一、选择题下列每小题给出的四个选项中,只有一项符合
选择题在每题给出的四个选项中只有一项是符合题
一、选择题(在每题给出的四个选项中,只有一项是符合题目要求,每小题2分,共50分)图1中心为极点,外圆为50°纬线图,图中数字表示经度度数,P 、Q 之间和M 、N 之间为陆地,完成1~2题。
1、P 点附近的盛行风向是A 、东北风B 、西南风C 、西北风D 、东南风 2、关于P 、Q 、M 、N 四地气候的叙述,正确的是 A 、P 、M 两地的气候类型相同 B 、Q 、N 两地的气候类型相同C 、P 地夏季炎热干燥,冬季温和多雨D 、N 地为亚热带常绿阔叶林带读图2所示的气候统计资料,回答第3题:3.下列我国的省区中,哪个有该气候类型的分布读图3“我国部分省区七月平均气温分布图”,完成4~6题。
4.影响图中28℃等温分布的主要因素是 ①太阳辐射 ②海陆分布 ③地形因素 ④大气环流 A .①② B .②③ C .③④ D .①④5.此时沿图中海岸分布的28℃等温线自南向北观察到的现象,最可信的是 A .正午太阳高度逐渐增大 B .河流汛期逐渐变长 C .降水量越来越大 D .白昼时间越来越大 6.有关图示地区最大河流的叙述,正确的是 A .是我国水量最大、汛期最长的河流 B .是我国水能资源最丰富的河流 C .水运发达,航运里程仅次于长江,居全国第二位D .其流经地区全部属于我国经济发达地区 下图为某地地形剖面图,,完成7~9题。
图2图1图 37.若甲地位于乙地的正南方,则图示区域可能位于A .南纬30°附近B .北纬45°附近C .北纬25°附近D .南纬20°附近 8.若甲地位于乙地正西方,且甲地西侧临近海洋,盛行西风,则A .太阳辐射量:甲地>乙地B .气温:甲地=乙地C .水汽含量:甲地<乙地D .气温:甲地<乙地9.若丙地位于青藏高原,丁地位于云贵高原,丙地年太阳辐射量大于丁地的主要原因A .丙地白昼时间长,日照充足B .丙地海拔高,空气稀薄,对太阳辐射削弱少C .丙地纬度低,丁地纬度高D .丁地海拔低,降水丰富,太阳高度角小下图“沿经度20°线上某大洲地形剖面图及大气环流形势图”,完成10~11题。
2024广东省高考政治真题卷及答案
2024广东高考真题政治本试卷满分100分,考试时间75分钟一、选择题(本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是最符合题目要求的)。
1. 邓小平同志在1979年要求深圳“杀出一条血路来",之后进一步提出“走自己的路”,建设有中国特色的社会主义,强调要“摸着石头过河”。
2012年12月,习近平总书记在广东考察时作出“改革已经进入攻坚期和深水区”的重要论断。
对此,如下解读正确的是()①“杀出一条血路来”指明了打破帝国主义封锁的方向②“走自己的路”指明了我国改革开放的方向③“摸着石头过河”说明改革伊始就明确了发展蓝图④“改革已经进入攻坚期和深水区“要求加强全面深化改革的顶层设计A. ①②B. ①③C. ②④D. ③④2. 党的二十大报告提出,深入实施人才强国战略,强化现代化建设人才支撑。
2023年,中办、国办印发《关于进一步加强青年科技人才培养和使用的若干措施》,强调要激励引导青年科技人才,在以中国式现代化全面推进中华民族伟大复兴的进程中奉献青春和智慧。
作出这一举措是因为()①青年是实现中华民族伟大复兴的先锋力量②人才越来越成为推动经济社会发展的战略性资源③人力资源大国优势是实施人才强国战略的决定性因素④培养高素质人才是全面建设社会主义现代化国家的首要任务A. ①②B. ①③C. ②④D. ③④3. 习近平总书记指出:“中国人民历来具有深厚的天下情怀,当代中国文艺要把目光投向世界、投向人类。
”“广大文艺工作者要紧跟时代步伐.展现中华历史之美、山河之美、文化之美,抒写中国人民奋斗之志、创造之力、发展之果,全方位全景式展现新时代的精神气象。
”以上重要论述表明()①坚定文化自信是中国特色社会主义最本质的特征②习近平文化思想要求坚持以人民为中心的创作导向③面向世界是中国特色社会主义文化发展的根本方向④文艺创作要坚持不忘本来、吸收外来、面向未来相统一A. ①②B. ①③C. ②④D. ③④4. 随着无人机广泛应用于地理测绘、影视航拍、山地救援等领域,“联飞快送”“空中观光”等“无人机技术+”业务涌现,低空经济成为发展新引擎。
2017法律硕士(法学)联考专业综合课真题及答案
2017法律硕士(法学)联考专业综合课真题及答案一、单项选择题(每小题1 分,下列每题给出的四个选项中,只有一项是符合试题要求的)1、债权属于( )A.公权利B.对人权C.对世权D.绝对权2、法律事实包括行为和( )A.事件B.物质财富C.精神财富D.法律权利3、社会主义民主与社会主义法治的关系表现为( )A.社会主义法治是社会主义民主的目的B.社会主义法治是社会主义民主的力量源泉C.社会主义民主是社会主义法治的一项原则D.社会主义法治是社会主义民主的前提4、国务院根据宪法和法律,有权制定( )A.法律法规B.行政法规C.部门规章D.自治条例和单行条例5、以下诸项中,关于法学产生和特征的正确描述是( )A.法学随着法的出现而出现,有法就有了法学B.法学是超阶级的、超政治的C.职业法学家的出现是法学产生的标志D.法学是超历史的、永恒存在的6、关于公、私法的表述,正确的是( )A.公、私法的划分是普通法法系划分部门法的方法B.罗马法学家帕比尼安首先提出划分公法和私法的学说C.公法一般是指宪法、行政法、民法和程序法D.私法包括商法7、法律条文与法律规范的关系是( )A.法律规范是法律条文的载体B.一个法律规范就等于一个法律条文C.一个法律规范不能包括在几个法律条文中D.一个法律条文可以包括几个法律规范8、以下法典中,突出地反映法律社会化精神的是( )A.法国民法典B.德国民法典C.英国宪法D.美国宪法9、在阶级对立的社会中,法的实施主要是靠( )A.社会舆论B.领导的威信C.自觉遵守D.国家强制力的保证10、按照法的效力、内容和制定程序的不同,法可分为 ( )A.国内法和国际法B.根本法和普通法C 一般法和特别法D.成文法和不成文法11、贯彻以事实为根据、以法律为准绳这一原则,适用法律时( )A.就不应以党的政策为指导B.有时也要以党的政策为指导C 仍然要以党的政策为指导D.法律应无条件地服从党的政策12、美国的法属于( )A.法典法系B.罗马一一日耳曼法系C.大陆法系D.英美法系13、法的本质是()决定的A.社会生产力水平B.社会经济基础C 全体社会的共同意志D.执政党的意志14、甲是法学院教授.在某律师事务所担任兼职律师。
2024年高考数学真题试卷(天津卷)附详细解答
2024年普通高等学校招生全国统一考试(天津卷)数学第Ⅰ卷(选择题)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4A =,{}2,3,4,5B =,则A B = ()A.{}1,2,3,4 B.{}2,3,4 C.{}2,4 D.{}12.设,a b ∈R ,则“33a b =”是“33a b =”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列图中,相关性系数最大的是()A. B.C. D.4.下列函数是偶函数的是()A.22e 1x x y x -=+ B.22cos 1x x y x +=+ C.e 1x x y x -=+ D.||sin 4e x x x y +=5.若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A.a b c>> B.b a c>> C.c a b>> D.b c a>>6.若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A.若//m α,n ⊂α,则//m nB.若//,//m n αα,则//m nC.若//,αα⊥m n ,则m n⊥ D.若//,αα⊥m n ,则m 与n 相交7.已知函数()()πsin303f x x ωω⎛⎫=+> ⎪⎝⎭的最小正周期为π.则函数在ππ,126⎡⎤-⎢⎥⎣⎦的最小值是()A.32-B.32-C.0D.328.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()9.一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A.6B.33142+ C.32D.33142-第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10.已知i 是虚数单位,复数))i 2i ⋅=______.11.在63333x x⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.12.22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13.,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14.在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uur uuu r λμ,则λμ+=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为______.15.若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在ABC 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ⊥平面ABCD ,AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19.已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.20.设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ≥-在()0,x ∞∈+时恒成立,求a 的取值范围;(3)若()12,0,1x x ∈,证明()()121212f x f x x x -≤-.2024年普通高等学校招生全国统一考试(天津卷)数学答案解析一、选择题.1.【答案】B【解析】因为集合{}1,2,3,4A =,{}2,3,4,5B =所以{}2,3,4A B = 故选:B 2.【答案】C【解析】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3.【答案】A【解析】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A 4.【答案】B【解析】对A,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B,设()22cos 1x x g x x +=+,函数定义域为R 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称,则()h x 不是偶函数,故C 错误;对D,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141eϕ---=则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误.故选:B.5.【答案】B【解析】因为 4.2x y =在R 上递增,且0.300.3-<<所以0.300.30 4.2 4.2 4.2-<<<所以0.30.30 4.21 4.2-<<<,即01a b <<<因为 4.2log y x =在(0,)+∞上递增,且00.21<<所以 4.2 4.2log 0.2log 10<=,即0c <所以b a c >>故选:B 6.【答案】C【解析】对于A,若//m α,n ⊂α,则,m n 平行或异面,故A 错误.对于B,若//,//m n αα,则,m n 平行或异面或相交,故B 错误.对于C,//,αα⊥m n ,过m 作平面β,使得s βα= 因为m β⊂,故//m s ,而s α⊂,故n s ⊥,故m n ⊥,故C 正确.对于D,若//,αα⊥m n ,则m 与n 相交或异面,故D 错误.故选:C.7.【答案】A【解析】()()πsin3sin 3πsin 33f x x x x ωωω⎛⎫=+=+=- ⎪⎝⎭,由2ππ3T ω==得23ω=即()sin2f x x =-,当,126⎡⎤∈-⎢⎣⎦ππx 时,ππ2,63x ⎡⎤∈-⎢⎥⎣⎦画出()sin2f x x =-图象,如下图由图可知,()sin2f x x =-在ππ,126⎡⎤-⎢⎥⎣⎦上递减所以,当π6x =时,()min πsin 32f x =-=-故选:A 8.【答案】C【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m=211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得12sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=21sin 5θ=由正弦定理可得:121212::sin :sin :sin 902:1:5PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ===由1212112822PF F S PF PF m m =⋅=⋅= 得2m =则21122,2,210,10PF PF F F c c =====由双曲线第一定义可得:1222PF PF a -==222,8a b c a ==-=所以双曲线的方程为22128x y -=.故选:C 9.【答案】C【解析】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===则形成的新组合体为一个三棱柱该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=2132211311422ABC DEF ABC HIJ V V --==⨯⨯⨯⨯=.故选:C.第Ⅱ卷二、填空题.10.【答案】7【解析】))i 2i 527+⋅=+-+=-.故答案为:7.11.【答案】20【解析】因为63333x x ⎛⎫+ ⎪⎝⎭的展开式的通项为()63636216633C 3C ,0,1,,63rr r r r r r x T x r x ---+⎛⎫⎛⎫===⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭令()630r -=,可得3r =所以常数项为0363C 20=.故答案为:20.12.【答案】45【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p =即2p =由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍)故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=故原点到直线AF 的距离为4455d ==故答案为:4513.【答案】①.35②.12【解析】设甲、乙选到A 为事件M ,乙选到B 为事件N则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214.【答案】①.43②.518-【解析】因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r 可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅= 因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈ 则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭可得11111113232AF DG k BA k BC k BA BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;15.【答案】()(1- 【解析】令()0f x =,即21ax =--由题可得20x ax -≥当0a =时,x ∈R ,有211=--=,则2x =±,不符合要求,舍去;当0a >时,则23,2121,ax x a ax ax x a ⎧-≥⎪⎪=--=⎨⎪-<⎪⎩即函数()g x =与函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩有唯一交点由20x ax -≥,可得x a ≥或0x ≤当0x ≤时,则20ax -<,则211ax ax=--=-即()22441x ax ax -=-,整理得)()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦当2a =时,即410x +=,即14x =-当()0,2a ∈,12x a =-+或102x a =>-(正值舍去)当()2,a ∈+∞时,102x a =-<+或102x a=<-,有两解,舍去即当(]0,2a ∈时,210ax -+=在0x ≤时有唯一解则当(]0,2a ∈时,210ax -+=在x a ≥时需无解当(]0,2a ∈,且x a ≥时由函数()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =且函数()h x 在12,a a ⎛⎫ ⎪⎝⎭上单调递减,在23,a a ⎛⎫ ⎪⎝⎭上单调递增令()g x y ==,即2222142a x y a a⎛⎫- ⎪-⎭=⎝故x a ≥时,()g x 图象为双曲线()222214y x a a-=右支的x 轴上方部分向右平移2a 所得由()222214y x a a -=的渐近线方程为22a y x xa =±=±即()g x 部分的渐近线方程为22a y x ⎛⎫=- ⎪⎝⎭,其斜率为2又(]0,2a ∈,即()23,21,ax x a h x ax x a⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a ≥时的斜率(]0,2a ∈令()0g x ==,可得x a =或0x =(舍去)且函数()g x 在(),a +∞上单调递增故有13aaaa ⎧<⎪⎪⎨⎪>⎪⎩,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x aax ax x a⎧-≤⎪⎪=--=⎨⎪->⎪⎩即函数()g x =与函数()23,21,ax x a h x ax x a⎧-≤⎪⎪=⎨⎪->⎪⎩有唯一交点由20x ax -≥,可得0x ≥或x a ≤当0x ≥时,则20ax -<,则211ax ax=--=-即()22441x ax ax -=-,整理得()()()2242121210a x ax a x a x ⎡⎤⎡⎤---=++--=⎣⎦⎣⎦当2a =-时,即410x -=,即14x =当()2,0a ∈-,102x a =-<+(负值舍去)或102x a =-当(),2a ∈-∞时,102x a =->+或102x a =>-,有两解,舍去即当[)2,0a ∈-时,210ax --+=在0x ≥时有唯一解则当[)2,0a ∈-时,210ax --+=在x a ≤时需无解当[)2,0a ∈-,且x a ≤时由函数()23,21,ax x a h x ax x a ⎧-≤⎪⎪=⎨⎪->⎪⎩关于2x a =对称,令()0h x =,可得1x a =或3x a =且函数()h x 在21,a a ⎛⎫ ⎪⎝⎭上单调递减,在32,a a ⎛⎫ ⎪⎝⎭上单调递增同理可得:x a ≤时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得()g x 部分的渐近线方程为22a y x ⎛⎫=-+ ⎪⎝⎭,其斜率为2-又[)2,0a ∈-,即()23,21,ax x a h x ax x a ⎧-≥⎪⎪=⎨⎪-<⎪⎩在2x a <时的斜率[)2,0a ∈-令()0g x ==,可得x a =或0x =(舍去)且函数()g x 在(),a -∞上单调递减故有13a a a a⎧>⎪⎪⎨⎪<⎪⎩,解得1a <<-,故1a <<-符合要求;综上所述,()(11,a ∈- .故答案为:()(1-⋃.三、解答题.16.【答案】(1)4(2)74(3)5764【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B=+-即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍);则4,6a c ==.【小问2详解】因为B 为三角形内角,所以57sin 16B ===再根据正弦定理得sin sin a b A B =,即4sin 5716A =,解得7sin 4A =【小问3详解】因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭由(2)法一知57sin 16B =因为a b <,则A B <,所以3cos 4A ==则7337sin 22sin cos 2448A A A ==⨯⨯=,2231cos 22cos 12148A A ⎛⎫=-=⨯-= ⎪⎝⎭()19573757cos 2cos cos 2sin sin 281616864B A B A B A -=+=⨯+⨯=.17.【答案】(1)证明见解析(2)22211(3)21111【小问1详解】取1CB 中点P ,连接NP ,MP由N 是11B C 的中点,故1//NP CC ,且112NP CC =由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC 则有1//D M NP 、1D M NP=故四边形1D MPN 是平行四边形,故1//D N MP又MP ⊂平面1CB M ,1D N ⊄平面1CB M故1//D N 平面1CB M ;【小问2详解】以A为原点建立如图所示空间直角坐标系有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C 则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB = 设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z = 、()222,,n x y z = 则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ 分别取121x x ==,则有13y =、11z =、21y =,20z =即()1,3,1m = 、()1,1,0n =则cos ,11m n m n m n ⋅===⋅ 故平面1CB M 与平面11BB CC 的夹角余弦值为22211;【小问3详解】由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m =则有111BB m m ⋅== 即点B 到平面1CB M 的距离为21111.18.【答案】(1)221129x y +=(2)存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距所以()()32,0,0,,0,2A c B C ⎛⎫-- ⎪ ⎪⎝⎭,故13332222ABC S c c =⨯⨯=△故c =所以a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =-设()()()1122,,,,0,P x y Q x y T t 由22343632x y y kx ⎧+=⎪⎨=-⎪⎩可得()223412270k x kx +--=故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k+==-++而()()1122,,,TP x y t TQ x y t =-=- 故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+--=+---- ⎪⎪⎝⎭⎝⎭ ()()22121233122k x x k t x x t ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯--+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫----++++ ⎪⎝⎭=+()22223321245327234t t k t k ⎛⎫⎡⎤+--++- ⎪⎣⎦⎝⎭=+因为0TP TQ ⋅≤ 恒成立,故()223212450332702t t t ⎧+--≤⎪⎨⎛⎫+-≤⎪ ⎪⎝⎭⎩,解得332t -≤≤.若过点30,2⎛⎫- ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -此时需33t -≤≤,两者结合可得332t ≤≤.综上,存在()30,32T t t ⎛⎫-≤≤ ⎪⎝⎭,使得0TP TQ ⋅≤ 恒成立.19.【答案】(1)21n n S =-(2)①证明见详解;②()131419n n S i i n b =-+=∑【小问1详解】设等比数列{}n a 的公比为0q >因为1231,1a S a ==-,即1231a a a +=-可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去)所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k ∈≥当124k k n a +=≥=时,则111221111k k k k k a n n a a -++⎧=<-=-⎨-=-<⎩,即11k k a n a +<-<可知12,1k k n a b k -==+()()()1111222121k k k n a k k b b a a k k k k --+=+--⋅=+-=-可得()()()()1112112122120k n k n k k k k k k k k b k a b ---=--+=--≥--=-⋅≥-当且仅当2k =时,等号成立所以1n k n b a b -≥⋅;(ii )由(1)可知:1211n n n S a +=-=-若1n =,则111,1S b ==;若2n ≥,则112k k k a a -+-=当1221k k i -<≤-时,12i i b b k --=可知{}i b 为等差数列可得()()()111211112221122431434429k k k k k k k k i i b k k k k k -------=-⎡⎤=⋅+=⋅=---⎣⎦∑所以()()()232113141115424845431434499n n S n n i i n b n n -=-+⎡⎤=+⨯-⨯+⨯-⨯+⋅⋅⋅+---=⎣⎦∑且1n =,符合上式,综上所述:()131419n n S i i n b =-+=∑.20.【答案】(1)1y x =-(2){}2(3)证明过程见解析【小问1详解】由于()ln f x x x =,故()ln 1f x x ='+.所以()10f =,()11f '=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t'-=-=,从而当01t <<时()0h t '<,当1t >时()0h t '>.所以()h t 在(]0,1上递减,在[)1,+∞上递增,这就说明()()1h t h ≥,即1ln t t -≥,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g ⎛⎫-=-=-=⋅ ⎪⎭⎝.当()0,x ∞∈+时的取值范围是()0,∞+,所以命题等价于对任意()0,t ∞∈+,都有()0g t ≥.一方面,若对任意()0,t ∞∈+,都有()0g t ≥,则对()0,t ∞∈+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t ⎛⎫≤=--=-+≤-+-=+-- ⎪⎝⎭取2t =,得01a ≤-,故10a ≥>.再取t =,得2022a a a ≤--=--=-,所以2a =.另一方面,若2a =,则对任意()0,t ∞∈+都有()()()212ln 20g t t t h t =--=≥,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a -+<<+-.证明:前面已经证明不等式1ln t t -≥,故ln ln ln ln ln ln ln 1ln 1b b b a a a b a a a b b b b b a b a a--=+=+<+---且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b ⎛⎫--- ⎪--⎝⎭=+=+>=+----所以ln ln ln 1ln 1b b a a a b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x ='+,可知当10e x <<时()0f x '<,当1ex >时()0f x '>.所以()f x 在10,e ⎛⎤ ⎥⎝⎦上递减,在1e ,⎡⎫+∞⎪⎢⎣⎭上递增.不妨设12x x ≤,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211e x x ≤≤<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<结论成立;情况二:当1210ex x <≤≤时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c ⎛⎤∈ ⎥⎝⎦,设()ln ln x x x c c ϕ=--则()ln 1x x ϕ=++'由于()x ϕ'单调递增,且有1111111ln 1ln 11102e 2e e c c ϕ⎛⎫ ⎪=++<+=-= ⎪⎝⎭'且当2124ln 1x c c ≥-⎛⎫- ⎪⎝⎭,2c x >时,2ln 1c ≥-可知()2ln 1ln ln 102c x x c ϕ⎛⎫=++>++=-≥ ⎪⎝⎭'.所以()x ϕ'在()0,c 上存在零点0x ,再结合()x ϕ'单调递增,即知00x x <<时()0x ϕ'<,0x x c <<时()0x ϕ'>.故()x ϕ在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ≤≤时,有()()0x c ϕϕ≤=;②当00x x <<时,112221e e f f c ⎛⎫=-≤-=< ⎪⎝⎭,故我们可以取1,1q c ⎫∈⎪⎭.从而当201c x q <<-时,>可得()1ln ln ln ln 0x x x c c c c c c q c ϕ⎫=--<--<--=-<⎪⎭.再根据()x ϕ在(]00,x 上递减,即知对00x x <<都有()0x ϕ<;综合①②可知对任意0x c <≤,都有()0x ϕ≤,即()ln ln 0x x x c c ϕ=--.根据10,e c ⎛⎤∈ ⎥⎝⎦和0x c <≤的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x --≤.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-≤.情况三:当12101ex x <≤≤<时,根据情况一和情况二的讨论,可得()11e f x f ⎛⎫-≤≤ ⎪⎝⎭,()21e f f x ⎛⎫-≤≤ ⎪⎝⎭而根据()f x 的单调性,知()()()1211e f x f x f x f ⎛⎫-≤- ⎪⎝⎭或()()()1221e f x f x f f x ⎛⎫-≤- ⎪⎝⎭.故一定有()()12f x f x -≤成立.综上,结论成立.。
在每小题给出的四个选项中只有一项是符合题目要求的
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 为虚数单位,607i=( )A .iB .-iC .1D .-1 【答案】A 【解析】试题分析:i i i i -=⋅=⨯31514607,选 B . 考点:复数概念.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1365石 【答案】B 【解析】试题分析:依题意,这批米内夹谷约为169153425428=⨯石,选B. 考点:用样本估计总体.3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122B .112 C .102 D .92 【答案】D考点:1.二项式系数,2.二项式系数和. 4.设211(,)XN μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥【答案】C考点:正态分布密度曲线. 5.设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A 【解析】试题分析:对命题p :12,,,n a a a 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立; ②当≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.考点:1.等比数列的判定,2.柯西不等式,3.充分条件与必要条件.6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B 【解析】试题分析:因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0s g n0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0s g n [()]0,0s g n1,0x g x x x x ->⎧⎪===-⎨⎪<⎩. 考点:1.符号函数,2.函数的单调性.7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<【答案】B(1) (2) (3) 考点:几何概型.8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D考点:1.双曲线的性质,2.离心率.9.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30 【答案】C 【解析】试题分析:因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.考点:1.集合的相关知识,2.新定义题型.10.设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6 【答案】B考点:1.函数的值域,2.不等式的性质.二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.已知向量OA AB ⊥,||3OA =,则OA OB ∙=. 【答案】9 【解析】试题分析:因为OA AB ⊥,||3OA =,所以OA OB ∙=93||||)(222===∙+=+∙. 考点:1.平面向量的加法法则,2.向量垂直,3.向量的模与数量积. 12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为.【答案】2考点:1.二倍角的正弦、余弦公式,2.诱导公式,3.函数的零点.13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =m.【答案】6100 【解析】试题分析:依题意, 30=∠BAC ,105=∠ABC ,在A B C ∆中,由180=∠+∠+∠ACB BAC ABC ,所以45=∠ACB ,因为600=AB ,由正弦定理可得30sin 45sin 600BC=,即2300=BC m ,在BCD Rt ∆中,因为30=∠CBD ,2300=BC ,所以230030tan CD BC CD == ,所以6100=CD m.考点:1.三角形三内角和定理,2.三角函数的定义,3.有关测量中的的几个术语,4.正弦定理.14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③NB MA NAMB+=其中正确结论的序号是. (写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③所以11)2NB MA NAMB-==-=,11NB MA NAMB+=+=正确结论的序号是①②③.考点:1.圆的标准方程,2.直线与圆的位置关系.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=.【答案】21考点:1.圆的切线、割线,2.切割线定理,3.三角形相似. 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l与C 相交于A ,B 两点,则||AB =. 【答案】52考点:1.极坐标方程、参数方程与普通方程的转化,2.两点间的距离.三、解答题:本大题共5小题,共65分,解答应写出文字说明、证明过程或演算步骤。
2020考研高数(一)真题及答案解析
2020全国硕士研究生入学统一考试数学一试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( )(A )()21xt e dt -⎰(B )(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D )1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。
(A )()()222011x t x e dt e x '-=-~⎰(B )(()(0ln 1ln 1x dt x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 3012xx x-'=⎰经比较,选(D )(2)设函数()f x 在区间()1,1-内有定义,且()0lim 0,x f x →=则( )(A )当0x →=时,()f x 在0x =处可导。
(B )当0x →=时,()f x 在0x =处可导。
(C )当()f x 在0x =处可导时,0x →=。
(D )当()f x 在0x =处可导时,0x →=【答案】(C )【解析】当()f x 在0x =处可导,且()0lim 0x f x →=,则有()00f =,0()lim 0x f x x→=(()f x为x 的高阶无穷小量),所以00x →=,选(C )。
(3)设函数(),f x y 在点()0,0处可微,()0,00,00,,,1f f f n x y ()⎛⎫∂∂==- ⎪∂∂⎝⎭,非零向量n与α垂直,则( ) (A )()(,0,0lim0x y →存在(B )()(,0,0lim0x y →=存在(C )()(,0,0lim0x y →存在(D )()(,0,0lim0x y →存在【答案】(A ) 【解析】由题意可知,(,)(,)limlimx y x y →→(,)limx y →=由于函数(),f x y 在点()0,0处可微,所以(,)lim0x y →,选(A )。
在每小题给出的四个选项中只有一项是最符合题目要求
一、单项选择题(在每小题给出的四个选项中,只有一项是最符合题目要求的)1.文化发展的实质,在于文化创新。
没有创新,文化就会萎缩,就会失去生机和活力。
而社会实践是文化创新和发展的基础,对此理解正确的有()①文化创新的需要来自社会实践②文化创作的灵感最终来自社会实践和创作者的聪明才智③文化创作的动力来自社会实践④社会实践是产生优秀文化作品的源泉A.①②③B.①③④C.②③④D.①②③④解析:本题主要考查社会实践与文化创新的关系,①③④正确阐明了社会实践是文化创新和发展的基础,文化创作的灵感最终来源于社会实践。
②观点表述不正确。
故选B。
答案:B2.首届“创造新的文化遗产”论坛指出,“我们应站在文化继承和创新的高度上审视历史和未来,力争在实践中多留遗产,少留遗憾,为后人创造出更多‘新’的文化遗产。
如《亮剑》《闯关东》《士兵突击》《中国地》等原创作品的热播就突出了‘新’”。
这里突出强调“新”,是因为()①文化创新可以不断推动社会实践的发展②文化创新是社会实践发展的内在动力③文化创新可以促进民族文化的繁荣④离开了文化创新,文化就会成为无源之水、无本之木A.①④B.②③C.①③D.②④解析:社会实践是文化创新的源泉和动力,离开了社会实践,文化就会成为无源之水、无本之木,所以②④说法错误;之所以要强调“新”,是因为文化创新具有巨大作用,所以选①③。
答案:C3.连环画《地球的红飘带》的作者沈荛尹为了再现历史,甚至历时六年重走长征路;在连环画《野火春风斗古城》的再版后记中,作者之一陈云华这样总结:“闭门造车、冥思苦想是画不出有生活气息的作品的。
”这说明()A.文化对人的影响来自于特定的文化环境B.文化感染力在于创作者的精益求精C.优秀的文化作品只能来自于生产实践D.文化作品中只有源于社会实践,才有感染力解析:本题考查的知识重点是文化创作的来源,为了进行文化创作,作者重走长征路,在实践活动中感悟历史,体会历史,依此作为文化创作的依据。
2024年山西省中考数学试卷(Word版含解析)
2024年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.中国空间站位于距离地面约400km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A.+100℃B.﹣100℃C.+50℃D.﹣50℃2.1949年,伴随着新中国的诞生,中国科学院(简称“中科院”)成立.下列是中科院部分研究所的图标,其文字上方的图案是中心对称图形的是()A.山西煤炭化学研究所B.东北地理与农业生态研究所C.西安光学精密机械研究所D.生态环境研究中心3.下列运算正确的是()A.2m+n=2mn B.m6÷m2=m3C.(﹣mn)2=﹣m2n2D.m2•m3=m54.斗拱是中国古典建筑上的重要部件.如图是一种斗形构件“三才升”的示意图及其主视图,则它的左视图为()A.B.C.D.5.一只杯子静止在斜面上,其受力分析如图所示,重力G的方向竖直向下,支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行.若斜面的坡角α=25°,则摩擦力F2与重力G方向的夹角β的度数为A.155°B.125°C.115°D.65°第5题第7题第1 2题第13题6.已知点A(x1,y1),B(x2,y2)都在正比例函数y=3x的图象上,若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1≥y27.如图,已知△ABC,以AB为直径的⊙O交BC于点D,与AC相切于点A,连接OD.若∠AOD=80°,则∠C的度数为()A.30°B.40°C.45°D.50°8.一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是()A.B.C.D.9.生物学研究表明,某种蛇在一定生长阶段,其体长y(cm)是尾长x(cm)的一次函数,部分数据如下表所示,则y与x之间的关系式为()尾长(cm)6810体长y(cm)45.560.575.5A.y=7.5x+0.5B.y=7.5x﹣0.5C.y=15x D.y=15x+45.510.在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,EG,FH交于点O.若四边形ABCD的对角线相等,则线段EG与FH一定满足的关系为()A.互相垂直平分B.互相平分且相等C.互相垂直且相等D.互相垂直平分且相等二、填空题(本大题共5个小题,每小题3分,共15分)11.比较大小:2(填“>”、“<”或“=”).12.黄金分割是汉字结构最基本的规律.借助如图的正方形习字格书写的汉字“晋”端庄稳重、舒展美观.已知一条分割线的端点A,B分别在习字格的边MN,PQ上,且AB∥NP,“晋”字的笔画“、”的位置在AB的黄金分割点C处,且,若NP=2cm,则BC的长为cm(结果保留根号).13.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度v(m/s)是载重后总质量m (kg)的反比例函数.已知一款机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;当其载重后总质量m=90kg时,它的最快移动速度v=m/s.14.如图1是小区围墙上的花窗,其形状是扇形的一部分,图2是其几何示意图(阴影部分为花窗).测量得到扇形AOB的圆心角为90°,OA=1m,C,D分别为OA,OB中点,花窗面积为m2.15.如图,在▱ABCD中,AC为对角线,AE⊥BC于点E,点F是AE延长线上一点,且∠ACF=∠CAF,线段AB,CF的延长线交于点G.若AB=,AD=4,tan∠ABC=2,则BG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:(﹣6)×﹣()﹣2+[(﹣3)+(﹣1)];(2)化简(+)÷.17.为加强校园消防安全,学校计划购买某种型号的水基灭火器和干粉灭火器共50个.其中水基灭火器的单价为540元/个,干粉灭火器的单价为380元/个.若学校购买这两种灭火器的总价不超过21000元,则最多可购买这种型号的水基灭火器多少个?18.为激发青少年崇尚科学、探索未知的热情,学校开展“科学小博士”知识竞赛.各班以小组为单位组织初赛,规定满分为10分,9分及以上为优秀.数据整理:小夏将本班甲、乙两组同学(每组8人)初赛的成绩整理成如下的统计图.数据分析:小夏对这两个小组的成绩进行了如下分析:平均数(分)中位数(分)众数(分)方差优秀率甲组7.625a7 4.4837.5%乙组7.6257b0.73c请认真阅读上述信息,回答下列问题:(1)填空:a=,b=,c=;(2)小祺认为甲、乙两组成绩的平均数相等,因此两个组成绩一样好.小夏认为小祺的观点比较片面,请结合上表中的信息帮小夏说明理由(写出两条即可).19.当下电子产品更新换代速度加快,废旧智能手机数量不断增加.科学处理废旧智能手机,既可减少环境污染,还可回收其中的可利用资源.据研究,从每吨废旧智能手机中能提炼出的白银比黄金多760克.已知从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.求从每吨废旧智能手机中能提炼出黄金与白银各多少克.20.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动.同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN 方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米;……数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33).21.阅读与思考下面是博学小组研究性学习报告的部分内容,请认真阅读,并完成相应任务.关于“等边半正多边形”的研究报告博学小组研究对象:等边半正多边形研究思路:类比三角形、四边形,按“概念﹣性质﹣判定”的路径,由一般到特殊进行研究.研究方法:观察(测量、实验)﹣猜想﹣推理证明研究内容:【一般概念】对于一个凸多边形(边数为偶数),若其各边都相等,且相间的角相等、相邻的角不相等,我们称这个凸多边形为等边半正多边形.如图1,我们学习过的菱形(正方形除外)就是等边半正四边形,类似地,还有等边半正六边形、等边半正八边形…【特例研究】根据等边半正多边形的定义,对等边半正六边形研究如下:概念理解:如图2,如果六边形ABCDEF是等边半正六边形,那么AB=BC=CD=DE=EF=F A,∠A=∠C=∠E,∠B=∠D=∠F,且∠A≠∠B.性质探索:根据定义,探索等边半正六边形的性质,得到如下结论:内角:等边半正六边形相邻两个内角的和为▲°.对角线:…任务:(1)直接写出研究报告中“▲”处空缺的内容:.(2)如图3,六边形ABCDEF是等边半正六边形.连接对角线AD,猜想∠BAD与∠F AD的数量关系,并说明理由;(3)如图4,已知△ACE是正三角形,⊙O是它的外接圆.请在图4中作一个等边半正六边形ABCDEF(要求:尺规作图,保留作图痕迹,不写作法).22.综合与实践问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.方案设计:如图2,AB=6米,AB的垂直平分线与抛物线交于点P,与AB交于点O,点P是抛物线的顶点,且PO=9米.欣欣设计的方案如下:第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,BC分隔出△ABC区域,种植串串红;第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用篱笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.方案实施:学校采用了欣欣的方案,在完成第一步△ABC区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE与CF的长.为此,欣欣在图2中以AB所在直线为x轴,OP所在直线为y轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE与CF的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC,BC上.直接写出符合设计要求的矩形周长的最大值.23.综合与探究问题情境:如图1,四边形ABCD是菱形,过点A作AE⊥BC于点E,过点C作CF⊥AD于点F.猜想证明:(1)判断四边形AECF的形状,并说明理由;深入探究:(2)将图1中的△ABE绕点A逆时针旋转,得到△AHG,点E,B的对应点分别为点G,H.①如图2,当线段AH经过点C时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD 的数量关系,并说明理由;②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线段CD交于点Q.若AB=5,BE=4,直接写出四边形AMNQ的面积.。
(word完整版)考研数学一历年真题汇总2489222,推荐文档
2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==- (B)11,6a b ==(C)11,6a b =-=-(D)11,6a b =-=(2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)1I(B)2I (C)3I(D)4I(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为1 ()f x-20 2 3-1O(A)(B)(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则 (A)当1nn b∞=∑收敛时,1n nn a b∞=∑收敛. (B)当1nn b∞=∑发散时,1n nn a b∞=∑发散.(C)当1nn b∞=∑收敛时,221n nn a b∞=∑收敛. (D)当1nn b∞=∑发散时,221n nn a b∞=∑发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基122331,,+++αααααα的过渡矩阵为(A)101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭(B)120023103⎛⎫⎪⎪ ⎪⎝⎭(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(D)111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3==A B ,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为 (A)**32O B A O ⎛⎫ ⎪⎝⎭(B)**23OB A O ⎛⎫⎪⎝⎭(C)**32O A B O ⎛⎫⎪⎝⎭(D)**23O A BO ⎛⎫⎪⎝⎭(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX =(A)0(B)0.3(C)0.7(D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为(A)0 (B)1 (C)2 (D)3二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ . (10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12e xy C C x =+,则非齐次方程y ay by x '''++=满足条件()()02,00y y '==的解为y = .(11)已知曲线(2:0L y x x =≤≤,则Lxds =⎰ .(12)设(){}222,,1x y z xy z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .(13)若3维列向量,αβ满足2T=αβ,其中T α为α的转置,则矩阵Tβα的非零特征值为 .(14)设12,,,m X X X L 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值. (16)(本题满分9分)设n a 为曲线n y x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ∞∞-====∑∑,求1S 与2S 的值.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积. (18)(本题满分11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-.(2)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(19)(本题满分10分) 计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰Ò,其中∑是曲面222224x y z ++=的外侧.(20)(本题满分11分)设111111042--⎛⎫⎪=- ⎪ ⎪--⎝⎭A ,1112-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ (1)求满足21=A ξξ的2ξ.231=A ξξ的所有向量2ξ,3ξ. (2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关. (21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-.(1)求二次型f 的矩阵的所有特征值;(2)若二次型f 的规范形为2212y y +,求a 的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1)求{}10p X Z ==.(2)求二维随机变量(),X Y 概率分布. (23)(本题满分11 分)设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…n X 是来自总体X 的简单随机样本. (1)求参数λ的矩估计量. (2)求参数λ的最大似然估计量.2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限2lim ()()xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦= (A)1(B)e(C)e a b -(D)e b a -(2)设函数(,)z z x y =由方程(,)0y zF x x=确定,其中F 为可微函数,且20,F '≠则z z xy x y∂∂+∂∂= (A)x (B)z (C)x -(D)z -(3)设,m n 为正整数,则反常积分0⎰的收敛性(A)仅与m 取值有关 (B)仅与n 取值有关(C)与,m n 取值都有关(D)与,m n 取值都无关(4)2211lim()()nnx i j nn i n j →∞==++∑∑=(A)121(1)(1)xdx dy x y ++⎰⎰(B)11(1)(1)xdx dy x y ++⎰⎰(C)11001(1)(1)dx dy x y ++⎰⎰ (D)112001(1)(1)dx dy x y ++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若,=AB E 则 (A)秩(),m =A 秩()m =B (B)秩(),m =A 秩()n =B(C)秩(),n =A 秩()m =B(D)秩(),n =A 秩()n =B(6)设A 为4阶对称矩阵,且20,+=A A 若A 的秩为3,则A 相似于(A)1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭(B)1110⎛⎫⎪⎪ ⎪- ⎪⎝⎭(C)1110⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(D)1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭ (7)设随机变量X 的分布函数()F x =00101,21e 2x x x x -<≤≤->则{1}P X == (A)0 (B)1(C)11e 2--(D)11e --(8)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf x 0x x ≤> (0,0)a b >> 为概率密度,则,a b 应满足(A)234a b += (B)324a b +=(C)1a b +=(D)2a b +=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设20e ,ln(1),ttx y u du -==+⎰求220t d ydx == .(10)2π⎰= .(11)已知曲线L 的方程为1{[1,1]},y x x =-∈-起点是(1,0),-终点是(1,0), 则曲线积分2Lxydx x dy +⎰= .(12)设22{(,,)|1},x y z x y z Ω=+≤≤则Ω的形心的竖坐标z = . (13)设123(1,2,1,0),(1,1,0,2),(2,1,1,),T T T α=-==ααα若由123,,ααα形成的向量空间的维数是2,则α= .(14)设随机变量X 概率分布为{}(0,1,2,),!CP X k k k ===L 则2EX = . 三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分10分)求微分方程322e xy y y x '''-+=的通解. (16)(本题满分10分) 求函数221()()e xt f x x t dt -=-⎰的单调区间与极值.(17)(本题满分10分) (1)比较1ln [ln(1)]nt t dt +⎰与1ln (1,2,)n t t dt n =⎰L 的大小,说明理由.(2)记1ln [ln(1)](1,2,),n n u t t dt n =+=⎰L 求极限lim .n x u →∞(18)(本题满分10分)求幂级数121(1)21n nn x n -∞=--∑的收敛域及和函数. (19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 的切平面与xoy 面垂直,求P 点的轨迹,C并计算曲面积分,I ∑=其中∑是椭球面S 位于曲线C 上方的部分.(20)(本题满分11分)设11010,1,111a λλλ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b 已知线性方程组=A x b 存在两个不同的解.(1)求,.a λ(2)求方程组=A x b 的通解.(21)(本题满分11分)设二次型123(,,)T f x x x =A x x 在正交变换x y =Q 下的标准形为2212,y y +且Q 的第三列为.T(1)求.A(2)证明+A E 为正定矩阵,其中E 为3阶单位矩阵. (22)(本题满分11分) 设二维随机变量()X Y +的概率密度为2222(,)e ,,,x xy y f x y A x y -+-=-∞<<∞-∞<<∞求常数及A 条件概率密度|(|).Y X f y x(23)(本题满分11 分) 设总体X其中(0,1)θ∈未知,以i N 来表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3),i =试求常数123,,,a a a 使31i i i T a N ==∑为θ的无偏估计量,并求T 的方差.2011年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)1、 曲线432)4()3()2)(1(----=x x x x x y 的拐点是( ) A (1,0) B (2,0) C (3,0) D (4,0)2、设数列{}n a 单调减少,且0lim =∞→n n a 。
2024年山东省高考数学真题及参考答案
2024年山东省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。
(2024年高考真题)贵州省2024年普通高中学业水平选择性考试化学试卷(含答案)
2024年普通高中学业水平选择性考试 贵州省化学试卷本卷满分100分,考试时间75分钟。
可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Si 28 Cl 35.5 W 184一、选择题:本题共14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.历史文物见证了中华民族共同体在发展中的交往交流交融。
下列贵州出土的文物中主要由天然高分子材料制成的是A .AB .BC .CD .D2.下列叙述正确的是 A .KBr 的电子式:[]K :Br -+ B .聚乙炔的结构简式:C .23SO -的空间结构:平面三角形D .()3232CH CH C CH CH =的名称:2-甲基-2-丁烯 3.厨房中处处有化学。
下列说法错误的是A .AB .BC .CD .D4.贵州盛产灵芝等中药材。
灵芝酸B 是灵芝的主要活性成分之一,其结构简式如图。
下列说法错误的是A .分子中只有4种官能团B .分子中仅含3个手性碳原子C .分子中碳原子的杂化轨道类型是2sp 和3spD .该物质可发生酯化反应、加成反应和氧化反应 5.下列装置不能达到实验目的的是A .图①可用于实验室制3NHB .图②可用于除去22C H 中少量的2H S C .图③可用于分离22CH Cl 和4CClD .图④可用于制备明矾晶体6.二氧化氯()2ClO 可用于自来水消毒。
实验室用草酸()224H C O 和3KClO 制取2ClO 的反应为22432422242H C O 2KClO H SO 2ClO 2CO K SO 2H O =++↑+↑++。
设A N 为阿伏加德罗常数的值。
下列说法正确的是A .1820.1molH O 中含有的中子数为A 1.2NB .每生成267.5gClO ,转移电子数为A 2.0NC .12240.1mol L H C O -⋅溶液中含有的H +数目为A 0.2ND .标准状况下,222.4LCO 中含σ键数目为A 2.0N 7.下列离子方程式书写错误的是A .用氢氟酸雕刻玻璃:242SiO 4H 4F SiF 2H O +-++=↑+B .用绿矾()42FeSO 7H O ⋅处理酸性废水中的2223327272Cr O 6Fe Cr O 14H 6Fe 2Cr 7H O -+-+++++=++: C .用泡沫灭火器灭火的原理:3332Al 3HCO Al(OH)3CO +-+=↓+↑ D .工业电解饱和食盐水制烧碱和氯气:2222Cl 2H O2OH H Cl --++↑+↑电解 8.我国科学家首次合成了化合物[K(2,2,2-crypt)][K@Au 12Sb 20]。
2022年四川省内江市中考数学试卷(解析版)
2022年四川省内江市中考数学试卷(真题)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2022•内江)﹣6的相反数是()A.6 B.﹣6 C.D.2.(3分)(2022•内江)某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34 B.33 C.32.5 D.313.(3分)(2022•内江)下列运算正确的是()A.a2+a3=a5B.(a3)2=a6C.(a﹣b)2=a2﹣b2D.x6÷x3=x24.(3分)(2022•内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)(2022•内江)下列说法错误的是()A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件B.要了解小王一家三口的身体健康状况,适合采用抽样调查C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量6.(3分)(2022•内江)如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听7.(3分)(2022•内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2 B.4 C.6 D.88.(3分)(2022•内江)如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是()A.1﹣2a>1﹣2b B.﹣a<﹣b C.a+b<0 D.|a|﹣|b|>0 9.(3分)(2022•内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位10.(3分)(2022•内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=和y=的图象交于P、Q两点.若S△POQ=15,则k的值为()A.38 B.22 C.﹣7 D.﹣2211.(3分)(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4,B.3,πC.2,D.3,2π12.(3分)(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c >0;④不等式ax2+bx+c>﹣x+c的解集为0<x<x1.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)(2022•内江)函数的自变量x的取值范围是.14.(5分)(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于.15.(5分)(2022•内江)对于非零实数a,b,规定a⊕b=﹣.若(2x﹣1)⊕2=1,则x的值为.16.(5分)(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.1三、解答题(本大题共5小题,共44分.解答应写出必要的文字说明或推演步骤.)17.(8分)(2022•内江)(1)计算:+|(﹣)﹣1|﹣2cos45°;(2)先化简,再求值:(+)÷,其中a =﹣,b =+4.18.(8分)(2022•内江)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.19.(9分)(2022•内江)为让同学们了解新冠病毒的危害及预防措施,某中学举行了“新冠病毒预防”知识竞赛.数学课外活动小组将八(1)班参加本校知识竞赛的40名同学的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组进行统计,并绘制了下列不完整的统计图表:分数段频数频率2 0.0574.5﹣79.579.5﹣8 n84.512 0.384.5﹣89.5m0.3589.5﹣94.594.5﹣4 0.199.5(1)表中m=,n=;(2)请补全频数分布直方图;(3)本次知识竞赛中,成绩在94.5分以上的选手,男生和女生各占一半,从中随机确定2名学生参加颁奖,请用列表法或树状图法求恰好是一名男生和一名女生的概率.20.(9分)(2022•内江)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D 两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)21.(10分)(2022•内江)如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)(2022•内江)分解因式:a4﹣3a2﹣4=.23.(6分)(2022•内江)如图,已知一次函数y=kx+b的图象经过点P(2,3),与反比例函数y=的图象在第一象限交于点Q(m,n).若一次函数y的值随x值的增大而增大,则m的取值范围是.24.(6分)(2022•内江)已知x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,且+=x12+2x2﹣1,则k的值为.25.(6分)(2022•内江)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最小值是.五、解答题(本大题共3小题,每小题12分,共36分.)26.(12分)(2022•内江)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)35 30租金(元/辆)400 320学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?27.(12分)(2022•内江)如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN⊥MC,点E为CD的中点,连接BE交MC于点F.(1)当F为BE的中点时,求证:AM=CE;(2)若=2,求的值;(3)若MN∥BE ,求的值.28.(12分)(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC 的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标.2022年四川省内江市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2022•内江)﹣6的相反数是()A.6 B.﹣6 C.D.【分析】根据相反数的定义,即可解答.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.(3分)(2022•内江)某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34 B.33 C.32.5 D.31【分析】根据算术平均数的计算方法进行计算即可.【解答】解:这组数据的平均数为:=33(辆),故选:B.【点评】本题考查实数平均数,掌握算术平均数的计算方法是正确计算的关键.3.(3分)(2022•内江)下列运算正确的是()A.a2+a3=a5B.(a3)2=a6C.(a﹣b)2=a2﹣b2D.x6÷x3=x2【分析】根据合并同类项的法则,幂的乘方的运算法则以及同底数幂除法的运算法则计算并作出判断即可.【解答】解:A.a2和a3不是同类项,不能合并,故不符合题意;B.(a3)2=a6,故符合题意;C.(a﹣b)2=a2﹣2ab+b2,故不符合题意;D.x6÷x3=x6﹣3=x3,故不符合题意.故选:B.【点评】本题综合考查了整式的运算,熟练掌握整式的运算法则是解题的关键,属于基础题型.4.(3分)(2022•内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的定义解答即可.【解答】解:根据轴对称图形和中心对称图形的定义可知,C选项既是轴对称图形,又是中心对称图形,故选:C.【点评】本题主要考查了轴对称图形和中心对称图形,熟练掌握它们的定义是解答本题的关键.5.(3分)(2022•内江)下列说法错误的是()A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件B.要了解小王一家三口的身体健康状况,适合采用抽样调查C.一组数据的方差越小,它的波动越小D.样本中个体的数目称为样本容量【分析】根据随机事件的定义,抽样调查和全面调查的特点,方差的特点,样本容量的定义解答即可.【解答】解:A.打开电视机,中央台正在播放发射神舟十四号载人飞船的新闻,这是随机事件,故A选项不符合题意;B.要了解小王一家三口的身体健康状况,适合采用全面调查调查,故B选项符合题意;C.一组数据的方差越小,它的波动越小,故C选项不符合题意;D.样本中个体的数目称为样本容量,故D选项不符合题意.故选:B.【点评】本题主要考查了随机事件,抽样调查和全面调查,方差的,样本容量,熟练掌握相关的定义和特点是解答本题的关键.6.(3分)(2022•内江)如图是正方体的表面展开图,则与“话”字相对的字是()A.跟B.党C.走D.听【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.【点评】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.7.(3分)(2022•内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为()A.2 B.4 C.6 D.8【分析】由平行四边形的得CD=AB=12,BC=AD=8,AB∥CD,再证∠CBM=∠CMB,则MC=BC=8,即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=12,BC=AD=8,AB∥CD,∴∠ABM=∠CMB,∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∴∠CBM=∠CMB,∴MC=BC=8,∴DM=CD﹣MC=12﹣8=4,故选:B.【点评】本题考查了平行四边形的性质、等腰三角形的判定以及平行线的性质等知识,熟练掌握平行四边形的性质,证明MC=BC是解题的关键.8.(3分)(2022•内江)如图,数轴上的两点A、B对应的实数分别是a、b,则下列式子中成立的是()A.1﹣2a>1﹣2b B.﹣a<﹣b C.a+b<0 D.|a|﹣|b|>0 【分析】依据点在数轴上的位置,不等式的性质,绝对值的意义,有理数大小的比较法则对每个选项进行逐一判断即可得出结论.【解答】解:由题意得:a<b,∴﹣2a>﹣2b,∴1﹣2a>1﹣2b,∴A选项的结论成立;∵a<b,∴﹣a>﹣b,∴B选项的结论不成立;∵﹣2<a<﹣1,2<b<3,∴|a|<|b|,∴a+b>0,∴C选项的结论不成立;∵﹣2<a<﹣1,2<b<3,∴|a|<|b|,∴|a|﹣|b|<0,∴D选项的结论不成立.故选:A.【点评】本题主要考查了不等式的性质,绝对值的意义,有理数大小的比较法则,利用点在数轴上的位置确定出a,b的取值范围是解题的关键.9.(3分)(2022•内江)如图,在平面直角坐标系中,点B、C、E在y轴上,点C的坐标为(0,1),AC=2,Rt△ODE是Rt△ABC经过某些变换得到的,则正确的变换是()A.△ABC绕点C逆时针旋转90°,再向下平移1个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移3个单位D.△ABC绕点C顺时针旋转90°,再向下平移3个单位【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:D.【点评】本题考查的是坐标与图形变化,旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.10.(3分)(2022•内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=和y=的图象交于P、Q两点.若S△POQ=15,则k的值为()A.38 B.22 C.﹣7 D.﹣22【分析】设点P(a,b),则Q(a,),依据已知条件利用待定系数法解答即可.【解答】解:设点P(a,b),Q(a,),则OM=a,PM=b,MQ=﹣,∴PQ=PM+MQ=b﹣.∵点P在反比例函数y=的图象上,∴ab=8.∵S△POQ=15,∴PQ•OM=15,∴×a(b﹣)=15.∴ab﹣k=30.∴8﹣k=30,解得:k=﹣22.故选:D.【点评】本题主要考查了反比例函数图象的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.11.(3分)(2022•内江)如图,正六边形ABCDEF内接于⊙O,半径为6,则这个正六边形的边心距OM和的长分别为()A.4,B.3,πC.2,D.3,2π【分析】连接OB、OC,根据正六边形的性质求出∠BOC,根据等边三角形的判定定理得到△BOC为等边三角形,根据垂径定理求出BM,根据勾股定理求出OM,根据弧长公式求出的长.【解答】解:连接OB、OC,∵六边形ABCDEF为正六边形,∴∠BOC==60°,∵OB=OC,∴△BOC为等边三角形,∴BC=OB=6,∵OM⊥BC,∴BM=BC=3,∴OM===3,的长为:=2π,故选:D.【点评】本题考查的是正多边形和圆、弧长的计算,正确求出正六边形的中心角是解题的关键.12.(3分)(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于两点(x1,0)、(2,0),其中0<x1<1.下列四个结论:①abc<0;②a+b+c>0;③2a﹣c >0;④不等式ax2+bx+c>﹣x+c的解集为0<x<x1.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】利用二次函数的图象和性质依次判断即可.【解答】解:∵抛物线开口向上,对称轴在y轴右边,与y轴交于正半轴,∴a>0,b<0,c>0,∴abc<0,∴①正确.∵当x=1时,y<0,∴a+b+c<0,∴②错误.∵抛物线对称轴x=﹣>1,a>0,∴b<﹣2a,∵a+b+c<0,∴a﹣2a+c<0,∴2a﹣c>a>0,∴③正确.如图:设y1=ax2+bx+c,y2=﹣x+c,由图值,y1>y2时,x<0或x>x1,故④错误.故选:C.【点评】本题考查二次函数的图象和性质,掌握二次函数的图象和性质是求解本题的关键.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)(2022•内江)函数的自变量x的取值范围是x≥3 .【分析】根据被开方数非负列式求解即可.【解答】解:根据题意得,x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(5分)(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于100°.【分析】根据圆周角定理解答即可.【解答】解:由圆周角定理得:∠AOC=2∠ABC,∵∠ABC=50°,∴∠AOC=100°,故答案为:100°.【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.(5分)(2022•内江)对于非零实数a,b,规定a⊕b=﹣.若(2x﹣1)⊕2=1,则x的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x=.经检验,x=是原方程的根,∴x=.故答案为:.【点评】本题主要考查了解分式方程,本题是新定义型题目,准确理解新规定并熟练应用是解题的关键.16.(5分)(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=48 .1【分析】由勾股定理和乘法公式完成计算即可.【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S=(a+b)2,S2=42=16,S3=(a﹣b)2,1且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.【点评】本题考查勾股定理的应用,应用勾股定理和乘法公式表示三个正方形的面积是求解本题的关键.三、解答题(本大题共5小题,共44分.解答应写出必要的文字说明或推演步骤.)17.(8分)(2022•内江)(1)计算:+|(﹣)﹣1|﹣2cos45°;(2)先化简,再求值:(+)÷,其中a=﹣,b=+4.【分析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质、二次根式的性质分别化简,进而得出答案;(2)先根据分式的运算法则化简分式,再代入求值.【解答】解:(1)原式=×2+2﹣2×=+2﹣=2.(2)原式=[+]•=•=.当a=﹣,b=+4时,原式=.【点评】本题考查了二次根式的运算,特殊角的函数值,负指数次幂的运算,以及分式的化简求值,正确熟练的运算是解题的关键.18.(8分)(2022•内江)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得到AB=CD,AB∥CD,根据平行线的性质得到∠ABD=∠CDB,利用SAS定理证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF,∠AEB=∠CFD,根据平行线的判定定理证明AE∥CF,再根据平行四边形的判定定理证明结论.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【点评】本题考查的是平行四边形的判定和性质、全等三角形的判定和性质,掌握平行四边形的对边平行且相等、平行且相等的四边形是平行四边形是解题的关键.19.(9分)(2022•内江)为让同学们了解新冠病毒的危害及预防措施,某中学举行了“新冠病毒预防”知识竞赛.数学课外活动小组将八(1)班参加本校知识竞赛的40名同学的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组进行统计,并绘制了下列不完整的统计图表:分数段频数频率74.5﹣2 0.0579.58 n79.5﹣84.512 0.384.5﹣89.5m0.3589.5﹣94.54 0.194.5﹣99.5(1)表中m=14 ,n=0.2 ;(2)请补全频数分布直方图;(3)本次知识竞赛中,成绩在94.5分以上的选手,男生和女生各占一半,从中随机确定2名学生参加颁奖,请用列表法或树状图法求恰好是一名男生和一名女生的概率.【分析】(1)由样本容量乘以频率得出m的值,再由频率的定义求出n的值即可;(2)由(1)的结果,补全频数分布直方图即可;(3)画树状图,共有12种等可能的结果,其中确定的2名学生恰好是一名男生和一名女生的结果有8种,再由概率公式求解即可.【解答】解:(1)m=40×35%=14,n=8÷40=0.2,故答案为:14,0.2;(2)补全频数分布直方图如下:(3)∵成绩在94.5分以上的选手有4人,男生和女生各占一半,∴2名是男生,2名是女生,画树状图如下:共有12种等可能的结果,其中确定的2名学生恰好是一名男生和一名女生的结果有8种,∴确定的2名学生恰好是一名男生和一名女生的概率为=.【点评】此题考查了树状图法求概率、频数分布表和频数分布直方图等知识.正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.20.(9分)(2022•内江)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D 两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)【分析】(1)过点A作AE⊥l,垂足为E,设CE=x米,则DE=(x+60)米,先利用平角定义求出∠ACE=45°,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,再在Rt△ADE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答;(2)过点B作BF⊥l,垂足为F,CE=AE=BF=(30+30)米,AB=EF,先利用平角定义求出∠BCF=60°,然后在Rt△BCF中,利用锐角三角函数的定义求出CF的长,进行计算即可解答.【解答】解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,∴tan30°===,∴x=30+30,经检验:x=30+30是原方程的根,∴AE=(30+30)米,∴河的宽度为(30+30)米;(2)过点B作BF⊥l,垂足为F,则CE=AE=BF=(30+30)米,AB=EF,∵∠BCD=120°,∴∠BCF=180°﹣∠BCD=60°,在Rt△BCF中,CF===(30+10)米,∴AB=EF=CE﹣CF=30+30﹣(30+10)=20(米),∴古树A、B之间的距离为20米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.21.(10分)(2022•内江)如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.【分析】(1)连接OC,证明△AOF≌△COF(SAS),由全等三角形的判定与性质得出∠OAF=∠OCF=90°,由切线的判定可得出结论;(2)由直角三角形的性质求出∠AOF=30°,可得出AE=OA=3,则可求出答案;(3)证明△AOC是等边三角形,求出∠AOC=60°,OC=6,由三角形面积公式和扇形的面积公式可得出答案.【解答】解:(1)直线AF与⊙O相切.理由如下:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,∴AF⊥OA,又∵OA为圆O的半径,∴AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵∠OAF=90°,OA=6,AF=2,∴tan∠AOF=,∴∠AOF=30°,∴AE=OA=3,∴AC=2AE=6;(3)∵AC=OA=6,OC=OA,∴△AOC是等边三角形,∴∠AOC=60°,OC=6,∵∠OCP=90°,∴CP=OC=6,∴S△OCP=OC•CP==18,S扇形AOC==6π,∴阴影部分的面积为S△OCP﹣S扇形AOC=18﹣6π.【点评】此题是圆的综合题,考查了切线的判定与性质,全等三角形的判定与性质,平行线的性质,等腰三角形的性质,解直角三角形,三角形的面积求法,等边三角形的判定与性质,扇形的面积公式,熟练掌握切线的判定与性质是解本题的关键.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)(2022•内江)分解因式:a4﹣3a2﹣4=(a2+1)(a+2)(a﹣2).【分析】先利用十字相乘法因式分解,在利用平方差公式进行因式分解.【解答】解:a4﹣3a2﹣4=(a2+1)(a2﹣4)=(a2+1)(a+2)(a﹣2),故答案为:(a2+1)(a+2)(a﹣2).【点评】本题考查的是十字相乘法因式分解,掌握十字相乘法、平方差公式因式分解是解题的关键.23.(6分)(2022•内江)如图,已知一次函数y=kx+b的图象经过点P(2,3),与反比例函数y=的图象在第一象限交于点Q(m,n).若一次函数y的值随x值的增大而增大,则m的取值范围是<m<2 .【分析】过点P分别作x轴,y轴的平行线,与双曲线分别交于点A,B,利用解析式分别求得A,B坐标,依据题意确定点Q的移动范围,从而得出结论.【解答】解:过点P作PA∥x轴,交双曲线与点A,过点P作PB∥y轴,交双曲线与点B,如图,∵P(2,3),反比例函数y=,∴A(,3),B(2,1).∵一次函数y的值随x值的增大而增大,∴点Q(m,n)在A,B之间,∴<m<2.故答案为:<m<2.【点评】本题主要考查了反比例函数与一次函数图象的交点问题,待定系数法,反比例函数的性质,一次函数的性质,一次函数图象上点的坐标的特征,确定点Q的移动范围是解题的关键.24.(6分)(2022•内江)已知x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,且+=x12+2x2﹣1,则k的值为 2 .【分析】根据x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,可得x1+x2=2,x1•x2=k﹣1,x12﹣2x1+k﹣1=0,把+=x12+2x2﹣1变形再整体代入可得=4﹣k,解出k的值,并检验即可得k=2.【解答】解:∵x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,∴x1+x2=2,x1•x2=k﹣1,x12﹣2x1+k﹣1=0,∴x12=2x1﹣k+1,∵+=x12+2x2﹣1,∴=2(x1+x2)﹣k,∴=4﹣k,解得k=2或k=5,当k=2时,关于x的方程为x2﹣2x+1=0,Δ≥0,符合题意;当k=5时,关于x的方程为x2﹣2x+4=0,Δ<0,方程无实数解,不符合题意;∴k=2,故答案为:2.【点评】本题考查一元二次方程根与系数的关系,解题的关键是掌握一元二次方程根与系数的关系得出x1+x2=2,x1•x2=k﹣1,从而根据已知得到关于k 的方程,注意最后要由求得的k值检验原方程是否有实数根.25.(6分)(2022•内江)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最小值是10 .【分析】延长BC到G,使CG=EF,连接FG,则四边形EFGC是平行四边形,得CE=FG,则AF+CE=AF+FG,可知当点A、F、G三点共线时,AF+CE的值最小为AG,利用勾股定理求出AG的长即可.【解答】解:延长BC到G,使CG=EF,连接FG,∵EF∥CG,EF=CG,∴四边形EFGC是平行四边形,∴CE=FG,∴AF+CE=AF+FG,∴当点A、F、G三点共线时,AF+CE的值最小为AG,由勾股定理得,AG ===10,∴AF+CE的最小值为10,故答案为:10.【点评】本题主要考查了矩形的性质,平行四边形的判定与性质,勾股定理等知识,作辅助线将AF+CE的最小值转化为AG的长是解题的关键.五、解答题(本大题共3小题,每小题12分,共36分.)26.(12分)(2022•内江)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)35 30租金(元/辆)400 320学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?【分析】(1)设参加此次劳动实践活动的老师有x人,可得:30x+7=31x﹣1,即可解得参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)根据每位老师负责一辆车的组织工作,知一共租8辆车,设租甲型客车m辆,可得:,解得m的范围,解得一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,由一次函数性质得学校租车总费用最少是2800元.【解答】解:(1)设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:,解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.【点评】本题考查一元一次方程,一元一次不等式组及一次函数的应用,解题的关键是读懂题意,列出方程,不等式和函数关系式.27.(12分)(2022•内江)如图,在矩形ABCD中,AB=6,BC=4,点M、N分别在AB、AD上,且MN⊥MC,点E为CD的中点,连接BE交MC于点F.(1)当F为BE的中点时,求证:AM=CE;(2)若=2,求的值;(3)若MN∥BE,求的值.【分析】(1)根据矩形的性质,利用AAS证明△BMF≌△ECF,得BM=CE,再利用点E为CD的中点,即可证明结论;(2)利用△BMF∽△ECF,得,从而求出BM的长,再利用△ANM∽△BMC,得,求出AN的长,可得答案;(3)首先利用同角的余角相等得∠CBF=∠CMB,则tan∠CBF=tan∠CMB,得。
初二政治试题及解析题答案人教版
初二政治试题及解析题答案人教版一、选择题(在下列各题的四个选项中,只有一项是最符合题意的。
)1.2010年4月,我国青海省玉树县发生了7.1级地震。
地震中发生后,中学生小赵向玉树地震灾区捐出了500元压岁钱。
小赵同学这是在行使对自己财产的( )A.占有权B.处分权C.收益权D.使用权2.某贫困县为建形象工程,10天内强拆千户民房。
这是在没签订补偿协议,没对群众进行妥善安置的情况下进行的。
这种做法侵犯了公民的( )A.财产继承权B.智力成果权C.合法的私有财产权D.生命健康权3.依据我国法律的规定,下列不属于公民个人所有的财产是( )A.小王在山上挖出的明朝文物B.小王父亲购买股票得到的股息C.小王奶奶遗留下来的珍贵首饰D.小王过年时积攒下来的3000元压岁钱4.公安机关依法没收了王某所购买的赃车。
对此事的认识,正确的是( )A.公安机关侵犯了王某的合法财产所有权B.王某有权购买该车,应依法维权C.该车为王某所购买,是王某的合法财产D.公安机关是依法办事,严格执法5.我国公民的合法财产受法律保护。
我国公民取得的下列财产,不受法律保护的是( )A.私营企业主王某合法经营,年终缴纳各种税后获得收入26万元B.张某依法出租房屋缴纳税款后获得2300元租金C.周某参与网上赌球,赢了52030元D.鲁某依法分得父亲的遗产2万元6.张某到陶瓷店买陶瓷时不小心打破了陶瓷店一个价值1320元的花瓶。
根据我国法律的规定,张某( )A.应当恢复陶瓷原状B.应当赔偿陶瓷店的损失C.可以拒绝赔偿陶瓷店的损失D.可以不承担任何法律责任7.我国司法机关对抢劫、盗窃、诈骗、抢夺、敲诈勒索等侵犯公民财产所有权的犯罪行为,依据刑法给予刑罚处罚。
这表明国家通过_______手段保护公民合法财产的所有权。
( )A.民事法律B.行政法律C.刑事法律D.非诉讼8.吴某病故后,留下遗产8万元。
吴某的妻子张英、弟弟吴富贵、儿子吴明、女儿吴芳都认为自己对这笔遗产享有继承权。
2022年新高考天津数学高考真题(解析版)
【解析】
【分析】设 , ,分析可知函数 至少有一个零点,可得出 ,求出 的取值范围,然后对实数 的取值范围进行分类讨论,根据题意可得出关于实数 的不等式,综合可求得实数 的取值范围.
【详解】设 , ,由 可得 .
要使得函数 至少有 个零点,则函数 至少有一个零点,则 ,
解得 或 .
①当 时, ,作出函数 、 的图象如下图所示:
【详解】该几何体由直三棱柱 及直三棱柱 组成,作 于M,如图,
因为 ,所以 ,
因为重叠后的底面为正方形,所以 ,
在直棱柱 中, 平面BHC,则 ,
由 可得 平面 ,
设重叠后的EG与 交点为
则
则该几何体的体积为 .
故选:D.
9.已知 ,关于该函数有下列四个说法:
① 的最小正周期为 ;
② 在 上单调递增;
A.充分不必要B.必要不充分
C.充分必要D.既不允分也不必要
【答案】A
【解析】
【分析】依据充分不必要条件的定义去判定“ 为整数”与“ 为整数”的逻辑关系即可.
【详解】由题意,若 为整数,则 为整数,故充分性成立;
当 时, 为整数,但 不为整数,故必要性不成立;
所以“ 为整数”是“ 为整数”的充分不必要条件.
2022年普通高等学校招生全国统一考试数学(天津卷)
一、选择题:本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集 ,集合 ,则 ()
A. B. C. D.
【答案】A
【解析】
【分析】先求出 ,再根据交集的定义可求 .
【详解】 ,故 ,
故选:A.
2.“ 为整数”是“ 为整数”的()
高中政治常识试题附答案
高中政治常识试题附答案高三政治常识概念多,知识点繁杂琐碎,那么就多做试题进行查漏补缺吧。
接下来店铺为你整理了高中政治常识试题附答案,一起来看看吧。
高中政治常识试题一、选择题Ⅰ:在每小题给出的四个选项中,只有一项最符合题意1.2007年4月4日,国务院温家宝主持召开国务院常务会议,审议并原则通过《行政机关公务员处分条例(草案)》。
该条例在明确规定公务员依法享有八项权利的同时,也规定了其应该承担的责任。
这主要体现了( )A.坚持公民在法律面前一律平等的原则B.权利与义务是统一的,二者不可分离C.权利与义务都是不可放弃的D.坚持个人利益与国家利益相统一的原则2.2007年8月5日,某大学生在查看自己的电子邮箱时,发现有人正利用网络大肆宣扬台湾“入联公投”。
于是,他马上给公安机关打电话报案。
该大学生的行为( )A.体现了公民有监督政府的权利B.反映了我国民主具有全民性和真实性C.履行了维护国家利益的权利D.是公民对国家、社会应承担的责任3.“博客”是英文“Blog”(网络日记)的意思。
有人评价说,“博客们”有完全属于自己的地盘,“我的地盘我作主”。
这一观点( )A.错误,因为在网络上发表日记侵犯了个人的隐私权B.正确,因为公民有言论自由,可以自由表达个人的观点C.正确,因为国家保护公民的政治权利和自由D.错误,因为在我国,公民享有权利的同时必须履行相应的义务4.我国实行村民自治,村民通过“自我管理、自我教育、自我服务”的民主政治实践,锻炼了自身的政治参与能力,提高了自身的政治觉悟。
这说明( )A.广大农民群众的法律意识不断提高B.广大农民群众的执政能力不断提高C.广大农民群众在村民自治的实践中管理村务的本领不断提高D.广大农民群众管理国家事务的能力不断提高5.2007年新公布的物权法规定:权利人享有的物权受法律保护,任何单位和个人不得侵害;物权的取得和行使,应当遵守法律,尊重社会公德,不得损害公共利益和他人合法权益。
2019年数学一真题及答案解析【原版】
2019年数学一真题及答案解析——一、选择题:1~8 小题,每小题4 分,共32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.(1)当x →0 时,若x −tan x 与x k是同阶无穷小,则k =(A )1.(B )2.(C )3.(D )4.【答案】C【解析】33311tan (())~,33x x x x x o x x -=-++-故 3.k =(2)设函数||,0,(),0,x x x f x xlnx x ≤⎧=⎨>⎩则0x =是()f x 的A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.【答案】B【解析】.00()(0)limlim 0,0x x x x f x f x x --→→-==-00()(0)ln lim lim ,0x x f x f x xx x+-→→-==-∞-故()f x 不可导.当0x >时,()0;f x <当0x <时,()0.f x <故()f x 在0x =处取极大值.故选(B ).(3)设{}n u 是单调递增的有界数列,则下列级数中收敛的是A.1mn n un=∑. B.11(1)mnn nu =-∑.C.11(1)mn n n uu =+-∑.D.2211()mn n n uu +=-∑【答案】C【解析】举反例:(A )1n n u n -=(B )1n n u n -=(C )1n u n=-(4)设函数2(,)xQ x y y=.如果对上半平面(0)y >内的任意有向光滑封闭曲线C 都有(,)(,)0CP x y dx Q x y dy +=⎰,那么函数(,)P x y 可取为A.23x y y-.B.231x y y-.C.11x y -. D.1x y-【答案】D 【解析】,Q Px y∂∂=∂∂则21,P y y ∂=∂又上半平面含1,x 有零,故(C )错,选(D ).(5)设A 是3阶实对称矩阵,E 是3阶单位矩阵,若22A A E +=,且||4A =,则二次型T x Ax 的规范形为A.222123y y y ++. B.222123y y y +-.C.222123y y y --. D.222123y y y ---【答案】C【解析】22A A E += ,设A 的特征值为λ22λλ∴+=(2)(1)0λλ+-=21λ∴=-或4A = A ∴的特征值为1232,12,1q p λλλ==-=∴==T X Ax ∴的规范形为222123y y y --(6)如图所示,有3张平面两两相交,交线相互平行,它们的方程i123(i=1,2,3)i i i a x a y a z d +++组成的线性方程组的系数矩阵和增广矩阵分别记为,A A ,则A .()2,r()3r A A ==B.()2,r()2r A A ==C.()1,r()2r A A ==D.()1,r()1r A A ==【答案】C【解析】(1)令123,1,2,3i i i i a x a y a z di i π=++==由于123,,πππ无公共交点,则()()r A r A <,故B 、D 排除(2)由(1)分析可知,()2r A ≤,且0A ≠,则1()2r A ≤≤以1π和2π为例,由于11121312122232a x a y a z d a x a y a z d ++=⎧⎨++=⎩的公共解为一条直线则11121321222331a a a r a a a ⎡⎤-=⎢⎥⎣⎦即1112132122232a a a r a a a ⎡⎤=⎢⎥⎣⎦因此111213212223313233() 2.()3a a a r A r a a a r A a a a ⎡⎤⎢⎥===⎢⎥⎢⎥⎣⎦综上A 正确(7)设,A B 为随机事件,则()()P A P B =的充分必要条件是A.()()()P A B P A P B =+ B.()()()P AB P A P B =C.()()P AB P BA = D.()(P AB P AB =【答案】C【解析】()0A P AB ⇔=选项,故A 排除A B ⇔B选项、独立,故B 排除()()()()P A P AB P B P AB ⇔-=-C选项()()P A P B =而,故C 正确()()1()P AB P A B P A B ⇔==- D选项1()()()P A P B P AB =--+1()()P A P B ⇔=+故D 排除(8)设随机变量X 与Y 相互独立,且都服从正态分布2(,)N μσ.则{}1P X Y -<A.与μ无关,而与2σ有关. B.与μ有关,而与2σ无关.C.与2,μσ都有关.D.与2,μσ都无关.【答案】A【解析】,X Y 独立,服从正态分布,则2(,2)z x y N σσ=- (1)(11)(P X Y P Z P -<=-<<=-21=Φ-,故A 正确二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)设函数()f u 可导,(sin sin )z f y x xy =-+,则11cos cos z zx x y y∂∂⋅+⋅=∂∂________【答案】cos cos y x x y+【解析】'(sin sin )(cos )zf y x x y x∂=--+∂'(sin sin )cos zf y x y x y∂=-+∂故11'(sin sin )'(sin sin )cos cos cos cos cos cos z z y x f y x f y x x x y y x yy x x y∂∂⋅+⋅=--++-+∂∂=+(10)微分方程22220yy y --=满足条件(0)1y =的特解y =________【答案】y =【解析】22'2y y y+=2212y dy dx y =+⎰⎰故2ln(2)y x C +=+.由(0)1y =得ln 3C =则2ln(2)ln 3y x +=+.故2ln(2)ln 3y x e e ++=即223x y e +=故y =(11)幂级数0(1)(2)!n nn n ∞=-∑在(0,)+∞内的和函数()S x =________【答案】【解析】20(1)(2)!nn n n ∞=-=∑(12)设∑为曲面22244(0)x y z z ++=≥的上侧,则z=________【答案】323【解析】'22204324sin 3DxyD y dxdy ydxdy d r dr πθθ∑=====⎰⎰⎰⎰⎰⎰(13)设123(,,)A ααα=为三阶矩阵,若12,αα线性无关,且3122ααα=-+。
2019年山东专升本(数学)真题试卷(题后含答案及解析)
2019年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题 4. 综合题 5. 证明题一、选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数f(x)=x sin xA.当x→∞时为无穷大B.在(一∞,+∞)内为周期函数C.在(一∞,+∞)内无界D.当x→∞时有有限极限正确答案:C解析:采用排除法。
当x→∞时,xsinx极限不存在,且不为无穷大,故排除选项A与选项D;显然xsinx非周期函数,故排除选项B;从而选项C正确。
2.己知∫f(x)dx=x sin x2+C,则∫xf(x2)dx=A.x cos x2+CB.xsin x2+CC.x2sin x4+CD.x2cos x4+C正确答案:C解析:由∫f(x)dx=x sin x2+C,两边关于x求导得f(x)=sin x2+2x2+cos x2,进一步可知∫xf(x)2dx的导数为xf(x)2=x(sinx4+2x4 cosx2),只需要将四个选项中的函数分别求导即可确定选项C正确。
3.下列各平面中,与平面x+2y一3z=6垂直的是A.2x+4y一6z=1B.2x+4y一6z=12C.=1D.一x+2y+z=1正确答案:D解析:由平面方程x+2y一3z=6可知该平面的法向量为(1,2,一3)。
由两平面垂直的条件是它们的法向量互相垂直,从而对应法向量内积为零。
不难验证四个选项中只有选项D所表示平面的法向量(一1,2,1)与(1,2,一3)内积为零,故选项D正确。
4.有些列关于数项级数的命题(1)若≠0,则必发散;(2)若un≥0,un≥un+1(n=1,2,3,…)且必收敛;(3)若收敛,则必收敛;(4)若收敛于s,则任意改变该级数项的位置所得到的新的级数仍收敛于s.其中正确的命题个数为A.0B.1C.2D.3正确答案:B解析:由级数收敛的必要条件,即若级数un收敛,则=0,逆否命题为若≠0,则级数必发散。
单招语文试卷(答案) (4)
全国单独考试招生文化考试语文试题卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各句中,没有语病的一句是()A.西藏人民能有今天的幸福生活,靠的是党的正确领导和勤劳智慧的各族人民的共同奋斗所取得的。
B.法院日前审理了一起因一句口角引起的家庭命案。
人们都为这家人为老不尊、为幼不敬的行为所不齿。
C.如果能进行认真的反思和探索,并付出加倍的努力,中国足球一定能够走出低谷,进而冲出亚洲,走向世界。
D.近日,国家林业局发出紧急通知,严禁一切猎捕、出售、收购果子狸和其他野生动物。
2.依次在下列各句横线处填入词语,最恰当的一组是()①大家打心里佩服力排众议重用张经理的林厂长,连张经理的前任王平都对林厂长赞不_____绝口,说他不愧是“历任厂长中最善于发现千里马的伯乐”。
②虽然存在很多分歧,也发生了不少争论,但在几个主要的原则性问题上,我们的看法是_____相同的。
③表哥昨天打电话_____我,他最近搬了家,新家就在我们学校附近的“怡心园”小区,约我们本周末到他的新居聚一聚。
④面对艰苦的生活环境和严格的工作要求,几个年轻人没有丝毫的_____,他们平和自信,勇敢坚强,活出了一份青春潇洒。
A.实在大概告诉怨恨 B.实在大致通告埋怨C.确实大概通告怨恨 D.确实大致告诉埋怨3.下列各组词语中,没有错别字的一组是()A.座落喝采继往不咎鬼鬼祟祟B.肖像永诀趋之若鹜寥若晨星C.渲染惦量按部就班沧海桑田D.籍贯翔实无是生非带罪立功4、下列《祖国啊,我亲爱的祖国》的意象中,展现贫穷落后的历史面貌给予祖国沉重负载的是( )A.淤滩上的驳船B.神话的蛛网C.雪被下古莲的胚芽D.飞天袖间的花朵5、下列《婴宁》所提到的行为方式中,体现了婴宁反抗礼法束缚的是( )A.见人辄笑B.矢不复笑C.笑须有时D.笑处嫣然6. 与“涕泗横流”的“涕”意义相同的一项是()A.蒋氏大戚,汪然出涕曰B.士皆垂泪涕泣C.临表涕零,不知所言D.目泪下,鼻涕长一尺7.与“徒劳无功”的“徒”意义相同的一项是()A.郯子之徒,其贤不及孔子B.强秦之所以不敢加兵于赵者,徒以吾两人在也C.秦城恐不可得,徒见欺D.免冠徒跣,以头抢地8.下面各句中,标点符号使用错误的一项是( )A.一只鸟儿失去了翅膀,是多么可怜的事情.B.叶圣陶老先生说:“教是为了达到不教”.C.春真的已去了,触景生情,我心绪飘逸,引起一阵阵迟暮萧索之感.D.河北男子英武刚烈,但决不虚妄张扬;老实本分,但决不委琐窝囊.9.对下面句子的句式依次判断正确的一项是( )①我来自唐山.②上课了,快跑!③你是哪个班的④石家庄的天气真热啊!A. 陈述句感叹句判断句祈使句B. 判断句感叹句陈述句祈使句C. 陈述句祈使句疑问句感叹句D. 判断句祈使句疑问句感叹句10.下面句子按要求变换句式有错的一项是( )A.老师批评了张伟的这种不文明行为.改成被动句:张伟的这种不文明行为被老师批评了.B.请把你的书借给我用一下.改成疑问句:你的书能借给我用一下吗C.这条小河在夏天特别美丽.改成感叹句:这条小河在夏天太美丽啦!D.这份考卷很容易.改成否定句:这份考卷不好答.11、下列各句中,加点熟语使用恰当的一句是:()A、为了纪念“邓小平诞生一百周年”,新落成的“小平故居”于2003年“十.一”向游人开放,前往参观的人不绝如缕。
2022年浙江省宁波市中考数学真题(含答案)
2022年浙江省宁波市中考数学真题一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣2022的相反数是()A.2022B.﹣C.﹣2022D.2.下列计算正确的是()A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3•a=a43.据国家医保局最新消息,全国统一的医保信息平台已全面建成,在全国31个省份和新围生产建设兵团全域上线,为1360000000参保人提供医保服务,医保信息化标准化取得里程碑式突破.数1360000000用科学记数法表示为()A.1.36×107B.13.6×108C.1.36×109D.0.136×1010 4.如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.5.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:这14天中,小宁体温的众数和中位数分别为()A.36.5℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃6.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为()A.36πcm2B.24πcm2C.16πcm2D.12πcm27.如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.B.3C.D.48.我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十,今有米在十斗桶中,不知其数.满中添粟而春之,得米七斗.问故米几何?“意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少,再向桶中加满谷子,再春成米,共得米7斗,问原来有米多少斗?如果设原来有米x斗,向桶中加谷子y 斗,那么可列方程组为()A.B.C.D.9.点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1<y2,则m的取值范围为()A.m>2B.m>C.m<1D.<m<2 10.将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出()A.正方形纸片的面积B.四边形EFGH的面积C.△BEF的面积D.△AEH的面积二、填空题(每小题5分,共30分)11.请写出一个大于2的无理数:.12.分解因式:x2﹣2x+1=.13.一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.14.定义一种新运算:对于任意的非零实数a,b,a⊗b=+.若(x+1)⊗ x=,则x的值为.15.如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为.16.如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图象上,BE⊥x轴于点E. 若DC的延长线交x轴于点F,当矩形OABC的面积为时,的值为,点F的坐标为.三、解答题(本大题有8小题,共80分)17.(1)计算:(x+1)(x﹣1)+x(2﹣x);(2)解不等式组:.18.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.19.如图,正比例函数y=﹣x的图象与反比例函数y=(k≠0)的图象都经过点A(a,2).(1)求点A的坐标和反比例函数表达式;(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.21.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长.(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系,每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?23.【基础巩固】(1)如图1,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF交DE于点G,求证:DG=EG【尝试应用】(2)如图2,在(1)的条件下,连结CD,CG.若CG⊥DE,CD=6,AE=3,求的值. 【拓展提高】(3)如图3,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.24.如图1,⊙O为锐角三角形ABC的外接圆,点D在上,AD交BC于点E,点F在AE 上,满足∠AFB﹣∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连结BD,DG.设∠ACB=α. (1)用含α的代数式表示∠BFD.(2)求证:△BDE≌△FDG.(3)如图2,AD为⊙O的直径.①当的长为2时,求的长.②当OF:OE=4:11时,求cosα的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题下列每小题给出的四个选项中,只有一项符合题目要求.1.设f(x)是连续函数,F(x)是f(x)的原函数,则______.A.当f(x)是奇函数时,F(x)必是偶函数B.当f(x)是偶函数时,F(x)必是奇函数C.当f(x)是周期函数时,F(x)必是周期函数D.当f(x)是单调增函数时,F(x)必是单调增函数2.已知=0,其中a,b是常数,则______.A.a=1,b=1 B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-13.当x→0时,x-sinx是x2的{______.A.低阶无穷小B.高阶无穷小C.等价无穷小D.同阶但非等价的无穷小4.设f(x)=则在点x=1处函数f(x)______.A.不连续B.连续,但不可导C.可导,但导数不连续D.可导,且导数连续5.设f(x)和φ(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则______.A.φ[f(x)]必有间断点B.[φ(x)]2必有间断点C.f[φ(x)]必有间断点D.必有间断点6.设函数y=f(x)具有二阶导数,且f'(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则______.A.0<dy<△y B.0<△y<dyC.△y<dy<0 D.dy<△y<07.设A是任-n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=______.A.kA* B.k n-1A* C.k n A* D.k-1A*8.设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是______.A.λ1≠0 B.λ2≠0 C.λ1=0 D.λ2=0二、填空题9.______.10.曲线在t=2处的切线方程为______.11.______.12.设矩阵A=,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.13.设3阶矩阵A的特征值λ是2,3.若行列式|2A|=-48,则λ=______.14.微分方程yy'+y'2=0满足初始条件y|x=0=1,y'|x=0=的特解是______.三、解答题15.求16.计算17.设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4).若对任意的x 都满足f(x)=kf(x+2),其中k为常数.(1) 写出f(x)在[-2,0]上的表达式.(2)问k为何值时,f(x)在x=0处可导.18.设ρ=ρ(x)是抛物线y=上任一点M(x,y)(x≥1)的曲率半径,S=S(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值(在直角坐标系下曲率公式为k=19.计算20.已知函数z=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2.求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值.21.设矩阵A=,矩阵X满足A*X=A-1+2X.其中A*是A的伴随矩阵.求矩阵X.22.已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.问:(1) a,b取何值时,β不能由α1,α2,α3线性表示?(2) a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式。
23.设,A=αβT,B=βTα,其中βT是β的转置.求解方程2B2A2x=A4x+B4x+γ.24.设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.参考答案与解析一、选择题1.[考点提示] 原函数.[解题分析] 由已知f(x)是连续函数,则(t)dt是f(x)的一个原函数,从而f(x)的任一原函数F(x)可表示为(t)dt+C,即F(x)=(t)dt+C,其中C为任意常数,且有当f(x)是奇函数时,即F(x)为偶函数,A成立.当f(x)是偶函数时,所以B不成立.关于选项C,D可举反例予以排除,如令f(x)=1+cosx,则周期为2π,F(x)=x+sinx+C不是周期函数.又令f(x)=x,为单调增函数,但不是单调函数.综上,选A.2.[考点提示] 极限中常数的确定.[解题分析] 由于是有1-a=0,a+b=0,得a=1,b=-1.故应选C.3.[考点提示] 根据的值进行判断即可.[解题分析] 因为故应选B.4.[考点提示] 函数的连续性.[解题分析] 因为而可见f(x)在x=1处不连续,应选A.5.[考点提示] 间断点的判定.[解题分析] 用反证法.设无间断点,即连续,又已知f(x)连续,于是·f(x=一φ(x)连续.这与题设矛盾,故应选D.[评注] 本题也可举反例用排除法判定:设f(x)=1,φ(x)=,则有φ[f(x)]=1,[φ(x)]2=1,f[φ(x)]=1,都处处连续,可排除A,B,C,知应选D.6.[考点提示] 凹函数的性质.[解题分析] 由已知条件知,曲线y=f(x)单调上升且是凹的,根据凹函数的性质,有f(x0+△x)>f(x0)+f'(x0)△x(△x≠0),从而f(x0+△x)-f(x0)>f'(x0)△x>0(△x>0),所以△y>dy>0(△x>0).故选A.7.[考点提示] 伴随矩阵A*的定义.[解题分析] 题设未给出A-1存在的条件,所以公式A*=|A|A-1不可直接应用.但由题意知结论对A可逆应该也成立,即假没A可逆,则从而知只有B成立.题设中k≠0,±1的条件是为保证正确选项的唯一性.严格的做法是由伴随矩阵的定义出发,设A=(a ij),a ij的代数余子式为A ij,则A*=(A ij)T.令kA=(ka ij),ka ij 的代数余子式记为B ij,则B ij=k n-1A ij.因此(kA)*=(B ij)T=(k n-1A ij)T=k n-1(A ij)T=k n-1A*.8.[考点提示] 特征值与特征向量.[解题分析] 根据特征值特征向量的定义,有A(α1+α2)=Aα1+Aα2=λ1α1+λ2α2,α1,A(α1+α1)线性无关k1α1+k2A(α1+α2)=0.k1,k2恒为0(k1+λ1k2)α1+λ2k2α2=0,k1,k2恒为0.所以k1,k2恒为0.而齐次方程组只有零解所以选B.二、填空题9.[考点提示] 函数求极限.[解题分析][评注] 一般地,若a>0,b>0,则10.[考点提示] 曲线的切线方程.[解题分析] 按照参数方程求导得切线斜率,代入点斜式即得切线方程.当t=2时,x0=5,y0=8,且可知过曲线上对应于t=2处的切线斜率为3,切点为点(5,8).因此切线方程为y-8=3(x-5),即3x-y-7=0.11.[考点提示] 不定积分.[解题分析] 被积函数为幂函数与指数函数的乘积,因此采用分部积分法,将幂函数看作u.[评注] 此题为明了起见,也可以先令x2=t,原式化为后,再分部积分.12.[考点提示] 行列式、矩阵的计算.[解题分析] 由已知BA=B+2E,有B(A-E)=2E,两边取行列式,得|B|·|A-E|=4.因为|A-E|==2,所以|B|=2.13.[考点提示] 矩阵的特征值及其与矩阵的行列式之间的关系.[解题分析] 因为矩阵的行列式等于它所有特征值的积,且|2A|=23|A|=-48,所以23|A|=23×λ×2×3=-48,则λ=-1.14.[考点提示] 二阶微分方程.[解题分析] 由题设,令y'=u,则y"=代入原方程,得由初始条件知u≠0,所以化为+u=0.分离变量得两边积分得lnu=lnC-lny.由已知y=1时,u=,可解得C=于是lnu=ln,即u=.将y'=u代入上式,有,分离变量并积分得y2=c+C1.由初始条件x=0,y=1,解得C1=1,所以y2=x+1.此即所求特解.三、解答题15.[考点提示] 函数求极限.[解题分析][评注] 注意本题x为负,因此分子分母同除以x时,将x放入根式内应小心符号.16.[考点提示] 三角函数求极限.[解题分析] 本题为“1∞”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般地.若因为故原极限=e4.17.[考点提示] 分段函数、导数的定义.[解题分析] 由题设,f(x)=x(x2-4),x∈[0,2].当x∈[-2,0)时,x+2∈[0,2),则由f(x)=kf(x+2)知f(x)=kf(x+2)=k(x+2)[(x+2)2-4]=k(x+2)(x2+4x)=kx(x+2)(x+4),x∈[-2,0).由导数定义及f(0)=0.有令f'(0+)=f'(0-),则k=-.所以当k=-时,f(x)在x=0处可导.18.[考点提示] 曲率、弧长公式、参数方程求导.[解题分析] 由题设,且抛物线在点M(x,y)处的曲率半径为抛物线上的弧长为因此得到ρ(x)与S(x)都是x的函数,从而由知且因此19.[考点提示] 本题主要考查三角函数有理式不定积分的计算技巧和方法,由于三角函数的变形公式非常多,相应地,本题也有多种解法.[解题分析][详解1] 分子、分母同乘以某一三角函数.[详解2] 用万能代换.今t=tan则sinx=cosx=x=2arctant,dx=于是[详解3] 用半角公式.[详解4] 用半角公式.[评注] 不定积分的最后结果表达式,采用不同的计算方法可能在形式上不完全一致,这是正常的.最后结果是否正确只需对其求导即可验证.若求导后等于被积函数,说明一定是正确的.20.[考点提示] 多元函数的最值.[解题分析](1) 求f(x,y)的表达式.由已知有dx=dx2-dy2=d(x2-y2)z=x2-y2+C.又因为f(1.1)=2,所以C=2,从而z=f(x,y)=x2-y2+2.(2) 求f(x,y)在D内驻点及相应函数值.解得(x,y)=(0,0),即f(x,y)在D内有唯一驻点(0,0),且f(0,0)=2.(3) 求f(x,y)在D的边界y2=4(1-x2)上的最大值和最小值.将y2=4(1-x2)(|x|≤1)代入z=x2-y2+2,得z(x)=x2-4(1-x2)+2=5x2-2.显然,z(x)在[-1,1]上的最大值为3,最小值为-2.综上所述,z=f(x,y)在D上的最大值是max{2,3,-2}=3,最小值是min{2,3,-2}=-2.21.[考点提示] 矩阵方程.[解题分析] 根据已知A*X=A-1+2X,得(A*-2E)X=A-1,由A左乘该式,并利用公式A*=|A|A-1,则得(|A|E-2A)X=E,其中从而因此22.[考点提示] 线性代数方程组解的性质.[解题分析] 向量β能否由α1,α2,α3线性表示,实质上等价于下述方程组有解或无解的问题:Ax=β,其中从而相应的增广矩阵为利用初等行变换,将B化为阶梯形如下(1) 当b≠2时,r(A)<r(B),此时方程组Ax=β无解,即β不能由α1,α2,α3线性表示.(2) 当b=2,a≠1时,r(A)=r(B)且r(A)=3,此时方程组Ax=β有唯一解,且相应的行简化阶梯形为因此该唯一解为x=因此β可由α1,α2,α3唯一表示为β=-α1+2α2.当b=2,a=1时,r(A)=r(B)且r(A)=2<3,此时方程组Ax=β有无穷解,相应的行简化阶梯形为其导出组的基础解系为(-3,3,1)T,原方程组特解为(-1,2,0)T,则通解为C(-3,3,1)T+(-1,2,0)T,其中C为任意常数.此时β可由α1,α2,α3表示为β=-(3C+1)α1+(3C+2)α2+cα3.23.[考点提示] 矩阵方程.[解题分析] 由题设,不难求得而 A2=(αβT)(αβT)=α(βTα)βT=αβT=2A,则A4=4A2=8A.由此可将原矩阵方程化简为16Ax=8Ax+16x+γ,即8(A-2E)x=γ,其中E为三阶单位矩阵.令x=(x1,x2,x3)T,代入上式,得此方程组的增方矩阵为经由初等行变换化为行简化阶梯形为则导出组的基础解系为而原方程组有特解所以其中C为任意常数.24.[考点提示] 矩阵对角化、相似矩阵.[解题分析] 由题设,A=,则|A-λE|=0,即其行列式可得出(λ-2)(λ2-8λ+18+3a)=0.若λ=2是特征方程的二重根,则22-8·2+18+3a=0,解之得a=-2,此时λ1=λ2=2,λ3=6,且A-2E=.显然r(A-2E)=1,所以对应特征值2有两个线性无关的特征向量,因此A可相似对角化.若λ=2不是特征方程的二重根,则λ2-8λ+18+3a=0有二重根,即64-4(18+3a)=0,解之得a=-.此时λ1=2,λ2=λ3=4,且显然r(A-4E)=2,所以对应于特征值4只有一个线性无关的特征向量,所以A不可相似对角化.。