线段DB是等边三角形,13.已知,如图,△ABCD. AE连接DC,于点DE,延长ED交ACF,60°得到线段DFCADE≌△⑴求证:△AHE的度数.求∠,BC 于点H连接AH,交GDBDCEHE⑵过点作∥交于点,。
人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学 18.1 平行四边形 培优训练一、选择题(本大题共8道小题)1. 以三角形的三个顶点作平行四边形,最多可以作( ) A .2个 B .3个 C .4个 D .5个2. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°3. 如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( ) A . 3 cm B . 4 cm C . 5 cm D . 8 cm4. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .156. (2019▪广西池河)如图,在△ABC中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF7.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形8.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122SS S +<C.212SS S += D.21S S +的大小与P 点位置有关二、填空题(本大题共8道小题)9. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.10.(2020·牡丹江)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD 是平行四边形(填一个即可).11. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB的长度为cm .OD CBA12. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.13. (2020·凉山州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于 .O EDCB A14. 如图,在ABCD 中,E.F 是对角线AC 上两点,AE=EF=CD ,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为__________.15. 如图,在▱ABCD中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.ABC16. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为.② 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,S 4S 3S 2S 1(3)DCBA三、解答题(本大题共4道小题) 17. (2020·重庆B 卷)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F . (1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .18. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .DPCBA19. (2020·泰安)(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC ﹦∠EAD﹦90°.(1)如图(1),点B 是DE 的中点,判断四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF ﹦CD . 求证:①EB ﹦DC ,②∠EBG ﹦∠BFC .GFABCDEABCDE20. 如图,AC 是平行四边形ABCD 较长的一条对角线,点O 是ABCD 内部一点,OE AB ⊥于点E ,OF AD ⊥于点F ,OG AC ⊥于点G ,求证:AE AB AF AD AG AC ⋅+⋅=⋅.人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】B【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A 错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF∥AB,∴△OEF∽△OAB,∴214AEFOABS EFS AB⎛⎫==⎪⎝⎭,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选B.5. 【答案】C6. 【答案】B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=12 AC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选B.7. 【答案】B8. 【答案】C【解析】可以利用割补法对平行四边形进行分割,然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题(本大题共8道小题) 9. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.12. 【答案】50°【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA=∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.13. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE =12AD ,OE =12CD .∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +CD =8.∴平行四边形ABCD 的周长=16.故答案为16.14. 【答案】21° 【解析】设∠ADE=x ,∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF ,∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.15. 【答案】36°【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.16. 【答案】①1423S S S S =;②9三、解答题(本大题共4道小题)17. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .18. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA19. 【答案】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵△EAD 为等腰三角形且∠EAD ﹦90°, ∴∠E ﹦45°.∵B 是DE 的中点, ∴AB ⊥DE . ∴∠BAE ﹦45°.∵△ABC 为等腰三角形且∠BAC ﹦90°, ∴∠CBA ﹦45°. ∴∠BAE ﹦∠CBA . ∴BC ∥EA . 又∵AB ⊥DE ,∴∠EBA ﹦∠BAC ﹦90°. ∴BE ∥AC .∴四边形BEAC 是平行四边形.(2)证明:①∵△AED 和△ABC 为等腰三角形, ∴AE ﹦AD ,AB ﹦AC . ∵∠EAD ﹦∠BAC ﹦90°,∴∠EAD +∠DAB ﹦∠BAC +∠DAB .即∠EAB ﹦∠DAC . ∴△AEB ≌△ADC . ∴EB ﹦DC .②延长FG 至点H ,使GH ﹦FG . ∵G 是EC 中点,∴EG ﹦CG .又∠EGH ﹦∠FGC , ∴△EHG ≌△CFG ,∴∠BFC ﹦∠H ,CF ﹦EH . 又∵CF ﹦CD , ∴BE ﹦CF . ∴BE ﹦EH .∴∠EBG ﹦∠H . ∴∠EBG ﹦∠BFC .AB CDEEDCBA FGH20. 【答案】如图所示,,分别过点B 、C 、D 作直线AO 的垂线,EG CP DL ∥∥、Q 、N 为垂足;分别过B 、D 作AC 的垂线,L 、K 为垂足. 显然,A 、E 、O 、G 、F 五点共圆,AO 是直径.由DN AO ⊥,CQ AO ⊥,BM AO ⊥,DC AB ∥且DC AB =可知NQ AM =. 已知AF AD AN AO ⋅=⋅,AE AB AM AO ⋅=⋅, 则AF AD AE AB ⋅+⋅ AN AO AM AO =⋅+⋅ ()AO AN AM =+ ()AO AN NQ =+ AO AQ =⋅ AG AC =⋅故AE AB AF AD AG AC ⋅+⋅=⋅.点评:ab cd ef +=类型的问题一般要转化为ab mn =型的问题(当然,如果能够使用勾股定理、余弦定理等,大家也可以踊跃尝试),把握了这一点,就能及时调整思路,确保解题不会误入歧途.图(1)图(2)。
平行四边形培优

平行四边形性质培优一:角的题型。
1、在▱ABCD中,∠A:∠B:∠C:∠D可能是()A.1:2:3:4B.2:3:2:3C.2:2:1:1D.2:3:3:22.▱ABCD中,∠B=5∠A,则∠C的度数为3.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是4.在▱ABCD中,∠A﹣∠B=40°,则∠C的度数为5.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为二:周长题型。
1.如图,平行四边形ABCD的周长为8,△AOB的周长比△BOC的周长多2,求:AB边的长。
2.在▱ABCD中,O是AC、BD的交点,过点O与AC垂直的直线交边AD于点E,若▱ABCD的周长为22cm,则△CDE的周长为3、如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为4.如图,EF过▱ABCD的对角线的交点O,交AD于点E,交BC于点F.若▱ABCD的周长为10,OE=1,线则四边形EFCD的周长为5、如图所示,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45∘,且AE+AF=32求平行四边形ABCD的周长。
6、如图所示,在平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处,若△FDE的周长为12,△FCB的周长为22,则FC的长为_________.三:面积题型。
1、如图,□ABCD的两条对角线相交于点O,E,F分别是边CD,BC的中点,图中与△BCE面积相等的三角形(不包括△BCE)共有_______个.2,如图,E是□ABCD中AB边上的任意一点,连接CE、DE,DE与对角线AC 相交于点F,则下列结论中不正确的是()A.S△ADE=S△BCEB.S△ACD=S△ABCB..S△CDE=S△ABC D.S△CDE=S△ADE+S△BCE3、如图,四边形ABCD、BEFD、EGHD均为平行四边形,其中C.F两点分别在EF、GH上。
专题7平行四边形培优方案范文

专题7平行四边形培优方案范文13平行四边形【知识详解】1、多边形(1)多边形:在平面内,由不在同一条直线上的若干条相等(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。
(2)多边形的内角:多边形相邻两边组成的角叫做多边形的内角。
(3)多边形的外角:多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。
(4)多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
从n边形的一个顶点出发可以画条对角线,把n分成了个三角形;n边形共有条对角线.(5)正多边形:各边相等,各内角也相等的多边形叫做正多边形。
(6)多边形的内角和:n边形的内角和为:(n-2)·180o(7)多边形的外角和:任意多边形的外角和360o(8)镶嵌平面:用一些形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地把平面的一部分完全覆盖,这就是平面图形的镶嵌。
注意:各种图形拼接后要既无缝隙,又不重叠。
要用正多边形镶嵌成一个平面的关键是看:这种正多边形的一个内角的倍数是否是360°。
2、平行四边形及其性质性质:1、(边)两组对边分别平行且相等。
2、(角)两组对角分别相等。
邻角互补3、(线)对角线互相平分。
4、(对称性)中心对称--对称中心为对角线交点。
推论1:夹在两条平行线间的平行线段相等。
推论2:夹在两条平行线间的垂线段相等。
夹在两条平行线间的垂线段的长度叫做平行线之间的距离。
由推论2可知两条平行线间的距离处处相等。
3、平行四边形的判断从边看:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形.从对角线看:对角线互相平分的四边形是平行四边形.(从角看:两组对角分别相等的四边形是平行四边形.)考点一:多边形的内角、外角【典型例题1】有一张长方形的桌面,它的四个内角和为360°,现在锯掉它的一个角,剩下残余桌面所有的内角和是多少?有几种情况?【相似题】1、下列命题:①多边形的外角和小于内角和;②三角形的内角和等于外角和;③多边形的外角和是指这个多边形所有外角之和;④四边形的内角和等于它的外角和。
初二下培优辅导资料5 平行四边形(学生版)

初二下培优辅导资料5平行四边形一、知识要点:性质:平行四边形的:(1)对边平行。
(2)对边相等。
(3)对角相等。
(4)对角线互相平分。
判定:(1)两组对边分别平行的四边形是平行四边形。
(2)一组对边平行且相等的四边形是平行四边形。
(3)两组对边分别相等的四边形是平行四边形。
(4)对角线互相平分的四边形是平行四边形。
(5)两组对角分别相等的四边形是平行四边形。
例1:. 如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.例2.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2C D.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.例3 .如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.二、练习题1,下列命题正确的是( )(A )连结平行四边形一组对边中点的线段将原平行四边形分成两个四边形都是平行四边形。
(B )两个全等的三角形,将它们的一边重合,一定能拼出一个平行四边形。
(C )已知平行四边形的三个顶点,作出平四边形,符合条件的图形只有一个。
(D )已知两条邻边可作唯一平行四边形。
2. 如图,平行四边形ABCD 中,E,F 分别为边AB, DC 的中点,则图中共有平行四边形的个数是 ( )A. 3B. 4C. 5D. 63. 以长为5cm, 4cm, 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是 ( )A. 1B. 2C. 3D. 44. 能够判定一个四边形是平行四边形的条件是 ( )A. 一组对角相等B. 两条对角线互相平分C. 两条对角线互相垂直D. 一对邻角的和为180°5. 四边形ABCD 中,AD ∥BC,要判定ABCD 是平行四边形,那么还需满足 ( ) A. ∠A+∠C=180° B. ∠B+∠D=180° C. ∠A+∠B=180° D. ∠A+∠D=180°6. 平行四边形的一组对角的平分线 ( )A. 一定相互平行B. 一点相交C. 可能平行也可能相交D. 平行或共线7. 如图,四边形ABCD 是平行四边形,BE 平分∠ABC ,CF 平分∠BCD ,BE 、CF 交于点G .若使EF D 14A,那么平行四边形ABCD 应满足的条件是( ) A .∠ABC=60° B .AB :BC=1:4 C .AB :BC=5:2 D .AB :BC=5:88.如图,在平行四边形ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,图中有( )对四边形面积相等A .3B . 4C .5D .6F E D CB A2题图HF P GEDCB AHGF E DC B A 9.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的 延长线交于点F .下列结论中:①ABC ∆≌AED ∆;②ABE ∆是等边三角形; ③AF AD =; ④CDE ABE S S ∆∆=;⑤CEF ABE S S ∆∆=.其中正确的是( )A .①②③B .①②④C .①②⑤D .①③④10. 如图,平行四边形ABCD 中,AE=CG, DH=BF,连结E,F,G,H,E,则四边形EFGH 是_________.11,已知平行四边形的对角线AC 和BD 相交于点O,如果 ΔAOB 的面积为5,那么平行四边形ABCD 的面积是12. 如图,平行四边形ABCD 中,E,F 是对角线AC上的两点,若四边形BEDF 是平行四边形,则增加一个已知条件是______________.13,平行四边形的一个角的平分线和一边相交,并把这条边分成3cm 和5cm 两线段,则这个平行四边形的周长为14,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AC = 4,BD = 6,两邻边AB 、AD 的长为整数。
第九讲 培优 班 平行 四边形性质与判定应用辅导

第九讲平行四边形的性质和判定培优辅导一、知识梳理1.平行四边形:(1)平行四边形的定义:两组对边的四边形是平行四边形.平行四边形用符号表示.平行四边形ABCD记作,读作平行四边形ABCD.2.平行四边形的性质:平行四边形是对称图形,对称中心是(1)边: 。
(2)角:。
(3)对角线:。
(4)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线等分平行四边形的面积.3.两条平行线间的距离:(1)定义:两条平行线中,,叫做这两条平行线间的距离.(2)两平行线间的距离.4.平行四边形的面积:(1)如图①,.(2)同底(等底)同高(等高)的平行四边形面积相等.如图②,有公共边BC,则.(3)平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形,如图有:5.平行四边形的判别方法:平行四边形的判定的方法有从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角__________的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形__________是平行四边形。
6.平行四边形知识的运用:(1)直接运用平行四边形特征解决某些问题,如求角的度数,线段的长度,证明角相等或互补,证明线段相等或倍分等.(2)识别一个四边形为平行四边形,从而得到两直线平行.(3)先识别—个四边形是平行四边形,然后再用平行四边形的特征去解决某些问题.二、基础巩固1、平行四边形一条对角线分一个内角为25°和35°,则四个内角分别为__________.2、□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是__________.3、平行四边形周长是40cm,则每条对角线长不能超过__________cm.4、以不共线三点A、B、C为顶点的平行四边形共有________个.5、□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=___,BC=__ .6、如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=__________;AB与CD的距离为__________;AD与BC的距离为__________;∠D=__________.7、如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有________个平行四边形.8、如图,在□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F 处,若△FDE的周长为8,△FCB的周长为22,则□ABCD 的周长为___________.9、如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC____S△BNC.(填大小)10、如图,若E是□ABCD的AD边上一点,F是BE的中点,则有( ).(A)S□ABCD=5S△BCF(B)S□ABCD=4S△BCF(C)S□ABCD=3S△BCF(D)S□ABCD=2S△BCF11、能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3 (C)1∶2∶2∶1 (D)1∶2∶1∶2二、重点突破(一)平行四边形的性质1、如图6,在平行四边形ABCD中,DB=DC、,CE BD于E,则.2、在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC和DA的三等分点,已知四边形A4 B2 C4 D2的面积为1,则平行四边形ABCD面积为.3、如图,已知平分,,,则.4、平行四边形的周长为20cm ,AE⊥BC于E,AF⊥CD于F,AE=2 cm,AF=3 cm,求平行四边形ABCD的面积.5、如图,△ABC是边长为1的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB交AC、BC于点E、F,作GH∥BC交AB、AC于点G、H,作MN∥AC交AB、BC于M、N,请你猜想EF+GH+MN的值是多少?其值是否随点P位置的改变而变化?并证明你的结论.(二)平行四边形的判定★1.两组对边分别平行的四边形为平行四边形如图,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MQNP 是平行四边形吗?为什么?★2.两组对边分别相等的四边形为平行四边形如图,在ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK =CM , BL =DN ,则四边形KLMN 为平行四边形吗?说明理由.★3.一组对边平行且相对的四边形为平行四边形如图,□ABCD 中,E 、F 分别在BA 、DC 的延长线上,且AE=21AB ,CF=21CD ,试证明AECF 为平行四边形.★4.两组对角分别相等的四边形为平行四边形 如图,在平行四边形ABCD 中,∠ABC 的平分线交CD 于点E,∠ADC 的平分线交AB 于点F.试证明四边形DFBE 为平行四边形.★5.对角线互相平分的四边形为平行四边形如图,在□ABCD中,点E、F是对角线AC上两点,且AE=CF.求证:∠EBF=∠FDE.三、综合提升【例1】已知:如图,在□ABCD中,E、F分别在AD、BC上,且AE=CF,AF、BE交于G,CE、DF交于H.求证:EF与GH互相平分.【变式题组】如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.【例2】如图:在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点.⑴若点D与A、B、C三点构成平行四边形,请写出所有符合条件的点D的坐标;⑵选择⑴中符合条件的一点D,求直线BD的解析式.培优升级检测1、(成都)已知四边形ABCD,有以下四个条件:①AB∥CD②AB=CD③BC∥AD④BC=AD从这四个条件中任选两个,能使四边形ABCD为平行四边形的选法种数有()A.6种B.5种C.4种D.3种2、某广场有一个形状是平行四边形的花坛(如图)分别种有红黄蓝绿橙紫6得颜色的花,如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等3、(陕西)如图,l1∥l2BE∥CF, BA⊥l1DC⊥l2,下面四个结论中①AB=DC; ②BE=CF③S△ADE=S△DCF④S□ABCD=S□BCFE,其中正确的有()A.4个B .3个C.2个D .1个4、已知,如图,△ABC是等边三角形,D是AB边上的点,将线段DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连接DC,AE.⑴求证:△ADE≌△DFC⑵过点E作EH∥DC交DB于点G ,交BC于点H,连接AH,求∠AHE的度数.5、已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.6、如图,如图,△ABC中,AB=3,AC=4,BC=5,△ABD ,△ACE△BCF都是等边三角形,试证明四边形AEFD 为平行四边形并求四边形AEFD的面积.。
人教【数学】数学平行四边形的专项培优练习题(含答案)附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.(1)用尺规将图1中的△ABC分割成两个互补三角形;(2)证明图2中的△ABC分割成两个互补三角形;(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.【答案】(1)作图见解析(2)证明见解析(3)①62;②6【解析】试题分析:(1)作BC边上的中线AD即可.(2)根据互补三角形的定义证明即可.(3)①画出图形后,利用割补法求面积即可.②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.(2)如图2中,延长FA到点H,使得AH=AF,连接EH.∵四边形ABDE,四边形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是两个互补三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①边长为、、的三角形如图4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六边形=17+13+10+4×5.5=62.②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互补三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考点:1、作图﹣应用与设计,2、三角形面积2.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数.归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论.【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.【解析】试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.在平面直角坐标系中,O为原点,点A(﹣6,0)、点C(0,6),若正方形OABC绕点O顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC与A′B′的交点D的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P为线段BC′的中点,求AP长的取值范围(直接写出结果即可).【答案】(1)(662,6)-;(2)(333,333)-+;(3)323323AP -+.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626-,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】解:(1)∵A (﹣6,0)、C (0,6),O (0,0),∴四边形OABC 是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B ,∵OB =62,OA′=OA =6,∠OBC =45°,∴A′B =626-,∴BD =(626-)×21262=-,∴CD =6﹣(1262-)=626-,∴BC 与A′B′的交点D 的坐标为(662-,6);(2)如图②,过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,∵∠OC′B′=90°,∴∠OC′M =90°﹣∠B′C′N =∠C′B′N ,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS ),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM =30°,∴C′N =OM =33,B′N =C′M =3,∴点B′的坐标为()333,333-+;(3)如图③,连接OB ,AC 相交于点K ,则K 是OB 的中点,∵P 为线段BC′的中点,∴PK =12OC′=3,∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.5.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质6.(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为;(拓展探究)(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8【解析】【分析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC 垂直平分BD;(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.【详解】(1)∵AB=AD,CB=CD,∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,∴AC垂直平分BD,故答案为:AC垂直平分BD;(2)四边形FMAN是矩形.理由:如图2,连接AF,∵Rt△ABC中,点F为斜边BC的中点,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四边形AMFN是矩形;(3)BD′的平方为16+8或16﹣8.分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,如图所示:过D'作D'E⊥AB,交BA的延长线于E,由旋转可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E 中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以点A为旋转中心将正方形ABCD顺时针旋转60°,如图所示:过B作BF⊥AD'于F,旋转可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8综上所述,BD′平方的长度为16+8或16﹣8.【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.7.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18. 【解析】试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC . 于是AP=DQ .又因为S △ABC =12BC•AP ,S △DFC =12FC•DQ ,所以S △ABC =S △DFC ; (3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.所以S 阴影部分面积和=3S △ABC =3×12×3×4=18. (1)证明:在△ABC 与△DFC 中,∵{AC DCACB DCF BC FC∠∠===, ∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等; (2)解:成立.理由如下:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q . ∴∠APC=∠DQC=90°.∵四边形ACDE ,BCFG 均为正方形,∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°, ∴∠ACP=∠DCQ .∴{APC DQCACP DCQ AC CD∠∠∠∠===,△APC ≌△DQC (AAS ), ∴AP=DQ .又∵S △ABC =12BC•AP ,S △DFC =12FC•DQ , ∴S △ABC =S △DFC ;(3)解:根据(2)得图中阴影部分的面积和是△ABC 的面积三倍, 若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大, ∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大. ∴S 阴影部分面积和=3S △ABC =3×12×3×4=18. 考点:四边形综合题8.如图,在平面直角坐标系xOy 中,四边形OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2,点D 、E 、F 、G 分别为边OA 、AB 、BC 、CO 的中点,连结DE 、EF 、FG 、GD . (1)若点C 在y 轴的正半轴上,当点B 的坐标为(2,4)时,判断四边形DEFG 的形状,并说明理由.(2)若点C 在第二象限运动,且四边形DEFG 为菱形时,求点四边形OABC 对角线OB 长度的取值范围.(3)若在点C 的运动过程中,四边形DEFG 始终为正方形,当点C 从X 轴负半轴经过Y 轴正半轴,运动至X 轴正半轴时,直接写出点B 的运动路径长.【答案】(1)正方形(2)256OB <<(3)2π 【解析】分析:(1)连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形.(2)由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=25C 在x 轴上时,AC=6, 故可得结论; (3)根据题意计算弧长即可.详解:(1)正方形,如图1,证明连接OB ,AC ,说明OB ⊥AC ,OB=AC ,可得四边形DEFG 是正方形. (2)256OB <如图2,由四边形DEFG 是菱形,可得OB=AC ,当点C 在y 轴上时,AC=25,当点C 在x 轴上时,AC=6, ∴256OB << ; (3)2π.如图3,当四边形DEFG 是正方形时,OB ⊥AC ,且OB=AC ,构造△OBE ≌△ACO ,可得B 点在以E (0,4)为圆心,2为半径的圆上运动.所以当C 点从x 轴负半轴到正半轴运动时,B 点的运动路径为2π .图1 图2 图3点睛:本题主要考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.9.如图1,在菱形ABCD 中,ABC=60°,若点E 在AB 的延长线上,EF ∥AD ,EF=BE ,点P 是DE 的中点,连接FP 并延长交AD 于点G .(1)过D 作DH AB,垂足为H ,若DH=,BE=AB,求DG 的长;(2)连接CP ,求证:CPFP ;(3)如图2,在菱形ABCD 中,ABC=60°,若点E 在CB 的延长线上运动,点F 在AB 的延长线上运动,且BE=BF ,连接DE,点P 为DE 的中点,连接FP 、CP ,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA ∥BC ,CD=CB ,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH ⊥AB 得出∠DHA=90°,根据Rt △ADH 的正弦值得出AD 的长度,然后得出BE 的长度,然后证明△PDG ≌△PEF ,得出DG=EF ,根据EF ∥AD ,AD ∥BC得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。
培优班初二数学——平行四边形的性质和判定精品教案

机场西分校 白云区机场路又一居正门一楼86326306 精信教育个性化教案学生姓名备课时间 1月 10 日 年级科目 初二 教师姓名 陈波 课时 2 课时授课时间 3月 22 日课题 平行四边形的性质和判定教学 目标1.1理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质4、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.重点难点 考点 1平行四边形对角线互相平分的性质,以及性质的应用.2综合运用平行四边形的性质进行有关的论证和计算.3平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.教学基本内容、知识大纲【检查预习、检查家庭作业】针对学生所做情况,重点问题重点讲解,提高学生综合运用知识的能力,查缺补漏,等级评定。
【梳理知识】1、 理解平行四边形的基本性质2、 熟练地进行平行四边形的判定和证明3、熟练地进行平行四边形的在实际问题中的应用【达标测试】平行四边形的判定,证明,与应用【家庭作业】平行四边形的巩固与复习家长 意见家长签名BDA CA CDB O【检查预习、检查家庭作业】针对学生所做情况,重点问题重点讲解,提高学生综合运用知识的能力,查缺补漏,等级评定。
【梳理知识】平行四边形的性质和判定1,基本概念1,平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(, 2,平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫.二、平行四边形的判定定理(一)平行四边形的判定定理:两组对边分别相等的四边形是平行四边形符号表示: ∵AB =CD ,AD =BC∴四边形ABCD 是平行四边形 对角线互相平分的四边形是平行四边形符号表示:∵OA =OC ,OB =OD∴四边形ABCD 是平行四边形 让学生自己证明:两组对角分别相等的四边形是平行四边形例1 已知:如图ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE =CF .求证:四边形BFDE 是平行四边形.若将E 、F 移动到OA 、OC 的延长线上,其余条件不变,结论还成立吗?ABDOCA BDOC例2:已知:如图,△ABC ,BD 平分∠ABC ,DE ∥BC ,EF ∥BC 。
中考数学培优(含解析)之平行四边形含答案

中考数学培优(含解析)之平行四边形含答案一、平行四边形1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.3.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC 的度数,根据三角形内角和定理求出∠DCO ,根据矩形的性质得出OD=OC ,求出∠CDO ,即可求出答案.【详解】(1)证明:∵AO=CO ,BO=DO∴四边形ABCD 是平行四边形,∴∠ABC=∠ADC ,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2,∴∠FDC=36°,∵DF ⊥AC ,∴∠DCO=90°﹣36°=54°,∵四边形ABCD 是矩形,∴OC=OD ,∴∠ODC=54°∴∠BDF=∠ODC ﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.4.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;(2)当∠B =70°时,求∠AEC 的度数;(3)当△ACE 为直角三角形时,求边BC 的长.【答案】(1)()22303y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为2或1172. 【解析】试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°.又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-,则()22303y x x x =-++<<(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°.又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2.②当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-,则22411724AD CA x x AC CB x x -±=⇒=⇒=-(舍负) 易知∠ACE <90°,所以边BC 的长为117+. 综上所述:边BC 的长为2或117+.点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.5.如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC .(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2) 证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.6.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.7.如图,在平面直角坐标系中,直线DE 交x 轴于点E (30,0),交y 轴于点D (0,40),直线AB :y =13x +5交x 轴于点A ,交y 轴于点B ,交直线DE 于点P ,过点E 作EF ⊥x 轴交直线AB 于点F ,以EF 为一边向右作正方形EFGH .(1)求边EF 的长; (2)将正方形EFGH 沿射线FB 10个单位的速度匀速平移,得到正方形E 1F 1G 1H 1,在平移过程中边F 1G 1始终与y 轴垂直,设平移的时间为t 秒(t >0). ①当点F 1移动到点B 时,求t 的值;②当G 1,H 1两点中有一点移动到直线DE 上时,请直接写出此时正方形E 1F 1G 1H 1与△APE重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=10,∴当点F 1移动到点B 时,t =101010÷=10; ②当点H 运动到直线DE 上时,F 点移动到F'的距离是10t ,在Rt △F'NF 中,NF NF '=13, ∴FN =t ,F'N =3t ,∵MH'=FN =t ,EM =NG'=15﹣F'N =15﹣3t ,在Rt △DMH'中,43MH EM '=, ∴41533t t =-, ∴t =4, ∴EM =3,MH'=4,∴S =1451023(12)11248⨯+⨯=; 当点G 运动到直线DE 上时,F 点移动到F'10,∵PF =10∴PF'10t ﹣10,在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9, 在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.8.如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC .(1)试猜想AE 与GC 有怎样的关系(直接写出结论即可);(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E 是BC 的中点,且BC =2,则C ,F 两点间的距离为 .【答案】(1) AE =CG ,AE ⊥GC ;(2)成立,证明见解析;2 .【解析】【分析】(1)观察图形,AE 、CG 的位置关系可能是垂直,下面着手证明.由于四边形ABCD 、DEFG 都是正方形,易证得△ADE ≌△CDG ,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE ⊥GC .(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE ≌△CDG ,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB =∠CEH =90°﹣∠6,即∠7+∠CEH =90°,由此得证.(3)如图3中,作CM ⊥DG 于G ,GN ⊥CD 于N ,CH ⊥FG 于H ,则四边形CMGH 是矩形,可得CM =GH ,CH =GM .想办法求出CH ,HF ,再利用勾股定理即可解决问题.【详解】(1)AE =CG ,AE ⊥GC ;证明:延长GC 交AE 于点H ,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE =CE =1,AB =CD =2,∴AE =DE =CG ═DG =FG =5, ∵DE =DG ,∠DCE =∠GND ,∠EDC =∠DGN ,∴△DCE ≌△GND(AAS),∴GCD =2,∵S △DCG =12•CD•NG =12•DG•CM , ∴2×2=5•CM , ∴CM =GH =45, ∴MG =CH =22CG CM -=355, ∴FH =FG ﹣FG =5, ∴CF =22FH CH +=22535()()55+=2. 故答案为2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.9.如图,现将平行四边形ABCD 沿其对角线AC 折叠,使点B 落在点B ′处.AB ′与CD 交于点E .(1)求证:△AED ≌△CEB ′;(2)过点E 作EF ⊥AC 交AB 于点F ,连接CF ,判断四边形AECF 的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.10.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD 的周长为32cm ,即可求得AE 的长.详解:(1)证明:∵EF ⊥CE ,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD .在Rt △AEF 和Rt △DEC 中,∠FAE=∠EDC=90°,∠AEF=∠ECD ,EF=EC .∴△AEF ≌△DCE .(2)解:∵△AEF ≌△DCE .AE=CD .AD=AE+4.∵矩形ABCD 的周长为32cm ,∴2(AE+AE+4)=32.解得,AE=6(cm ).答:AE 的长为6cm .点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.11.在ABC V 中,ABC 90o ∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF 7=,求四边形BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=o ,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD Q ,CF BD ⊥,CF AG ∴⊥,又D Q 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=Q , BD DF ∴=,()2证明:BD//GF Q ,BD FG =,∴四边形BDFG 为平行四边形,又BD DF =Q ,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC V 中,222(2x)(5x)=+-,解得:1x 2=,216x (3=-舍去), GF 2∴=,∴菱形BDFG 的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.12.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2α. 【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2α.证明方法类似; 【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC ,∴BM 垂直平分AC ,∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC ,∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM . (2)ME 3.证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME =3MB .(3) 如图3中,结论:EM=BM•tan 2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan2α. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.13.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB 与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG折叠纸片,使点C落在EF上的点P处∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ =⎧⎨=⎩∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,QJ=22=3QN NJ -x ,∵IJ=6cm ,∴2x+3x=6,∴x=12-63,即NJ=12-63(cm ).(3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6,则tan60°=3=2ab,∴a=32b,∴0<b≤632=33;②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=632=33,当DE与DA重合时,a=643sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643cos303==︒∴a>3点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.14.如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),∠APE=90°,且点E在BC边上,AE交BD于点F.(1)求证:①△PAB≌△PCB;②PE=PC;(2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.【答案】(1)见解析;(2);(3)x=﹣1;四边形PAFC是菱形.【解析】试题分析:(1)根据四边形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根据PB=PB,即可证出△PAB≌△PCB,②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,从而证出PE=PC;(2)根据PA=PC,PE=PC,得出PA=PE,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求出;(3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB 得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案.试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.∵PB=PB,∴△PAB≌△PCB (SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在点P的运动过程中,的值不改变.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90°,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)=67.5°.在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形.考点:四边形综合题.15.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.习题如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.类比猜想:(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.【答案】证明见解析.【解析】试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,∴∠EA E′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,∴∠2+∠3=60°,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,∴DE′+DF>EF∴BE+DF>EF;(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.理由如下:如图(3),∵AB=AD,∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180°,∴∠ADE′+∠D=180°,∴点F、D、E′共线,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.考点:四边形综合题.。
八下数学《平行四边形》培优试卷-(A4含答案)

《平行四边形》竞赛试题总分120分,时间120分钟一、填空题(共9小题,每小题3分,满分27分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_________.2.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_________.(填一个即可)3.如图,已知矩形ABCD,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=____.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是_________;(2)当△ABC满足条件_________时,四边形ADEF为菱形;(3)当△ABC满足条件_________时,四边形ADEF不存在.1题2题3题4题5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为________.6.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有_________对四边形面积相等;它们是_________.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为_________.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为_________度.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.6题7题8题9题二、选择题(共9小题,每小题3分,满分27分)10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60°B.65°C.70°D.75°10题11题12题13题11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.13.如图,平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.28415题16题16.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20m C.22m D.24m17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.A D>BC B.A D<BCC.A D=BC D.A D与BC的大小关系不能确定18.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形"这一结论的情况有()A.4种B.9种C.13种D.15种三、解答题(共10小题,满分66分)19.如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD 交于G,求证:GF∥AC.20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.23.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M 为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.24.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.26.阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.28.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC 的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.参考答案与试题解析一、填空题(共9小题,每小题4分,满分36分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.考点:矩形的性质;等腰三角形的性质。
平行四边形专项培优训练

平行四边形专项培优训练介绍该培优训练旨在提高学生在平行四边形方面的解题能力和应用能力。
通过系统的学习和练习,学生将能够更好地理解平行四边形的性质和相关定理,并能够灵活运用这些知识解决实际问题。
培优目标深入理解平行四边形的定义和基本性质。
熟练应用平行四边形的相关定理,如对角线互补、同位角等。
解决与平行四边形相关的问题,包括面积、周长、角度等。
培养逻辑思维和问题解决能力。
培优内容1.平行四边形的定义和基本性质什么是平行四边形?其特点是什么?平行四边形的对角线互补性质。
平行四边形的同位角性质。
2.平行四边形的相关定理平行四边形的对角线等分性质。
平行四边形的对边相等性质。
平行四边形的对角线比例性质。
3.平行四边形的问题解决根据给定条件证明某个四边形为平行四边形。
根据平行四边形的性质计算其面积和周长。
解决与平行四边形角度的问题,如寻找缺失角度、计算角度和角度之间的关系等。
4.综合应用训练综合运用平行四边形的性质与定理解决实际问题。
提供多道综合应用题,并进行讲解和讨论。
培优方法通过理论讲解和示例引导学生理解与记忆。
设计练习题,巩固学生对平行四边形的理解和技巧运用。
提供实际场景的问题,让学生综合应用所学知识解决问题。
鼓励学生自主学习与思考,并提供必要的指导和支持。
定期进行测评,检查学生的学习进展和掌握情况。
培优效果评估定期组织测试,检验学生对平行四边形的理解和应用能力。
观察学生在课堂练习、讨论与实际问题解决中的表现。
收集学生的反馈及建议,改进培优训练内容和方法。
结语通过平行四边形专项培优训练,学生将能够掌握平行四边形的性质和相关定理,并能够熟练运用这些知识解决实际问题。
希望通过这个训练,能够提高学生的数学能力和解题能力,为他们的学习打下坚实的基础。
平行四边形的性质专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【北师大版】专题6.1平行四边形的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•南海区校级月考)下面性质中,平行四边形不一定具备的是()A.邻角互补B.邻边相等C.对边平行D.对角线互相平分2.(2022春•隆安县期中)在▱ABCD中,∠B=60°,那么下列各式中成立的是()A.∠A+∠C=180°B.∠D=60°C.∠A=100°D.∠B+∠D=180°3.(2022春•曹妃甸区期末)平行四边形相邻两角中,其中一个角的度数y与另一个角的度数x之间的关系是()A.y=x B.y=90﹣x C.y=180﹣x D.y=180+x4.(2022春•淇滨区校级期末)如图,已知▱ABCD中,对角线AC,BD相交于点O,AD=3,AC=8,BD =4,那么BC的长度为()A.6B.5C.4D.35.(2022春•辉县市期末)在▱ABCD中,AC,BD交于点O,△OAB的周长等于5.5cm,BD=4cm,AB+CD =5cm,则AC的长为()A.3cm B.2.5cm C.2cm D.1.5cm6.(2022春•宁都县期末)将平行四边形ABCD放在平面直角坐标系中,顶点A,B,C的坐标分别是(0,0),(4,0),(5,2),则顶点D的坐标是()A.(4,3)B.(1,3)C.(1,2)D.(4,2)7.(2021秋•平阳县校级月考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22B.18C.22或20D.18或228.(2021秋•宁阳县期末)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.B.4C.D.89.(2022秋•永嘉县校级月考)在平行四边形ABCD中,五块阴影部分的面积分别为S1,S2,S3,S4,S5,如图所示,则下列选项中的关系正确的是()A.S1+S2+S3=S4+S5B.S2+S3=S1+S4+S5C.S3+S4=S1+S2+S5D.S2+S4=S1+S3+S510.(2022春•鼓楼区校级期中)在平面直角坐标系中,▱OABC的边OC落在x轴的正半轴上,点C(4,0),B(6,2),直线y=2x+1以每秒3个单位的速度向下平移,经过多少秒该直线可将▱OABC的面积平分()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022春•姑苏区校级月考)平行四边形ABCD中,∠B:∠C=3:2,则∠C=°.12.(2022秋•任城区校级月考)▱ABCD中,∠A=45°,BC=,则AB与CD之间的距离是;若AB=3,四边形ABCD的面积是,△ABD的面积是.13.(2022•襄汾县一模)如图,在▱ABCD中,点E在AD上,EC平分∠BED,若∠EBC=30°,BE=10,则四边形ABCD的面积为.14.(2022春•遂溪县期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,若AC=10,BD=6,BC=4,则平行四边形ABCD的面积为.15.(2022秋•九龙坡区校级月考)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若▱ABCD的面积为16,且AH:HD=1:3.则图中阴影部分的面积为.16.(2022•景德镇模拟)在▱ABCD中,AB=4,∠ABC,∠BCD的平分线BE,CF分别与直线AD交于点E,F,当点A,D,E,F相邻两点间的距离相等时,BC的长为.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•自贡期末)如图,在▱ABCD中,AF∥CE;求证:BE=DF.18.(2022春•新化县期末)如图,在▱ABCD中,对角线AC与BD相交于点O,AC=10,BD=14,CD=5.2,求△AOB的周长.19.(2022春•望城区期末)如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.20.(2022春•社旗县月考)如图,在平行四边形ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O.有以下三个条件:①AE=CF;②EO=OF;③O为BD中点.从中选取一个作为题设,余下的两个作为结论,组成一个正确的命题,并加以证明.21.(2021春•玉林期中)如图,在▱ABCD中,点E是CD的中点,点F是BC边上的一点,且EF⊥AE.求证:AE平分∠DAF.李华同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证△AMF是等腰三角形即可.请你参考李华的想法,完成此题的证明.22.(2021春•拱墅区校级期中)如图,平行四边形ABCD中,AP,BP分别平分∠DAB和∠CBA,交于DC 边上点P,AD=5.(1)求线段AB的长.(2)若BP=6;求△ABP的周长.23.(2021秋•东平县期末)如图①,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.(1)求证:BE=DF;(2)若图中的条件都不变,将EF转动到图②的位置,那么上述结论是否成立?说明理由.24.(2022春•成华区校级期中)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,CE=CD,点F为CE的中点,点G是CD上的一点,连接DF、EG、AG.(1)若CF=4,AE=6,求BE的长;(2)若∠CEG=∠AGE,那么:①判断线段AG和EG的数量关系,并说明理由;②求证:∠1=∠2.。
第十讲 平行四边形的性质和判定培优辅导含答案

第十讲平行四边形的性质和判定培优辅导一、知识梳理1..平行四边形:.......(1)平行四边形的定义:两组对边的四边形是平行四边形.平行四边形用符号表示.平行四边形ABCD记作,读作平行四边形ABCD.2.平行四边形的性质:平行四边形是对称图形,对称中心是。
(1)边: 。
(2)角:。
(3)....。
....对角线:(4).........................................若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线......................等分平行四边形的面积.3..两条平行线间的距离:...........(1)...定义:两条平行线中,........................,叫做这两条平行线间的距离.(2).............两平行线间的距离4..平行四边形的面积:..①.,......如图..........(1)(2)..).的平行四边形面积相等...(.等高..............同底..).同高..(.等底如图......②.,.有公共边....BC..,则(3)......平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形..............................,.如图有5..平行四边形的判别方法:............平行四边形的判定的方法有从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角__________的四边形是平行四边形.注意:..........是平行四边形......。
..................__________...一组对边平行另一组对边相等的四边形6..平行四边形知识的运用:............(1).........................................直接运用平行四边形特征解决某些问题,如求角的度数,线段的长度,证明角相等或互补,证明线段相等或倍分等..............(2)...........................识别一个四边形为平行四边形,从而得到两直线平行.(3)...............................是平行四边形,然后再用平行四边形的特征去解决某些问题....先识别...—.个四边形二、重点突破(一)平行四边形的性质1、□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=_ _,BC=.2、□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形的性质培优
一、平行四边形中的比例关系
1. 在ABCD 中,:5:4AB BC =,周长=18cm ,则AB = .
2.在ABCD 中,已知:5:3,A B ∠∠=则这个平行四边形各内角的大小分别为 .
3.如图,ABCD 中,:5:4AD AB =,过点A 作,,AE BC AF CD ⊥⊥垂
足分别为E F 、,AE=4cm,求AF 的长.
二、方程思想在平行四边形中运用
4. 已知ABCD 的周长为40cm ,对角线交于O 点,△BOC 的周长比△AOB 周长长8cm ,则AB 和BC 的长分别为 .
5. 在ABCD 中,,45,22AB AC B BC ⊥∠=︒=,则这个平行四边形的周长为 .
6. 如图,已知ABCD 的周长是36cm ,由钝角顶点D 向AB 、BC 作
垂线,垂足分别是E 、F,已知43DE cm =,53DF cm =,求这个平
行四边形的面积.
三、平行四边形中的等腰三角形
7.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,∠C=110︒,BC=4cm,CD=3cm,则∠AEB= ,DE= .
8.ABCD 中,AC 与BD 相交于点O ,A B ⊥AC ,∠DAC=45°,AC=2, 则BC 的长为 . F E D C B A D C
B A E D
C B A A B C
D M O 45°A O C D
9.□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC 交AD 于点M ,若△CDM 的周长为10,则□ABCD 的的周长为 。
10.如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA .
(1)求∠APB 的度数; (2)如果AD=5cm ,AP=8cm ,求△APB 的周长.
11.如图,在ABCD 中,AF ⊥BC 于F ,AE ⊥DC 于E ,∠B=60,BF=2,DE=3,DF 与AE 交于点
G ,试判断△AFG 的形状并予以证明.
12.已知□ABCD 中,点F 为AD 的中点,CE ⊥AB 于E ,连接CF 。
(1)如图1,若∠ECF=45°,求证:CD+AE=CE
(2)如图2,若∠ECF=30°直接写出CD 、AE 、CE 间关系。
E D B C A
F D
B C A P D C B A A
G
C E D。