山西省2019中考信息技术试题:第3题 平行四边形
2019年山西省中考数学试题及答案(Word版)改进
2019年山西中考数学试题(美化WODR 版)第Ⅰ卷 选择题(共24分)一.选择题 (本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.计算2×(-3)的结果是( )A. 6B. -6C. -1D. 5 2.不等式组的解集在数轴上表示为( )3.如图是一个长方体包装盒,则它的平面展开图是( )4.某班实行每周量化考核制学期末对考核成绩进行统计,结果显示甲、乙的平均成绩相同,方差是甲362=甲s ,302=乙s ,则两组成绩的稳定性:( )A.甲组比乙组的成绩稳定;B. 乙组比甲组的成绩稳定;C. 甲、乙组成绩一样稳定;D.无法确定。
5.下列计算错误的是( )A .3332x x x =+ B.236a a a =÷ C.3212= D.3311=⎪⎭⎫⎝⎛-6.解分式方程31212=-++-xx x 时,去分母后变形为( ) A.2+(x+2)=3(x-1); B.2-x+2=3(x-1); C.2-(x+2)=3(1-x); D.2-(x+2)=3(x-1).该日最高气温的众数和中位数分别是( )A.27ºC ,28ºC ;B.28ºC ,28ºC ;C. 27ºC ,27ºC ,D. 29ºC ,29ºC 。
8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )条。
A. 1B. 2C.4D. 8.9.王先生先到银行存了一笔三年的定期存款,年利率是4.25%,如果到期后取出的本息和(本金+利息)为33825元,设王先生存入的本金为x 元,则下面所列方程正确的是( )A.x+3×4.25%=33825;B.x+4.25%x=33825;C. 3×4.25%x=33825;D.3(x+4.25%x )=33825.10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上),为了测量B 、C 两地之间的距离,某工程队乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的仰角为30º,则BC 两地间的距离为( )m 。
2019年山西省中考数学试卷-答案
山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a = ,故C 错误;D 、2336()ab a b -=-,故D 正确.故选:D . 【考点】整式的运算. 3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B . 【考点】正方体的展开与折叠. 4.【答案】D【解析】A =,本选项不合题意;B =C =意;D 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C . 【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D . 【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -= ,∴26675a =-∴抛物线解析式为:226675y x =-,故选B . 【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tanBC CAB AB ∠===,∴30CAB ∠=︒ 260BOD CAB ∠=∠=︒在Rt ODE △中:12OE OD ==,32DE == ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒211360π2π2223602︒=⨯--⨯⨯=-︒故选A .【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题 11.【答案】31xx - 【解析】22311111x x x x xx x x x x -=+=-----. 【考点】分式的化简. 12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图. 【考点】统计图的选择.13.【答案】(12)(8)77x x --=或220190x +-=【解析】由题可知:(12)(8)77x x --=,化简得220190x +-= 【考点】一元二次方程解应用题. 14.【答案】16【解析】过点D 作DE AB ⊥于点E ,则5AD =,∵四边形ABCD 为菱形, ∴5CD =∴(4,4)C ,将C 代入k y x =得:44k=, ∴16k =.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A 作AG DE ⊥于点G ,由旋转知:AD AE =,90DAE ∠=︒,15CAE BAD ∠=∠=︒ ∴45AED ∠=︒在AEF △中:60AFD AED CAE ∠=∠+∠=︒在Rt ADG △中:AG DG ==在Rt AFG △中:GF ==,2AF FG ==∴10CF AC AF =-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数. 三、解答题16.【答案】(1)(1)原式415=+-+= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【解析】(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组. 17.【答案】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【解析】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【考点】平行线的性质,全等三角形的判定与性质. 18.【答案】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【解析】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【考点】统计与概率.19.【答案】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【解析】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【考点】一次函数的应用. 20.【答案】任务一:5.5 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形 ∴ 1.5EH AC ==, 5.5CD AB == 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN = ,∴2()()R r R d R d =+- ∴222R d R r -= ,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d = 【解析】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN = ,∴2()()R r R d R d =+- ∴222R d R r -= ,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d =【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯= △ ∵3396442BCD AOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB = ∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+= △△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫ ⎪⎝⎭, ∴N 1,N 2的纵坐标为154 233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M ∴N 3,N 4的纵坐标为154- 233156424x x -++=-,11x =,21x =可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M 以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解, ∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M . 【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数表达式为233642y x x =-++. (2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F .∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯= △ ∵3396442BCD AOC S S ==⨯=△△设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+. ∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB = ∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+= △△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭∴239622m m -+= 解得1= 1m (舍去),2 3m =,∴m 的值为3.(3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫ ⎪⎝⎭, ∴N 1,N 2的纵坐标为154 233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M ∴N 3,N 4的纵坐标为154- 233156424x x -++=-,11x =,21x =可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M 以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解, ∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M . 【考点】二次函数的图象与性质.。
2019最新山西中考数学考试试题及知识点解析
2019年山西省初中学业水平考试数学(满分120分,考试时间120分钟)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(2019山西,1题,3分) -3的绝对值是( )A.-3B.3C.13D.13【答案】B【解析】负数的绝对值是它的相反数,∴|-3|=3,故选B.【知识点】绝对值2.(2019山西,2题,3分)下列运算正确的是( )A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2·a3=a6D.(-ab2)3=-a3b6【答案】D【解析】A.2a+3a=5a,故A错误;B.(a+2b)2=a2+2ab+4b2,故B错误;C.a2·a3=a5,故C错误;D.(-ab2)3=-a3b6,正确,故选D.【知识点】合并同类项,同底数幂的乘法,积的乘方,幂的乘方,完全平方公式3.(2019山西,3题,3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与"点"字所在面相对的面上的汉字是( )A.青B.春C.梦D.想第3题图【答案】B【解析】根据正方体的展开与折叠中面的关系,可知与"点"字所在面相对的面上的汉字是春,故选B.【知识点】展开与折叠4.(2019山西,4题,3分)下列二次根式是最简二次根式的是( )【答案】D【解析】最简二次根式的根号内不能含有分母,不能含有可开的尽方的因数,故选D.【知识点】最简二次根式5.(2019山西,5题,3分) 如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )A.30°B.35°C.40°D.45°第5题图【答案】C【解析】△ABC中,AB=AC,∠A=30°,∴∠B=75°,∵∠1=145°,∴∠FDB=35°过点B作BG∥a∥b,∴∠FDB=∠DBG,∠2=∠CBG,∵∠B=∠ABG+∠CBG,∴∠2=40°,故选C第5题答图【知识点】等腰三角形,三角形内角和,平行线的性质6.(2019山西,6题,3分)不等式组13224xx->⎧⎨-<⎩的解集是( )A.x>4B.x>-1C.-1<x<4D.x<-1【答案】A【解析】解不等式①得x>4,解不等式②得x>-1,∴原不等式组的解集是x>4,故选A.【知识点】解不等式组7.(2019山西,7题,3分)五台山景区空气清爽,景色宜人."五一"小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,"五一"小长假期间五台山景区进山门票总收入用科学记数法表示为( )A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元【答案】C【解析】120000×168=20160000=2.016×107,故选C【知识点】科学记数法8.(2019山西,8题,3分)一元二次方程x2-4x-1=0配方后可化为( )A.(x+2)2=3B.(x+2)2=5C.(x-2)2=3D.(x-2)2=5【答案】D【解析】原方程可化为:x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选D.【知识点】配方法9.(2019山西,9题,3分)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米,(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则次抛物线型钢拱的函数表达式为( )A.y =26675x 2 B.y =26675-x 2 C.y =131350x 2 D.y =131350-x 2第9题图 【答案】B【解析】设二次函数表达式为y =ax 2,由题可知,点A 坐标为(-45,-78),代入表达式可得:-78=a(-45)2,解得a =26675-,∴二次函数表达式为y =26675-x 2,故选B. 【知识点】二次函数的应用10.(2019山西,10题,3分)如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为( )2π- 2πC.πD.2π第10题图【答案】A【思路分析】根据三角形的边的关系求出角度,在圆中求出扇形圆心角,阴影部分就是△ABC 的面积减去△AOD的面积和扇形BOD 的面积,分别算出各图形的面积,即可得到结果.【解题过程】在Rt △ABC 中,连接OD,∠ABC =90°,AB ==2,∴∠A =30°,∠DOB =60°,过点D 作DE⊥AB 于点E,∵AB =∴AO =OD ∴DE =32,∴S 阴影=S △ABC -S △AOD -S扇形BOD =-2π=2π-,故选A.第10题答图【知识点】三角函数,三角形面积,扇形面积二、填空题:本大题共5小题,满分15分,只填写最后结果,每小题填对得3分.11.(2019山西,11题,3分)化简211x xx x---的结果是________.【答案】31 x x-【解析】2231111 x x x x x x x x x+-==----【知识点】分式化简12.(2019山西,12题,3分)要表示一个家庭一年用于"教育","服装","食品","其他"这四项的支出各占家庭本年总支出的百分比,从"扇形统计图","条形统计图","折线统计图"中选择一种统计图,最适合的统计图是________.【答案】扇形统计图【解析】∵要表示四项支出各占家庭本年总支出的百分比,∴用扇形统计图最适合.【知识点】统计图的选择13.(2019山西,13题,3分)如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积为77m2,设道路的宽为x m,则根据题意,可列方程为________.第13题图【答案】(12-x)(8-x)=77【解析】栽种花草的部分可以看成一个矩形,长为(12-x)m,宽为(8-x)m,根据面积等量关系可列方程(12-x)(8-x)=77.【知识点】一元二次方程的应用14.(2019山西,14题,3分)如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A的坐标为(-4,0),点D的坐标为(-1,4),反比例函数y=kx(x>0)的图象恰好经过点C,则k的值为________.第14题图【答案】16【解析】分别过点D,C作x轴的垂线,垂足为E,F,则AD=5,∴AB=CB=5,∴B(1,0),由△DAE≌△CBF,可得BF=AE=3,CF=DE=4,∴C(4,4),∴k=xy=16.第14题答图【知识点】菱形性质,勾股定理,反比例函数15.(2019山西,15题,3分)如图,在△ABC 中,∠BAC =90°,AB =AC =10cm,点D 为△ABC 内一点,∠BAD =15°,AD =6cm,连接BD,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E,连接DE,DE 交AC 于点F,则CF 的长为________cm.第15题图 【答案】10-26【思路分析】由旋转得到对应边相等,在△ADF 中,构造直角三角形,利用三角函数,求得AF 的长度,进而求得FC. 【解题过程】∵∠BAC =90°,∠BAD =15°,∴∠DAF =75°由旋转可知,∠ADF =45°,过点A 作AM ⊥DF 于点M,∴AM =22AD =32,∴AF =233AM =26,∵AC =AB =10,∴FC =AC -AF =10-26第15题答图【知识点】图形的旋转,三角函数三、解答题:本大题共8小题,满分75分,要写出必要的文字说明、证明过程或演算步骤.16.(2019山西,16题,5分)(1)计算:()201273tan 6022π-⎛⎫+--+- ⎪⎝⎭(2)解方程组:32820x y x y -=-⎧⎨+=⎩【思路分析】(1)按照实数的运算法则进行计算;(2)运用加减消元法或代入消元法进行解方程. 【解题过程】(1)原式=334331=5+-+; (2)32820x y x y -=-⎧⎨+=⎩①②,①+②,得:3x+x =-8+0,∴4x =-8,x =-2,把x =-2代入②,得-2+2y =0,∴y =1,∴,原M方程组的解为:21 xy=-⎧⎨=⎩.【知识点】二次根式的化简,负指数幂,特殊角的三角函数值,零指数幂,加减消元法解二元一次方程组17.(2019山西,17题,5分)已知,如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F,求证:BC=DF.第17题图【思路分析】由平行得到角相等,再处理条件AD=BE,得到全等三角形,进而得到BC=DF.【解题过程】∵AD=BE,∴AD-BD=BE-BD,∴AB=DE,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,∠C=∠F,∠A=∠E,AB=ED,∴△ABC≌△EDF,∴BC=DF.【知识点】平行线的性质,三角形全等18.(2019山西,18题,8分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲,乙两班分别招募10人作为颁奖礼仪志愿者,同学们勇跃报名,甲,乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲,乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被用(只写判断结果,不必写理由).(2)请你对甲,乙两班各被录用的10名志愿者的成票作出评价(从"众数","中位数"或"平均数"中的一个方面评价即可).(3)甲乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行频奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好,志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是"A"和"B"的概率.第18题图【思路分析】(1)观察统计图,可判断两人是否在前10名,即可做出判断;(2)根据"众数","中位数"和"平均数"的特点,进行评价;(3)列表列举出所有的结果,计算概率即可.【解题过程】(1)小华:不能被录用,小丽:能被录用.(2)从众数来看:甲,乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多.从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数.从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.由列表可知,一共有12种可能出现的结果,且每种结果出现的可能性相同,其中,抽到"A"和"B"的结果有2种,∴,P(抽到"A"和"B")=21= 126【知识点】众数,中位数,平均数,列表法,求概率19.(2019山西,19题,8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.【思路分析】(1)根据两种方式的描述即可得到表达式;(2)令y1<y2,即可解得x的范围.【解题过程】(1)y1=30x+200,y2=40x(2)由y1<y2,得30x+300<40x,解之,得x>20,当x>20时,选择方式一比方式二省钱.【知识点】一次函数的应用20.(2019山西,20题,8分)某"综合与实践"小组开展了测量本校旗杆高度的实践活动.他们制定了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取他们的平均值作为测量结果,测量数据如下表(不完整).任务一:两次测量A,B之间的距离的平均值是______m.任务二:根据以上测量结果,请你帮助该"综合与实践"小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该"综合与实践"小组在制定方案时,讨论过"利用物体在阳光下的影子测量旗杆的高度"的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)【思路分析】任务一:根据平均数的计算方法求值即可;任务二:设出旗杆高度,表示出CE,DE的长度,得到方程,即可解得;任务三:根据实际情况分析原因.【解题过程】任务一:平均值=(5.4+5.6)÷2=5.5m任务二:由题意可得,四边形ACDB,ACEH都是矩形,∴EH=AC=1.5,CD=AB=5.5,设EG=xm,在Rt△DEG中,∠DEG=90°,∠GDE=31°,∵tan31°=EGDE,∴DE=tan31x,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=EGCE,∴CE=tan25.7x,∵CD=CE-DE,∴tan25.7x-tan31x=5.5,∴x=13.2,∴GH=GE+EH=13.2+1.5=14.7.答:旗杆GH的高度为14.7m.任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.【知识点】三角函数的应用21.(2019山西,21题,10分)阅读以下材料,并按要求完成相应的任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则22=2OI R Rr.如图1, O和 I分别是△ABC的外接圆和内切圆, I与AB相切于点F,设 O的半径为R, I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有22=2d R Rr.下面是该定理的证明过程(部分):延长AI交 O于点D,过点I作 O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),∴△MDI ∽△ANI.∴IM IDIA IN.∴IA ID IM IN . ① 如图2,在图1(隐去MD,AN )的基础上作 O 的直径DE,连接BE,BD,BI,IF.∵DE 是 O 的直径,∴∠DBE =90°.∵ I 与AB 相切于点F,∴∠AFI =90°,∴∠DBE =∠IFA. ∵∠BAD =∠E (同弧所对的圆周角相等),∴△AIF ∽△EDB. ∴IA IFDE BD.∴IA BD DE IF . ② …… 任务:(1)观察发现:IM =R+r,IN =_____(用含R,d 的代数式表示); (2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分; (4)应用:若△ABC 的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC 的外心与内心之间的距离为___cm第21题图【思路分析】(1)MN 是直径,根据内切圆与外接圆半径与它的关系得到IN 的代数式(2)由内切圆是三角形三条角平分线的交点,转化相等的角,再利用同弧所对的圆周角相等转化角,最后得到∠BID =∠DBI,利用等角对等边得证(3)由材料得到的结论及任务(1)(2)等量代换得线段等积式,从而得证结论(4)根据结论直接应用求解. 【解题过程】(1)IN =R -d;(2)BD =ID.理由如下:∵点I 是△ABC 的内心,∴∠BAD =∠CAD,∠CBI =∠ABI,∵∠DBC =∠CAD,∠BID =∠BAD+∠ABI,∠DBI =∠DBC+∠CBI,∴∠BID =∠DBI,∴BD =ID; (3)由(2)知:BD =ID,∴IA IDDE IF ,又∵IA ID IM IN ,∴DE IFIM IN ,∴2R r R d R d ,∴222R d Rr ,∴222d R Rr ;(4)由222d R Rr 得222252525d R Rr ,∵d>0,∴5d .【知识点】三角形的内心,圆的对称性,等角对等边22.(2019山西,22题,8分)综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平,再沿过点C 的直线折叠,使点B,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N,且点E,点N,点F 三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3.第三步:在图3的基础上继续折叠,使点C 与点F 重合,得到图4,展开铺平,连接EF,FG,GM,ME,如图5.图中的虚线为折痕.第22题图 问题解决:(1)在图5中,∠BEC 的度数是_____,AEBE的值是_____; (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图5中的字母表示的点为顶点,动手画出....一个菱形(正方形除外),并写出这个菱形:_______.【思路分析】(1)通过折叠转化角相等,进而利用内角和求∠BEC 的度数,再利用45°三角函数解决线段的比值问题(2)根据第1问的提示,可以通过折叠求角的度数,进而得到四边形各内角的度数为90°,利用三个内角为90°的四边形是矩形进而可以判定四边形的形状是矩形(3)利用多次折叠可以得到很多相等的线段以及互相垂直的线段,可以利用四边相等的四边形是菱形或对角线互相垂直平分的四边形是菱形来得到符合条件的菱形.【解题过程】(1)∵正方形ABCD,∴∠ACB =45°,由折叠知:∠1=∠2=22.5°,∠BEC =∠CEN,BE =EN,∴∠BEC =90°-∠1=67.5°,∴∠AEN =180°-∠BEC -∠CEN =45°,∴cos45°=2EN AE ,2AE EN,2AE AE BE EN;(2)四边形EMGF 是矩形.理由如下:∵四边形ABCD 是正方形,∴∠B =∠BCD =∠D =90°,由折叠可知:∠1=∠2=∠3=∠4,CM =CG,∠BEC =∠NEC =∠NFC =∠DFC,∴∠1=∠2=∠3=∠4=°904=22.5°,∴∠BEC =∠NEC =∠NFC =∠DFC =67.5°,由折叠知:MH,GH 分别垂直平分EC,FC,∴MC =ME,GC =GF.∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF =∠GFE =90°.∵∠MCG =90°,CM =CG,∴∠CMG =45°,又∵∠BME =∠1+∠5=45°,∴∠EMG =180°-∠CMG -∠BME =90°,∴四边形EMGF 是矩形; (3)答案不唯一,画出正确的图形(一个即可).菱形FGCH (或菱形EMCH )第22题答图【知识点】折叠,三角形内角和,三角函数,矩形,菱形23.(2019山西,23题,8分)综合与探究如图,抛物线y =ax 2+bx+6经过点A (-2,0),B(4,0)两点,与y 轴交于点C.点D 是抛物线上一个动点,设点D 的横坐标为m(1<m<4).连接AC,BC,DB,DC. (1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.第23题图【思路分析】(1)将点A,B 的坐标代入表达式可得;(2)计算△AOC 的面积,用含m 的代数式表示出△BCD 的面积,得到方程,解得m 的值;(3)以BD 为边或对角线,通过解方程得到点M 的坐标.【解题过程】(1)∵抛物线y =ax 2+bx+6经过点A (-2,0),B(4,0)两点,∴426016460a b a b -+=⎧⎨++=⎩,解之,得:3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为:233642y x x =-++; (2)作直线DE ⊥x 轴于点E,交BC 于点G,作CF ⊥DE,垂足为点F,∵点A 的坐标为(-2,0),∴OA =2,由x =0,得y =6,∴点C 的坐标为(0,6),∴OC =6,∴S △AOC =12OA ·OC =6,∴S △BCD =34S △AOC =92.设直线BC 的函数表达式为y =kx+n,由B,C 两点的坐标得:406k n n +=⎧⎨=⎩,解之,得:326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为:y =-32x+6.∴点G 的坐标为(m,-32m+6),∴DG =233642m m -++-(-32m +6)=2334m m -+.∵点B 的坐标为(4,0),∴OB =4,∴S △BCD =S △CDG +S △BDG =2364m m -+.∴2364m m -+=92,解之,得m 1=3,m 2=1,∴m 的值为3.第23题答图(3)存在点M,其坐标为:M 1(8,0),M 2(0,0),M 34(【知识点】二次函数表达式,三角形面积,坐标运算,平行四边形的存在性。
2019年山西省中考数学试卷(中考真题)(PDF版含解析)
任务:(1)观察发现:IM=R+d,IN=
(用含 R,d 的代数式表示);
(2)请判断 BD 和 ID 的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定
理证明的剩余部分;
(4)应用:若△ABC 的外接圆的半径为 5cm,内切圆的半径为 2cm,则△ABC 的外心与内心之
(2)△BCD 的面积等于△AOC 的面积的 3 时,求 m 的值; 4
(3)在(2)的条件下,若点 M 是 x 轴上一动点,点 N 是抛物线上一动点,试判断是否存在这样的点 M,使得以点 B,D,M,N 为顶点的四边形是平行四边形.若存在,请直接写出点 M 的坐标;若不存在, 请说明理由.
山西省2019年高中阶段教育学校招生统一考试
D. y 13 x2 1350
10. 如图,在Rt△ABC中,∠ABC=90°,AB= 2 3 ,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交
AC于点D,则图中阴影部分的面积为( )
A. 5 3 42
B. 5 3 42
C. 2 3
D. 4 3 2
第 II 卷 非选择题(90 分)
数 学(解析)
第I卷 选择题(共30分)
一、选择题(本大题共10个小题,每小题3分,共30分,在每个小题给出的四个选项中,只有一项符合题目
要求,请选出并在答题卡上将该项涂黑)
1. -3的绝对值是( )
A.-3
B.3
C.- 1 3
D. 1 3
【考点】绝对值
【难度星级】★
【答案】B
【解析】 3 3 ,故选:B
2019年山西省中考试卷以及解析答案汇总(3科)
2019年山西省中考英语试卷听力部分(20分)笔试部分(共100分)一、单项选择(每小题1分,共10分)1.(1分)﹣﹣﹣New kinds of morning exercise like doing dancing are becoming popular.﹣﹣﹣_____ can help us keep fit and have fun.()A.We B.You C.They2.(1分)You can't decide whether or not you like something until you try it,_____it's important to try something new.()A.but B.or C.so3.(1分)﹣Parents should let children _____home and find more about the world.﹣After all,birds should fly freely in the sky.()A.leave B.enter C.reach4.(1分)When we read a piece of news online,we'd better make sure it's _____before sending it to others.If not,we may spread something bad.()A.true B.special C.strange5.(1分)To keep our city beautiful,the _____are always very busy in the streets.We shouldn't throw rubbish everywhere.()A.policemen B.cleaners C.drivers6.(1分)﹣﹣﹣Our motherland's 70th birthday is coming.﹣﹣﹣Great! We will hold many activities to celebrate it _____.()A.wisely B.warmly C.simply7.(1分)Fighting for your dream is like climbing a mountain.Whatever difficulties you meet,don't _____.Just move on.()A.set off B.come out C.give up8.(1分)Change the information you read into a mind map._____,you can remember it well and think of it later easily.()A.In this way B.At the same timeC.On the other hand9.(1分)﹣﹣﹣After the big exams,we can finally have a good relax.﹣﹣﹣How I _____a chance to have a chance to have a trip! I can't wait.()A.am worried about B.am thirsty forC.am good at10.(1分)﹣﹣﹣Some school have used smart uniforms.I wonder _____.﹣﹣﹣They can tell parents where their children are.()A.who invented themB.what they are used forC.when students wear them二、补全对话(每小题5分,共 5 分)下面是手机群聊的界面,请根据聊天内容,从方框内所给的选项中选出能填入空白处的最佳选项,并在答题卡上将该项涂黑.选项中有两项为多余项.11.(5分)Sports Lovers (3 persons)A:Hi,everyone.B:Hello.Li Li! (1)A:I'm watching the news of the 2nd National Youth Games.C:Such a big sports event in Shanxi!B:So it is.(2)A:Me,too.By the way,I'll watch the opening ceremony.(3)B:Of course.I won't miss it.C:@Li Li (4)I haven't got a ticket.A:What a pity!(5)C:I will.And I hope you can post(发布)some pictures here.A.When is it?B.I'm afraid not.C.You're welcome.D.What are you doing?E.Are you going to see it?F.I'm so proud of our hometown.G.But you can watch it on your phone.(1)(2)(3)(4)(5)三、完形填空(每小题8分,共8 分)请阅读下面短文,理解其大意,然后从每小题所给的A、B、C三个选项中,找出一个能填入空白处的最佳选项,并在答题卡上将该项涂黑.12.(8分)Grass is,of course a plant which grows in the field;a plant which some kinds of animals like to eat.When there has been plenty of (1),the grass is green.When the weather has been dry,the grass is brown.Animals like to eat grass when it is (2)and fresh.And if the grass in one place is greener than the rest,animals (3)to eat that grass.An animal in a field may look over the fence(篱笆)into the next field,where perhaps there are no animals and grass in the field (4)greener.But if the animal could get into the field,it would find that the grass is really the same.It just seems better from a distance(远处).So that's the (5)of the expression "The grass is greener on the other side of the fence."We sometimes only say "The grass is (6)greener on the other side." We use the expression to describe the situation ﹣﹣﹣someone looks at distant things and feels they are better than the things around him.But (7)he could go to the distant place,he would find that life there is just as difficult.So don't always think that other people have a better situation.Just be (8)with what you have had.Enjoy and value it!(1)A.rain B.snow C.sunlight(2)A.green B.brown C.yellow(3)A.refuse B.prefer C.agree(4)A.smells B.tastes C.looks(5)A.form B.meaning C.advice(6)A.seldom B.sometimes C.always(7)A.when B.because C.unless(8)A.angry B.strict C.happy四、阅读理解(共52 分)请阅读下面的海报,从每小题所给的A,B,C 三个选下中选出一个最佳选项,并在答题卡上将该选项涂黑.13.(10分)House fires often happened.So it appears necessary to learn something useful toprotect family from them.The following poster in the neighbourhood will tell you how to do it.Fire SafetyPut a smoke alarm in your house and test it every month.Half of all house fire deaths happen between 11 pm and 7 am.The risk of dying in a house fire is cut in half with working smoke alarms.Make sure your hearing aid,wheelchair or eyeglasses are next to your bed.Fire can spread throuh a house soon.You may have as little as two minutes to escape(逃离)safely.Be ready to act at once.Create a fire escape plan.77% of families don't have a house fire escape plan to follow.That's one of the reasons why at least one child dies and 293 children are injured in a house fire every day.Don't call 119 until you are safely outside.During a fire,the first thing to do is to get out of house as fast as you can.(1)makes the risk of dying in a house fire smaller.A.A smoke alarmB.A pair of eyeglassesC.A wheelchair(2)We may have only to escape from a house firm safely.A.half an hourB.2 minutesC.293 seconds(3)According to the poster,can help save you from a house fire.A.stopping the fire from spreadingB.making and following a plan to escapeC.keeping awake between 11 pm.and 7 am.(4)Call 119 for help.A.after you reach safelyB.as soon as you are ready to escapeC.when you find out what causes the house fire(5)The poster is put up in the neighborhood to help people learn to.A.plan their live as they wishB.save time as much as possibleC.protect themselves in a right way请阅读下面短文,从每小段所给的A、B、C三个选项中,选出一个最佳选项,并在答题卡上将该项涂黑。
山西省2019年中考数学试题含答案(word版)
山西省2019年中考数学试题含答案(word版)2019年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑。
)1.(2019·山西) 1的相反数是()A。
-1/6 B。
-6 C。
6 D。
-662.(2019·山西) 不等式组{2x<6,x≥-5}的解集是()A。
x>5 B。
x<3 C。
-5<x<3 D。
x<53.(2019·山西) 以下问题不适合全面调查的是()A。
调查某班学生每周课前预的时间 B。
调查某中学在职教师的身体健康状况 C。
调查全国中小学生课外阅读情况 D。
调查某篮球队员的身高4.(2019·山西) 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是(删除有问题的图片)5.(2019·山西) 我国计划在2020年左右发射火星探测卫星。
据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为()A。
5.5×10^6 B。
5.5×10^7 C。
55×10^6 D。
0.55×10^86.(2019·山西) 下列运算正确的是()A。
91/(425/2)^3=-(3/2)^3 B。
5-3÷(5-5)=undefined C。
3(3a^2)=9a^6 D。
8-50=-427.(2019·山西) 甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少kg货物。
设甲每小时搬运xkg货物,则可列方程为(删除有问题的公式)A。
5000/(x-600)=8000/x B。
2019年山西省中考数学试卷(详解版)
12下列运算正确的是(3某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与4下列二次根式是最简二次根式的是(5如图,在6不等式组7五台山景区空气清爽,景色宜人.8一元二次方程9北中环桥是省城太原的一座跨汾河大桥(如图10如图,在11化简12要表示一个家庭一年用于13如图,在一块长14如图,在平面直角坐标中,点15如图,在16请回答下列各题.17已知:如图,点18中华人民共和国第二届青年运动会(简称二青会)将于19某游泳馆推出了两种收费方式:20某答案解析(参考数据:,,,,,)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳,你认为其原因可能是什么?(写出一条即可)(3)(1)旗杆的高度为.(2)答案不唯一;没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.(3)有题意可得:四边形,四边形都是矩形,∴,.(1)设,在中:,,∵,∴,在中:,,∵,,∵,∴,∴,∴.答:旗杆的高度为.(2)答案不唯一;没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.(3)阅读以下材料,并按要求完成相应的任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在中,和分别为外接圆和内切圆的半径,和分别为其中外心和内心,则.21,设⊙的半径为,22综合与实践23如图,抛物线,,(舍去),可得,∴,∴,的纵坐标为,,,,可得,∴,可得,∴,以为对角线进行构图,有种情况,采用中点坐标公式进行求解.∵,∴,∴.。
山西省2019年中考数学试题(含解析)和答案
2019年山西省中考数学试卷一、选择题(本大题共10小题,共30分)1.-3的绝对值是()A. B. 3 C. D.2.下列运算正确的是()A. B.C. D.3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A. 青B. 春C. 梦D. 想4.下列二次根式是最简二次根式的是()A. B. C. D.5.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.B.C.D.6.不等式组的解集是()A. B. C. D.7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示()A. 元B. 元C. 元D. 元8.一元二次方程x2-4x-1=0配方后可化为()A. B. C. D.9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A. B. C. D.10.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A. B. C. D.二、填空题(本大题共5小题,共15分)11.化简-的结果是______.12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是______.13.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为______.14.如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(-4,0),点D的坐标为(-1,4),反比例函数y=(x>0)的图象恰好经过点C,则k的值为______.15.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为______cm.三、解答题(本大题共8小题,共75分)16.(1)计算:+(-)-2-3tan60°+(π-)0.(2)解方程组:17.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.18.中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E 在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数25.6°25.8°25.7°∠GDE的度数31.2°30.8°31°A,B之间的距离 5.4m 5.6m……任务一:两次测量A,B之间的距离的平均值是______m.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2-2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2-2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=______(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为______cm.22.综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是______,的值是______.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:______.23.综合与探究如图,抛物线y=ax2+bx+6经过点A(-2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:|-3|=3.故-3的绝对值是3.故选:B.根据绝对值的定义,-3的绝对值是指在数轴上表示-3的点到原点的距离,即可得到正确答案.本题考查的是绝对值的定义,抓住定义及相关知识点即可解决问题.2.【答案】D【解析】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(-ab2)3=-a3b6,正确.故选:D.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选:B.根据正方体展开z字型和L型找对面的方法即可求解;本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.4.【答案】D【解析】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.【答案】C【解析】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°,∴∠AED=∠2+∠ACB,∴∠2=115°-75°=40°,故选:C.先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.6.【答案】A【解析】解:,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选:A.首先求出不等式组中每一个不等式的解集,再求出其公共解集.此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.【答案】C【解析】解:120000×168=20160000=2.016×107,故选:C.科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】D【解析】解:x2-4x-1=0,x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.9.【答案】B【解析】解:设抛物线的解析式为:y=ax2,将B(45,-78)代入得:-78=a×452,解得:a=-,故此抛物线钢拱的函数表达式为:y=-x2.直接利用图象假设出抛物线解析式,进而得出答案.此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是解题关键.10.【答案】A【解析】解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tanA=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴阴影部分的面积是:=,故选:A.根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】【解析】解:原式=.故答案为:先把异分母转化成同分母,再把分子相减即可.此题考查了分式的加减运算,在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.12.【答案】扇形统计图【解析】解:要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.13.【答案】(12-x)(8-x)=77【解析】解:∵道路的宽应为x米,∴由题意得,(12-x)(8-x)=77,故答案为:(12-x)(8-x)=77.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.14.【答案】16【解析】解:过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(-4,0),D(-1,4),∴DF=CE=4,OF=1,AF=OA-OF=3,在Rt△ADF中,AD=,∴OE=EF-OF=5-1=4,∴C(4,4)∴k=4×4=16故答案为:16.要求k的值,求出点C坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k的值.本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相互转化也是解决问题重要方法.15.【答案】(10-2)【解析】解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3,在Rt△AFG中,GF==,AF=2FG=2,∴CF=AC-AF=10-2,故答案为:10-2.过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD=60°,利用锐角三角函数分别求出AG,GF,AF的长,即可求出CF=AC-AF=10-2.本题考查了旋转的性质,等腰直角三角形的性质,解直角三角形等,解题的关键是能够通过作适当的辅助线构造特殊的直角三角形,通过解直角三角形来解决问题.16.【答案】解:(1)原式=3+4-3+1=5;(2)①+②得,4x=-8,∴x=-2,把x=-2代入①得,-6-2y=-8,∴y=1,∴.【解析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.17.【答案】证明:∵AD=BE,∴AD-BD=BE-BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS),∴BC=DF.【解析】由已知得出AB=ED,由平行线的性质得出∠A=∠E,由AAS证明△ABC≌△EDF,即可得出结论.本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握平行线的性质,证明三角形全等是解题的关键.18.【答案】解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多;从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数;从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.(3)画树状图如下:由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A”和“B”的有2种结果,所以抽到的两张卡片恰好是“A”和“B”的概率为=.【解析】(1)判断小华和小丽在各自班级的名次即可得出答案;(2)分别得出甲乙两班的众数、中位数和平均数,再判断大小即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【答案】解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.【解析】(1)根据题意列出函数关系式即可;(2)根据(1)中的函数关系式列不等式即可得到结论.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件.20.【答案】5.5【解析】解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形,∴EH=AC=1.5,CD=AB=5.5,故答案为:5.5;任务二:设EC=xm,在Rt△DEG中,∠DEC=90°,∠GDE=31°,∵tan31°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=,CE=,∵CD=CE-DE,∴-=5.5,∴x=13.2,∴GH=CE+EH=13.2+1.5=14.7,答:旗杆GH的高度为14.7米;任务三:没有太阳光,或旗杆底部不可能达到.任务一:根据矩形的性质得到EH=AC=1.5,CD=AB=5.5;任务二:设EC=xm,解直角三角形即可得到结论;任务三:根据题意得到没有太阳光,或旗杆底部不可能达到等(答案不唯一).本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.【答案】R-d【解析】解:(1)∵O、I、N三点共线,∴OI+IN=ON∴IN=ON-OI=R-d故答案为:R-d;(2)BD=ID理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID(3)由(2)知:BD=ID∴IA•ID=DE•IF∵DE•IF=IM•IN∴2R•r=(R+d)(R-d)∴R2-d2=2Rr∴d2=R2-2Rr(4)由(3)知:d2=R2-2Rr;将R=5,r=2代入得:d2=52-2×5×2=5,∵d>0∴d=故答案为:.(1)直接观察可得;(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证;(3)应用(1)(2)结论即可;(4)直接代入计算.本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等.22.【答案】67.5° 菱形EMCH或菱形FGCH【解析】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE=EN,∴==;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC、FC,∴MC=ME=CG=GF,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°-∠CMG-∠BME=90°,∴四边形EMGF是矩形;(3)连接EH、FH,如图所示:∵由折叠可知:MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,∴四边形EMCH与四边形FGCH是菱形,故答案为:菱形EMCH或菱形FGCH.(1)由折叠的性质得BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,由正方形性质得∠EAF=90°,推出∠AEF=∠AFE=45°,得出∠BEN=135°,∠BEC=67.5°,证得△AEN是等腰直角三角形,得出AE=EN,即可得出结果;(2)由正方形性质得∠B=∠BCD=∠D=90°,由折叠的性质得∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,得出∠BCE=∠ECA=∠ACF=∠FCD=22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知MH、GH分别垂直平分EC、FC,得出MC=ME=CG=GF,推出∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∠MEF=90°,∠GFE=90°,推出∠CMG=45°,∠BME=45°,得出∠EMG=90°,即可得出结论;(3)连接EH、FH,由折叠可知MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,则四边形EMCH与四边形FGCH是菱形.本题是几何变换综合题,考查了正方形的性质、折叠的性质、等腰直角三角形的判定与性质、矩形的判定、菱形的判定、等腰三角形的判定与性质等知识,熟练掌握折叠的性质、矩形与菱形的判定是解题的关键.23.【答案】解:(1)由抛物线交点式表达式得:y=a(x+2)(x-4)=a(x2-2x-8)=ax2-2ax-8a,即-8a=6,解得:a=-,故抛物线的表达式为:y=-x2+x+6;(2)点C(0,6),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=-x+6,如图所示,过点D作y轴的平行线交直线BC与点H,设点D(m,-m2+m+6),则点H(m,-m+6)S△BDC=HB×OB=2(-m2+m+6+m-6)=-m2+3m,S△ACO=××6×2=,即:-m2+3m=,解得:m=1或3(舍去1),故m=3;(3)当m=3时,点D(3,),①当BD是平行四边形的一条边时,如图所示:M、N分别有三个点,设点N(n,-n2+n+6)则点N的纵坐标为绝对值为,即|-n2+n+6|=,解得:n=-1或3(舍去)或1,故点N(N′、N″)的坐标为(-1,)或(1,-)或(1-,-),当点N(-1,)时,由图象可得:点M(0,0),当N′的坐标为(1,-),由中点坐标公式得:点M′(,0),同理可得:点M″坐标为(-,0),故点M坐标为:(0,0)或(,0)或(-,0);②当BD是平行四边形的对角线时,点B、D的坐标分别为(4,0)、(3,)设点M(m,0),点N(s,t),由中点坐标公式得:,而t=-s2+s+6,解得:t=,s=-1,m=8,故点M坐标为(8,0);故点M的坐标为:(0,0)或(,0)或(-,0)或(8,0).【解析】(1)由抛物线交点式表达,即可求解;(2)利用S△BDC=HB×OB,即可求解;(3)分BD是平行四边形的一条边、BD是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.。
2019山西中考数学试题word及答案
2019山西中考数学试题word及答案为了满足您的要求,我将按照您给出的题目,以字数限制增加为1000字的要求,为您撰写一篇关于2019年山西中考数学试题word及答案的文章。
请您阅读以下的正文:在这篇文章中,我将为大家提供2019年山西中考数学试题word文件和答案。
这是该考试的一份重要资源,对于准备参加山西中考的学生来说非常有帮助。
在2019年的山西中考数学试卷中,考生将面临一系列的数学题目,包括代数、几何、概率等多个方面。
这些题目旨在考察学生的数学运算能力、逻辑思维和问题解决技巧。
通过完成这些试题,考生将能够提高他们的数学水平,为顺利通过中考做好准备。
2019年山西中考数学试题word文件可以在以下途径获取:1. 教育部官方网站:您可以访问教育部官方网站,在相关板块中找到2019年山西中考数学试题word文件的下载链接。
这是最权威和可靠的获取途径之一。
2. 学校教务处或数学老师:您可以向您所在学校的教务处或数学老师咨询,看是否能够获取到2019年山西中考数学试题word文件。
学校通常会保存这些文件以便后续使用。
一旦您成功获取到2019年山西中考数学试题word文件,您可以使用微软Office软件或其他兼容的软件进行打开和编辑。
在打开文件后,您可以查看试题的具体内容,了解每一道题目的要求和解题思路。
这将帮助您更好地理解试题,有针对性地进行备考。
但是,仅仅有试题word文件并不足够,我们还需要相应的答案来对照和检查自己的答题情况。
以下是获取2019年山西中考数学试题答案的途径:1. 学校教务处或数学老师:您可以向学校的教务处或数学老师索要2019年山西中考数学试题答案。
他们通常会提供给您一个答案解析的文档或教辅资料,以便您更好地理解和掌握试题解答的方法。
2. 学习网站或论坛:在一些教育类网站或论坛上,您也可以找到2019年山西中考数学试题答案的发布或讨论。
这些网站或论坛上的老师和学生们会共享他们的答案和解题思路,为您提供参考。
2019年中考信息技术试题解析
2019年中考信息技术试题解析(总78页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2019年中考信息技术试题命题说明1.试题的命题指导思想是以《中小学综合实践活动课程指导纲要》为评价导向,注重考查学生利用信息技术解决实际问题的能力。
试题类型为综合任务类或项目完成类应用操作题,知识模块依据是《山西省初级中学信息技术课程教学指导意见(试行)》中的九个模块。
2.根据我省实际情况和教学现状,本次试题命制重点考查的知识模块有文字处理、图像处理、数据处理、多媒体作品制作、动画制作和文件管理等。
其他模块的内容在试题中有所渗透。
3.本次试题命制共20道,试题以完成综合性任务或项目为基本立意,每道题均包含有3个知识模块,力求体现试题的项目性、问题性和综合性。
4.命题所依赖的软件环境与2018年一致,分别为:MS Office Word 2003、Excel 2003、PowerPoint 2003;Adobe Flash Professional 和Adobe Photoshop CS3。
5.考试时,考试系统从20道题目中随机抽取1道题,供学生上机完成考试。
试题公布后如有问题,请及时与省电教馆联系。
联系人:翟红宇卢小花办公电话:2019年2月25日【第1题】中国天眼中国天眼是一台具有我国自主知识产权,世界最大单口径、最灵敏的射电望远镜,位于贵州省黔南布依族苗族自治州平塘县克度镇大窝凼的喀斯特洼坑中,于2016年9月25日落成启用。
它肩负着测天的使命,是人类观察宇宙的一只眼睛。
请使用提供的素材,按要求制作“中国天眼”宣传文稿,领略人类在天文观测领域的最新发展。
(注:本题所有素材均存放于“素材”文件夹中)活动要求:活动一、编辑文档(共3分)1.打开“中国天眼在哪儿.doc”文件。
方法:双击打开“中国天眼在哪儿.doc”文件。
2.修饰文本。
在文档所有黑体字前添加项目符号,改变“村民访谈”内容的文字颜色,感受他们为国家科技建设贡献的力量。
2019年山西省中考数学试卷及答案(解析版)
山西省2019年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的绝对值是 ( ) A .3-B .3C .13-D .132.下列运算正确的是 ( ) A .2235a a a += B .222(2)4a b a b +=+ C .236a a a = D .2336()ab a b -=-3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对的面上的汉字是 ( ) A .青 B .春 C .梦 D .想4.下列二次根式是最简二次根式的是 ( ) A .12B .127C .8D .35.如图,在ABC △中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,若1145∠=︒,则2∠的度数是 ( ) A .30︒ B .35︒ C .40︒ D .45︒6.不等式组13224x x -⎧⎨-⎩><的解集是( )A .4x >B .1x ->C .14x -<<D .1x -<7.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示为 ( ) A .82.01610⨯元 B .70.201610⨯元 C .72.01610⨯元 D .4201610⨯元8.一元二次方程2410x x --=配方后可化为 ( ) A .2(2)3x += B .2(2)5x += C .2(2)3x -= D .2(2)5x -=9.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即90AB =米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线钢拱的函数表达式为 ( )图1图2A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-10.如图,在Rt ABC △中,90ABC ∠=︒,23AB =,2BC =,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为 ( ) A .53π42- B .53π42+ C .23π-D .π432-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15.把答案填写在题中的横线上) 11.化简211x xx x---的结果是 .12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,“从扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是 .13.如图,在一块长12 m ,宽8 m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,且栽种花草的面积77 m 2.设道路的宽为x m ,则根据题意,可列方程为 .14.如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(4,0)-,点D 的坐标为(1,4)-,反比例函数(0)k y x x=>的图象恰好经过点C ,则k 的值为 .15.如图,在ABC △中,90BAC ∠=︒,10AB AC == cm ,点D 为ABC △内一点,15BAD ∠=︒,6AD = cm ,连接BD ,将ABD △绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分,) (1)201()3tan60(π2)2---︒+-;(2)解方程组:328,20.x y x y -=-⎧⎨+=⎩①②17.(本小题满分7分)已知:如图,点B ,D 在线段AE 上,AD BE =,AC EF ∥,C H ∠=∠.求证:BC DH =.18.(本小题满分9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事.现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分,各班按测评成绩从高分到低分的顺序各录用10人.对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由);(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可);(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务.四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张.请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(本小题满分8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式;(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(本小题满分9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题 测量旗杆的高度 成员 组长:xxx 组员:xxx ,xxx ,xxx测量工具测量角度的仪器,皮尺等测量示意图 说明:线段GH 表示学校旗杆,测量角度的仪器的高度 1.5AC BD == m ,测点A ,B 与H 在同一条水平直线上,A ,B 之间的距离可以直接测得,且点G ,H ,A ,B ,C ,D 都在同一竖直平面内.点C ,D ,E 在同一条直线上,点E 在GH 上.测量数据测量项目 第一次 第二次 第三次 GCE ∠的度数 25.6︒ 25.8︒ 25.7︒ GDE ∠的度数 31.2︒ 30.8︒ 31︒ A ,B 之间的距离 5.4 m 5.6 m… …任务一:两次测量A ,B 之间的距离的平均值是 m ;任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度;(参考数据:sin25.70.43︒≈,cos25.70.90︒≈,tan25.70.48︒≈,sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)任务三:该“综合与实践”小组在制订方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(本小题满分8分)阅读以下材料,并按要求完成相应地任务:莱昂哈德·欧拉(Leonhard Euler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理.下面就是欧拉发现的一个定理:在ABC △中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则222OI R Rr =-.如图1,O 和I 分别是ABC △的外接圆和内切圆,I 与AB 相O 的半径为R ,I 的半径为三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离222d R Rr =-.下面是该定理的证明过程(部分):交O 于点D ,过点I 作O 的直径连接DM ,AN N ∠,∴DMI NAI ∠=∠(同弧所对的圆周角相等),MDI ANI △.∴IM IDIN=,∴IA ID IM IN =.①O 的直径O 的直径I 与AB 相切于点DBE IFA =∠BAD E ∠=∠(同弧所对圆周角相等AIF EDB △.IA IFDE BD=.∴IA BD DE IF =.②1)观察发现:IM R d =+,IN = (用含R 示);(2)请判断BD 和ID 的数量关系,并说明理由;(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若ABC △的外接圆的半径为5 cm ,内切圆的半径为2 cm ,则ABC △的外心与内心之间的距离为 cm .22.(本小题满分11分) 综合与实践 动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.再沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一直线上,折痕分别为CE ,CF .如图2.第二步:再沿AC 所在的直线折叠,ACE △与ACF △重合,得到图3. 第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5.图中的虚线为折痕. 问题解决: (1)在图5中,BEC 的度数是 ,AE BE的值是 ;(2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .图1图2图3图4图523.(本小题满分13分)综合与探究如图,抛物线26y ax bx =++经过点(2,0)A -,(4,0)B 两点,与y 轴交于点C .点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)BCD △的面积等于AOC △的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.山西省2019年高中阶段教育学校招生统一考试数学答案解析一、选择题 1.【答案】B【解析】|3|3-=.故选:B . 【考点】绝对值的概念. 2.【答案】D【解析】A 、235a a a +=,故A 错误;B 、222(2)44a b a ab b +=++,故B 错误;C 、235a a a =,故C 错误;D 、2336()aba b -=-,故D 正确.故选:D . 【考点】整式的运算.3.【答案】B【解析】这是一个正方体的平面展开图,共有六个面,其中面“点”与面“春”相对,面“亮”与面“想”相对,面“青”与面“梦”相对.故选:B . 【考点】正方体的展开与折叠. 4.【答案】D 【解析】A2=,本选项不合题意;B7=本选项不合题意;C=本选项不合题意;D,符合题意. 【考点】最简二次根式的概念. 5.【答案】C【解析】∵AB AC =且30A ∠=︒∴75ACB ∠=︒在ADE △中:13A ∠=∠+∠,∴3115∠=︒∵a b ∥∴32ACB ∠=∠+∠∴240∠=︒.【考点】等腰三角形的性质,三角形的内角和定理,平行线的性质. 6.【答案】A【解析】13x ->,4x >;224x -<,22x -<,1x ->,∴4x >,故选A . 【考点】解不等式组. 7.【答案】C【解析】712000016820160000 2.01610⨯==⨯,故选C . 【考点】科学记数法. 8.【答案】D【解析】2410x x --=,244()410x x -+--=,2(25)x -=,故选D . 【考点】配方法的运用. 9.【答案】C【解析】设抛物线的解析式为2y ax =,将45,(8)7B -代入得:27845a -=,∴26675a =-∴抛物线解析式为:226675y x =-,故选B .【考点】二次函数的应用. 10.【答案】B【解析】作DE AB ⊥于点E ,连接OD在Rt ABC △中:tanBC CAB AB ∠==,∴30CAB ∠=︒ 260BOD CAB ∠=∠=︒在Rt ODE △中:122OE OD ==,32DE ==ABC AOD BOD S S S S =--△△阴影扇形21160π22360AB BC OD DE OB ︒=--︒211360π2π2223602︒=⨯--⨯⨯-︒故选A .【考点】锐角三角函数,圆周角定理,求三角形和扇形的面积.第Ⅱ卷二、填空题11.【答案】31xx - 【解析】22311111x x x x xx x x x x -=+=-----. 【考点】分式的化简. 12.【答案】扇形统计图【解析】根据条形统计图、拆线统计图、扇形统计图的特点和作用,要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比应选用扇形统计图. 【考点】统计图的选择.13.【答案】(12)(8)77x x --=或220190x +-=【解析】由题可知:(12)(8)77x x --=,化简得220190x +-= 【考点】一元二次方程解应用题. 14.【答案】16 【解析】过点D 作DE AB ⊥于点E ,则5AD =, ∵四边形ABCD 为菱形, ∴5CD =∴(4,4)C ,将C 代入k y x =得:44k =, ∴16k =.【考点】菱形的性质,正方形的判定与性质,反比例函数的图象与性质.15.【答案】10-【解析】过点A 作AG DE ⊥于点G ,由旋转知:AD AE =,90DAE ∠=︒,15CAE BAD ∠=∠=︒ ∴45AED ∠=︒在AEF △中:60AFD AED CAE ∠=∠+∠=︒在Rt ADG △中:AG DG ===在Rt AFG △中:GF =2AF FG ==∴10CF AC AF =-=-【考点】等腰直角三角形的判定与性质,旋转的性质,勾股定理,锐角三角函数. 三、解答题16.【答案】(1)(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【解析】(1)原式415=-= (2)+①②得:4 8x =-,解得:2x =- 将2x =-代入②得:2 2 0y -+= 解得:1y =所以原方程组得解为21x y =-⎧⎨=⎩【考点】实数的综合运算,解二元一次方程组. 17.【答案】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【解析】∵AD BE =,∴AD BD BE BD -=- ∴AB DE = ∵AC EF ∥ ∴A E ∠=∠在ABC △和EDF △中C F ∠=∠,A E ∠=∠,AB ED =∴ABC EDF ≅△△ ∴BC DF =.【考点】平行线的性质,全等三角形的判定与性质. 18.【答案】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数 从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【解析】(1)小华:不能被录用,小丽:能被录用(2)从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10名志愿者中8分最多乙班被录用的10名志愿者中10分最多从中位数来看:甲,乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数 从平均数来看:甲,乙两班各被录用的10名志愿者成绩的平均数分别为8.9分,8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数(从“众数”,“中位数”或“平均数”中的一个方面评价即可)或画树状图如下:【考点】统计与概率.19.【答案】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【解析】(1)130200y x =+;240y x = (2)由12y y <得:3020040x x +< 解得:20x >当20x >时,选择方式一比方式二省钱 【考点】一次函数的应用. 20.【答案】任务一:5.5 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【解析】任务一:由题意可得:四边形ACDB ,四边形ADEH 都是矩形 ∴ 1.5EH AC ==, 5.5CD AB == 任务二:设EC x = m在Rt DEG △中:90DEC ∠=︒,31GDE ∠=︒ ∵tan31EG CE ︒=,∴tan31xDE ︒= 在Rt CEG △中:90CEG ∠=︒,25.7GCE ∠=︒ ∵tan25.7EG CE ︒=,tan25.7xCE =︒∵CD CE DE =-, ∴5.5tan25.7tan31x x =︒-︒∴13.2x =∴13.2 1.514.7GH CE EH =+=+=. 答:旗杆GH 的高度为14.7 m .任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等. 【考点】平均数,解直角三角形的应用. 21.【答案】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID =∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+- ∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d = 【解析】(1)R d - (2)BD ID =理由如下:∵点I 是ABC △的内心 ∴BAD CAD ∠=∠,CBI ABI ∠=∠∵DBC CAD ∠=∠,BID BAD ABI ∠=∠+∠,DBI DBC CBI ∠=∠+∠ ∴BID DBI ∠=∠,∴BD ID = (3)由(2)知:BD ID = ∴IA ID DE IF =又∵DE IF IM IN =,∴2()()R r R d R d =+- ∴222R d R r -=,∴222d R Rr =-(4)222252525d R Rr =-=-⨯⨯=,d =【考点】数学文化,三角形的外接圆和内切圆的性质,相似三角形的判定与性质,等腰三角形的判定,圆周角的性质,新定义的运用. 22.【答案】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴90123422.54︒∠=∠=∠=∠==︒ ∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)【解析】(1)67.5︒(2)四边形EMGF 是矩形理由如下:∵四边形ABCD 是正方形,∴90B BCD D ∠=∠=∠=︒由折叠可知:1234∠=∠=∠=∠,CM CG =,BEC NEC NFC DFC ∠=∠=∠=∠, ∴123490∠=∠=∠=∠=︒∴67.5BEC NEC NFC DFC ∠=∠=∠=∠=︒ 由折叠可知:MH 、GH 分别垂直平分EC ,FC , ∴MC ME =,GC GF =∴5122.5∠=∠=︒,6422.5∠=∠=︒,∴90MEF GFE ∠=∠=︒ ∵90MCG ∠=︒,CM CG =.∴45CMG ∠=︒又∵1545BME ∠=∠+∠=︒,∴18090EMG CMG BME ∠=︒-∠-∠=︒ ∴四边形EMGF 是矩形.(3)答案不唯一,画出正确图形(一个即可)菱形FGCH 或菱形EMCH【考点】折线统计图.正方形的性质,轴对称的性质,相似三角形的判定与性质,矩形的判定与性质,菱形的性质.23.【答案】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC =∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【解析】(1)∵抛物线2y ax bx c =++经过0()2,A -,()4,0B ,∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的函数表达式为233642y x x =-++.(2)作直线DE x ⊥轴于点E ,交BC 于点G ,作CF DE ⊥,垂足为点F . ∵点A 的坐标为(2,0)-,∴2OA =由0x =,得6y =,∴点C 的坐标为(0,6),∴6OC = ∴1126622OAC S OA OC ==⨯⨯=△ ∵3396442BCDAOC S S ==⨯=△△ 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+.∴点G 的坐标为3,62m m ⎛⎫-+ ⎪⎝⎭,∴2233336634224DG m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭∵点B 的坐标为(4,0),∴4OB =∴1111()2222BCD CDG BDG S S S DG CF DG BE DG CF BE DG BO =+=+=+=△△△ 22133346242m m m m ⎛⎫=-+⨯=-+ ⎪⎝⎭ ∴239622m m -+=解得1= 1m (舍去),2 3m =,∴m 的值为3. (3)1234(8,0),(0,0),(M M M M如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图.以BD 为边进行构图,有3种情况,采用构造全等法进行求解.∵D 点坐标为153,4⎛⎫⎪⎝⎭,∴N 1,N 2的纵坐标为154233156424x x -++=,11x =-,23x =(舍去) 可得2151,4N ⎛⎫- ⎪⎝⎭,∴2(0,0)M∴N 3,N 4的纵坐标为154-233156424x x -++=-,11x =,21x =+可得31514N ⎛⎫- ⎪⎝⎭,∴3M可得41514N ⎛⎫-- ⎪⎝⎭,∴4(M以BD 为对角线进行构图,有1种情况,采用中点坐标公式进行求解,∵1151,4N ⎛⎫- ⎪⎝⎭,∴1151534(1),044M ⎛⎫+--+- ⎪⎝⎭,∴1(8,0)M .【考点】二次函数的图象与性质.。
山西省2019年中考数学试卷及答案解析(Word版)
构思新颖,品质一流,适合各个领域,谢谢采纳山西省中考数学试卷(解析版)第I卷选择题(共30分)一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分,在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下面有理数比较大小,正确的是()A. 0<-2B. -5<3C. -2<-3D. 1<-4【答案】B【考点】有理数比较大小2. “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B. 《几何原本》C. 《海岛算经》D. 《周髀算经》【答案】B【考点】数学文化【解析】《几何原本》的作者是欧几里得3. 下列运算正确的是()A. (-a3 )2 =-a6B. 2a2 + 3a2 =6a2C. 2a2 ⋅a3 =2a6D.2633()2b ba a-=-【答案】D【考点】整式运算【解析】A. (-a3 )2 =a6 B2a2 + 3a2 = 5a2 C. 2a2 ⋅a3 =2a54. 下列一元二次方程中,没有实数根的是()A. x2 - 2x =0B. x2 + 4x -1 =0C. 2x2 - 4x + 3 =0D. 3x2 = 5x -2【答案】C【考点】一元二次方程根的判别式【解析】△>0,有两个不相等的实数根,△=0,有两个相等的实数根,△<0,没有实数根.A.△=4B.△=20C. △=-8D. △=15. 近年来快递业发展迅速,下表是2018 年1-3 月份我省部分地市邮政快递业务量的统计结果(单位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河,壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后,再随机摸出一个 球 ,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种,∴ P ( 两 次 都 摸 到 黄 球 ) =498.如 图 ,在 Rt △ABC 中 ,∠ ACB=90°,∠ A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6 D.【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 内接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:+-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴+-1) =)2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行李箱,已知行李箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行李箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行李箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 为______.【答案】【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯2=∴AF = 2FG =15.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】 125【考点】 直 角 三 角 形 斜 中 线 , 切 线 性 质 , 平 行 线 分 线 段 成 比 例 , 三 角 函 数 【解析】 连接 OF∵ FG 为 ⊙ 0 的 切 线 ∴ OF ⊥ FG ∵ Rt △ ABC 中, D 为 AB 中点 ∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF =12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)2104362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 范 围 .【考点】反比例函数与一次函数【解析】(1)解:一次函数y1 =k1 x +b 的图象经过点 C(-4,-2),D(2,4),(3)解:x <-4 或0 <x <2.18.(本题 9 分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了 100 名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155==15+10+8+1548165答:正好抽到参加 “ 器乐”活动项目的 女 生的概率为516.19.(本题 8 分 )祥 云 桥 位 于 省 城 太 原 南 部 , 该 桥 塔 主 体 由 三 根 曲 线 塔 柱组合而成,全桥共设 13 对直线型斜拉索,造 型新颖,是“三晋 大 地” 的 一 种 象征 .某 数 学 “ 综 合 与 实 践 ” 小 组 的 同 学 把 “ 测 量 斜 拉 索 顶 端 到 桥 面 的 距 离 ”作 为 一 项 课 题 活 动 ,他 们 制 订 了 测 量 方 案 ,并 利 用 课 余 时 间借助该桥斜拉索 完 成了实地测量 . 测量结果如下表 .∠ A 的 度 数38°(1) 请帮助tan 38︒≈ 0.8 , s in 28︒≈ 0.5 , c os 28︒≈ 0.9 , t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】 三 角 函 数 的 应 用 【解析】( 1) 解: 过点 C 作 CD ⊥ AB 于点 D. 设 CD= x 米,在 Rt ∆ ADC 中, ∠ ADC=90°, ∠ A=38°.AD + BD = AB = 234 . ∴ 54x + 2x = 234.解得 x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米 .( 2) 解 : 答 案 不 唯 一 , 还 需 要 补 充 的 项 目 可 为 : 测 量 工 具 , 计 算 过 程 , 人 员 分 工 , 指 导 教 师,活动感受等 .20.(本 题 7 分 )2018 年 1 月 20 日 ,山 西 迎 来 了“ 复 兴 号 ”列 车 ,与“和谐 号 ” 相 比 ,“复兴号” 列车 时 速 更快车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从太原南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 . 答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8 分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 :在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC 两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’ =Y ’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交 BD 于点 Z.第 四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X.则有 AX=BY=XY.下面是该结论的部 分 证明: 证明: A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ又 ∠A'BZ'=∠ABZ. ∴△BA ' Z△BAZ∴Z ' A ' = BZ ' .ZA BZ同 理 可 得 Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' .YZ BZ ZA YZZ ' A ' = Y ' Z ' , ∴ZA = YZ . ...任务: ( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / Z ∴A , 四边形 AXYZ 是 平 行 四 边 形 . ZA = YZ , ∴ AXYZ 是菱形 ( 2) 答 :证明: C D = C B , ∴∠1 = ∠2 ZY / / AC , ∴∠1 = ∠3 . ∴∠2=∠3 . ∴YB = YZ . 四边形 AXYZ 是 菱 形 , ∴AX=XY=YZ. ∴AX=BY=XY.(3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) .A.平移B.旋转C.轴对称D.位似构思新颖,品质一流,适合各个领域,谢谢采纳22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上构思新颖,品质一流,适合各个领域,谢谢采纳(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.构思新颖,品质一流,适合各个领域,谢谢采纳1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是等腰三角形.若存 在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; (3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 . 【考点】 几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FGPE ∥ AC , ∴ ∠1 = ∠2 . FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。
2019年山西省中考数学试卷与答案
2019年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.3 C.D.2.下列运算正确的是()A.2a+3a=5a2B.(a+2b)2=a2+4b2C.a2•a3=a6D.(﹣ab2)3=﹣a3b63.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是()A.青B.春C.梦D.想4.下列二次根式是最简二次根式的是()A.B.C.D.5.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°6.不等式组的解集是()A.x>4 B.x>﹣1 C.﹣1<x<4 D.x<﹣17.五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示()A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元8.一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3 B.(x+2)2=5 C.(x﹣2)2=3 D.(x﹣2)2=59.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB 的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x2B.y=﹣x2C.y=x2D.y=﹣x210.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.化简﹣的结果是.12.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是.13.如图,在一块长12m,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为.14.如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(﹣4,0),点D的坐标为(﹣1,4),反比例函数y =(x>0)的图象恰好经过点C,则k的值为.15.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB 与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0.(2)解方程组:17.(7分)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.18.(9分)中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.(8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(9分)某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx 测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数25.6°25.8°25.7°∠GDE的度数31.2°30.8°31°A,B之间的距离 5.4m 5.6m……任务一:两次测量A,B之间的距离的平均值是m.任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21.(8分)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC 中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC 的外心与内心之间的距离为cm.22.(11分)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D 重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(13分)综合与探究如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的面积等于△AOC的面积的时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019年山西省中考数学试卷答案1. B.2. D.3. B.4. D.5. C.6. A.7. C.8. D.9. B.10. A.11.12.扇形统计图13.(12﹣x)(8﹣x)=77.14. 16.15. 10﹣2.16.解:(1)原式=3+4﹣3+1=5;(2)①+②得,4x=﹣8,∴x=﹣2,把x=﹣2代入①得,﹣6﹣2y=﹣8,∴y=1,∴.17.证明:∵AD=BE,∴AD﹣BD=BE﹣BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS),∴BC=DF.18.解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多;从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数;从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.(3)画树状图如下:由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A”和“B”的有2种结果,所以抽到的两张卡片恰好是“A”和“B”的概率为=.19.解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.20.解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形,∴EH=AC=1.5,CD=AB=5.5,故答案为:5.5;任务二:设EC=xm,在Rt△DEG中,∠DEC=90°,∠GDE=31°,∵tan31°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=,CE=,∵CD=CE﹣DE,∴﹣=5.5,∴x=13.2,∴GH=CE+EH=13.2+1.5=14.7,答:旗杆GH的高度为14.7米;任务三:没有太阳光,或旗杆底部不可能达到.21.解:(1)∵O、I、N三点共线,∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d;(2)BD=ID理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID(3)由(2)知:BD=ID∴IA•ID=DE•IF∵DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr(4)由(3)知:d2=R2﹣2Rr;将R=5,r=2代入得:d2=52﹣2×5×2=5,∵d>0∴d=故答案为:.22.解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE=EN,∴==;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC、FC,∴MC=ME=CG=GF,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°﹣∠CMG﹣∠BME=90°,∴四边形EMGF是矩形;(3)连接EH、FH,如图所示:∵由折叠可知:MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,∴四边形EMCH与四边形FGCH是菱形,故答案为:菱形EMCH或菱形FGCH.23.解:(1)由抛物线交点式表达式得:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8)=ax2﹣2ax﹣8a,即﹣8a=6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+6;(2)点C(0,6),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+6,如图所示,过点D作y轴的平行线交直线BC与点H,设点D(m,﹣m2+m+6),则点H(m,﹣m+6)S△BDC=HB×OB=2(﹣m2+m+6+m﹣6)=﹣m2+3m,S△ACO=××6×2=,即:﹣m2+3m=,解得:m=1或3(舍去1),故m=3;(3)当m=3时,点D(3,),①当BD是平行四边形的一条边时,如图所示:M、N分别有三个点,设点N(n,﹣n2+n+6)则点N的纵坐标为绝对值为,即|﹣n2+n+6|=,解得:n=﹣1或3(舍去)或1,故点N(N′、N″)的坐标为(﹣1,)或(1,﹣)或(1﹣,﹣),当点N(﹣1,)时,由图象可得:点M(0,0),当N′的坐标为(1,﹣),由中点坐标公式得:点M′(,0),同理可得:点M″坐标为(﹣,0),故点M坐标为:(0,0)或(,0)或(﹣,0);②当BD是平行四边形的对角线时,点B、D的坐标分别为(4,0)、(3,)设点M(m,0),点N(s,t),由中点坐标公式得:,而t=﹣s2+s+6,解得:t=,s=﹣1,m=8,故点M坐标为(8,0);故点M的坐标为:(0,0)或(,0)或(﹣,0)或(8,0).。
【精品】山西省2019年中考数学真题试题.Word
2019年山西省中考数学试卷一、选择题(本大题共10小题,共30分) 1. -3的绝对值是( )A. −3B. 3C. −13D. 132. 下列运算正确的是( )A. 2a +3a =5a 2B. (a +2a )2=a 2+4a 2C. a 2⋅a 3=a 6D. (−aa 2)3=−a 3a 6 3. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是( )A. 青B. 春C. 梦D. 想 4. 下列二次根式是最简二次根式的是( )A. √12B. √127C. √8D. √35. 如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是( ) A. 30∘ B. 35∘ C. 40∘ D. 45∘ 6. 不等式组{a −1>32−2a <4的解集是( )A. a >4B. a >−1C. −1<a <4D. a <−17. 五台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,“五一”小长假期间五台山景区进山门票总收入用科学记数法表示( )A. 2.016×108元B. 0.2016×107元C. 2.016×107元D. 2016×104元 8. 一元二次方程x 2-4x -1=0配方后可化为( )A. (a +2)2=3B. ( a +2)2=5C. (a −2)2=3D. ( a −2)2=5 北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点.拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )9.A. a =26675a 2B. a =−26675a 2C. a =131350a 2D. a =−131350a 210. 如图,在Rt △ABC 中,∠ABC =90°,AB =2√3,BC =2,以AB的中点O 为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.5√34−a2B.5√34+a2C. 2√3−aD. 4√3−a2二、填空题(本大题共5小题,共15分) 11. 化简2aa −1-a1−a 的结果是______.12. 要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是______. 13. 如图,在一块长12m ,宽8m的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m 2,设道路的宽为xm ,则根据题意,可列方程为______.14. 如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数y =aa (x >0)的图象恰好经过点C ,则k 的值为______. 15. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm ,点D 为△ABC 内一点,∠BAD =15°,AD =6cm ,连接BD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为______cm .三、解答题(本大题共8小题,共75分)16.(1)计算:√27+(-1)-2-3tan60°+(π-√2)0.2(2)解方程组:17.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.18.中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行.太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分的顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1)甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2)请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3)甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D表示.现把分别印有A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.19.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.某“综合与实践”小组开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E 在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE 的度数 25.6° 25.8° 25.7° ∠GDE 的度数31.2° 30.8° 31° A ,B 之间的距离5.4m5.6m……任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH 的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)21. 阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其中外心和内心,则OI 2=R 2-2Rr .如图1,⊙O 和⊙I 分别是△ABC 的外接圆和内切圆,⊙I 与AB 相切分于点F ,设⊙O 的半径为R ,⊙I 的半径为r ,外心O (三角形三边垂直平分线的交点)与内心I (三角形三条角平分线的交点)之间的距离OI =d ,则有d 2=R 2-2Rr . 下面是该定理的证明过程(部分):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN . ∵∠D =∠N ,∠DMI =∠NAI (同弧所对的圆周角相等).∴△MDI ∽△ANI .∴aa aa =aaaa ,∴IA •ID =IM •IN ,①如图2,在图1(隐去MD ,AN )的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF . ∵DE 是⊙O 的直径,所以∠DBE =90°. ∵⊙I 与AB 相切于点F ,所以∠AFI =90°, ∴∠DBE =∠IFA .∵∠BAD =∠E (同弧所对的圆周角相等), ∴△AIF ∽△EDB ,∴aa aa =aaaa .∴IA •BD =DE •IF ②任务:(1)观察发现:IM =R +d ,IN =______(用含R ,d 的代数式表示); (2)请判断BD 和ID 的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC 的外接圆的半径为5cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为______cm .22. 综合与实践动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在的直线折叠,展开铺平.在沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一条直线上,折痕分别为CE ,CF .如图2. 第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3.第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME .如图5,图中的虚线为折痕. 问题解决:(1)在图5中,∠BEC 的度数是______,aaaa 的值是______. (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:______.23. 综合与探究如图,抛物线y =ax 2+bx +6经过点A (-2,0),B (4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;时,求m的值;(2)△BCD的面积等于△AOC的面积的34(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:|-3|=3.故-3的绝对值是3.故选:B.根据绝对值的定义,-3的绝对值是指在数轴上表示-3的点到原点的距离,即可得到正确答案.本题考查的是绝对值的定义,抓住定义及相关知识点即可解决问题.2.【答案】D【解析】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、a2•a3=a5,故此选项错误;D、(-ab2)3=-a3b6,正确.故选:D.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选:B.根据正方体展开z字型和L型找对面的方法即可求解;本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.4.【答案】D【解析】解:解:A、,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、是最简二次根式,故D符合题意.故选:D.检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.【答案】C【解析】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°-30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°-75°=40°,故选:C.先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.6.【答案】A【解析】解:,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选:A.首先求出不等式组中每一个不等式的解集,再求出其公共解集.此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.【答案】C【解析】解:120000×168=20160000=2.016×107,故选:C.科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题考查了对科学记数法的理解和运用和单位的换算.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】D【解析】解:x2-4x-1=0,x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.9.【答案】B【解析】解:设抛物线的解析式为:y=ax2,将B(45,-78)代入得:-78=a×452,解得:a=-,故此抛物线钢拱的函数表达式为:y=-x2.故选:B.直接利用图象假设出抛物线解析式,进而得出答案.此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是解题关键.10.【答案】A【解析】解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tanA=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴阴影部分的面积是:=,故选:A.根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】3aa−1【解析】解:原式=.故答案为:先把异分母转化成同分母,再把分子相减即可.此题考查了分式的加减运算,在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.12.【答案】扇形统计图【解析】解:要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.13.【答案】(12-x)(8-x)=77【解析】解:∵道路的宽应为x米,∴由题意得,(12-x)(8-x)=77,故答案为:(12-x)(8-x)=77.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.14.【答案】16【解析】解:过点C、D作CE⊥x轴,DF⊥x轴,垂足为E、F,∵ABCD是菱形,∴AB=BC=CD=DA,易证△ADF≌△BCE,∵点A(-4,0),D(-1,4),∴DF=CE=4,OF=1,AF=OA-OF=3,在Rt△ADF中,AD=,∴OE=EF-OF=5-1=4,∴C(4,4)∴k=4×4=16故答案为:16.要求k的值,求出点C坐标即可,由菱形的性质,再构造直角三角形,利用勾股定理,可以求出相应的线段的长,转化为点的坐标,进而求出k的值.本题主要考查反比例函数图象上点的坐标特征,综合利用菱形的性质、全等三角形、直角三角形勾股定理,以及反比例函数图象的性质;把点的坐标与线段的长度相互转化也是解决问题重要方法.15.【答案】(10-2√6)【解析】解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3,在Rt△AFG中,GF==,AF=2FG=2,∴CF=AC-AF=10-2,故答案为:10-2.过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD=60°,利用锐角三角函数分别求出AG,GF,AF的长,即可求出CF=AC-AF=10-2.本题考查了旋转的性质,等腰直角三角形的性质,解直角三角形等,解题的关键是能够通过作适当的辅助线构造特殊的直角三角形,通过解直角三角形来解决问题.16.【答案】解:(1)原式=3√3+4-3√3+1=5;(2)①+②得,4x=-8,∴x=-2,把x=-2代入①得,-6-2y=-8,∴y=1,∴{a =−2a =1. 【解析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.17.【答案】证明:∵AD =BE ,∴AD -BD =BE -BD ,∴AB =ED ,∵AC ∥EF ,∴∠A =∠E ,在△ABC 和△EDF 中,{∠a =∠a∠a =∠aaa =aa ,∴△ABC ≌△EDF (AAS ),∴BC =DF .【解析】由已知得出AB=ED ,由平行线的性质得出∠A=∠E ,由AAS 证明△ABC ≌△EDF ,即可得出结论.本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握平行线的性质,证明三角形全等是解题的关键.18.【答案】解:(1)小华在甲班是第11名,不能录用;小丽在乙班是第10名,可以录用;(2)从众数来看,甲乙两班各被录用的10名志愿者的众数分别为8分、10分,说明甲班被录用的10名志愿者中8分最多,乙班被录用的10名志愿者中10分最多; 从中位数来看,甲乙两班被录用的10名志愿者成绩的中位数分别为9分、8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数; 从平均数看,甲乙两班被录用的10名志愿者成绩的平均数分别为8.9分、8.7分,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数.(3)画树状图如下:由树状图知,共有12种等可能结果,其中抽到的两张卡片恰好是“A ”和“B ”的有2种结果,所以抽到的两张卡片恰好是“A ”和“B ”的概率为212=16.【解析】(1)判断小华和小丽在各自班级的名次即可得出答案;(2)分别得出甲乙两班的众数、中位数和平均数,再判断大小即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【答案】解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;(2)由y1<y2得:30x+200<40x,解得x>20时,当x>20时,选择方式一比方式二省钱.【解析】(1)根据题意列出函数关系式即可;(2)根据(1)中的函数关系式列不等式即可得到结论.本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件.20.【答案】5.5【解析】解:任务一:由题意可得,四边形ACDB,四边形ADEH是矩形,∴EH=AC=1.5,CD=AB=5.5,故答案为:5.5;任务二:设EC=xm,在Rt△DEG中,∠DEC=90°,∠GDE=31°,∵tan31°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=,CE=,∵CD=CE-DE,∴-=5.5,∴x=13.2,∴GH=CE+EH=13.2+1.5=14.7,答:旗杆GH的高度为14.7米;任务三:没有太阳光,或旗杆底部不可能达到.任务一:根据矩形的性质得到EH=AC=1.5,CD=AB=5.5;任务二:设EC=xm,解直角三角形即可得到结论;任务三:根据题意得到没有太阳光,或旗杆底部不可能达到等(答案不唯一).本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.【答案】R-d√5【解析】解:(1)∵O、I、N三点共线,∴OI+IN=ON∴IN=ON-OI=R-d故答案为:R-d;(2)BD=ID理由如下:如图3,过点I作⊙O直径MN,连接AI交⊙O于D,连接MD,BI,BD,∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID(3)由(2)知:BD=ID∴IA•ID=DE•IF∵DE•IF=IM•IN∴2R•r=(R+d)(R-d)∴R2-d2=2Rr∴d2=R2-2Rr(4)由(3)知:d2=R2-2Rr;将R=5,r=2代入得:d2=52-2×5×2=5,∵d>0∴d=故答案为:.(1)直接观察可得;(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证;(3)应用(1)(2)结论即可;(4)直接代入计算.本题是圆综合题,主要考查了三角形外接圆、外心和内切圆、内心,圆周角性质,角平分线定义,三角形外角性质等.22.【答案】67.5° √2菱形EMCH或菱形FGCH【解析】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE=EN,∴==;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°, 由折叠可知:MH 、GH 分别垂直平分EC 、FC ,∴MC=ME=CG=GF ,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG ,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°-∠CMG-∠BME=90°,∴四边形EMGF 是矩形;(3)连接EH 、FH ,如图所示:∵由折叠可知:MH 、GH 分别垂直平分EC 、FC ,同时EC 、FC 也分别垂直平分MH 、GH ,∴四边形EMCH 与四边形FGCH 是菱形,故答案为:菱形EMCH 或菱形FGCH .(1)由折叠的性质得BE=EN ,AE=AF ,∠CEB=∠CEN ,∠BAC=∠CAD ,由正方形性质得∠EAF=90°,推出∠AEF=∠AFE=45°,得出∠BEN=135°,∠BEC=67.5°,证得△AEN 是等腰直角三角形,得出AE=EN ,即可得出结果;(2)由正方形性质得∠B=∠BCD=∠D=90°,由折叠的性质得∠BCE=∠ECA=∠ACF=∠FCD ,CM=CG ,∠BEC=∠NEC=∠NFC=∠DFC ,得出∠BCE=∠ECA=∠ACF=∠FCD=22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知MH 、GH 分别垂直平分EC 、FC ,得出MC=ME=CG=GF ,推出∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∠MEF=90°,∠GFE=90°,推出∠CMG=45°,∠BME=45°,得出∠EMG=90°,即可得出结论;(3)连接EH 、FH ,由折叠可知MH 、GH 分别垂直平分EC 、FC ,同时EC 、FC 也分别垂直平分MH 、GH ,则四边形EMCH 与四边形FGCH 是菱形.本题是几何变换综合题,考查了正方形的性质、折叠的性质、等腰直角三角形的判定与性质、矩形的判定、菱形的判定、等腰三角形的判定与性质等知识,熟练掌握折叠的性质、矩形与菱形的判定是解题的关键.23.【答案】解:(1)由抛物线交点式表达式得:y =a (x +2)(x -4)=a (x 2-2x -8)=ax 2-2ax -8a , 即-8a =6,解得:a =-34,故抛物线的表达式为:y =-34x 2+32x +6;(2)点C (0,6),将点B 、C 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =-32x +6,如图所示,过点D 作y 轴的平行线交直线BC 与点H ,设点D (m ,-34m 2+32m +6),则点H (m ,-32m +6)S △BDC =12HB ×OB =2(-34m 2+32m +6+32m -6)=-34m 2+3m , 34S △ACO =34×12×6×2=92,即:-34m 2+3m =92,解得:m =1或3(舍去1),故m =3;(3)当m =3时,点D (3,154),①当BD 是平行四边形的一条边时,如图所示:M 、N 分别有三个点,设点N (n ,-34n 2+32n +6)则点N 的纵坐标为绝对值为154,即|-34n 2+32n +6|=154,解得:n =-1或3(舍去)或1±√14,故点N (N ′、N ″)的坐标为(-1,154)或(1+√14,-154)或(1-√14,-154),当点N (-1,154)时,由图象可得:点M (0,0), 当N ′的坐标为(1+√14,-154),由中点坐标公式得:点M ′(√14,0),同理可得:点M ″坐标为(-√14,0),故点M 坐标为:(0,0)或(√14,0)或(-√14,0);②当BD 是平行四边形的对角线时,点B 、D 的坐标分别为(4,0)、(3,154)设点M (m ,0),点N (s ,t ),由中点坐标公式得:{4+3=a +a154+0=a +0,而t =-34s 2+32s +6,解得:t =154,s =-1,m =8,故点M 坐标为(8,0);故点M 的坐标为:(0,0)或(√14,0)或(-√14,0)或(8,0).【解析】(1)由抛物线交点式表达,即可求解;(2)利用S△BDC=HB×OB,即可求解;(3)分BD是平行四边形的一条边、BD是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,避免遗漏.。
(完整版)2019年中考数学专题复习第二十讲多边形与平行四边形(含详细参考答案)
2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等、也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正n 边形的每个外角的度数是,每个内角的度数是。
3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从n 边形的一个顶点出发有条对角线,将多边形分成个三角形,一个n 边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n 边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间、地铺成一起,这就是平面图形的密铺,又称作平面图形的。
2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两种正多边形密铺,组合方式有:和、和、和等几种【名师提醒:能密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD 可表示为2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形都不能保证是平行四边形】4、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2018•铜仁市)如果一个多边形的内角和是外角和的3 倍,则这个多边形的边数是()A.8 B.9C.10 D.11【思路分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.考点二:平行四边形的性质例2 (2018•青岛)已知:如图,平行四边形ABCD,对角线AC 与BD 相交于点E,点G 为AD 的中点,连接CG,CG 的延长线交BA 的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.【思路分析】(1)只要证明AB=CD,AF=CD 即可解决问题;(2)结论:四边形ACDF 是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF 是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF 是平行四边形,∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG 是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF 是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.考点三:平行四边形的判定例3 (2018•东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F,AB=BF.添加一个条件使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BFC.∠A=∠C D.∠F=∠CDF【思路分析】正确选项是D.想办法证明CD=AB,CD∥AB 即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD 是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【备考真题过关】一、选择题1.(2018•北京)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°2.(2018•乌鲁木齐)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5C.6 D.73.(2018•济宁)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.50°B.55°C.60°D.65°4.(2018•台州)正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°5.(2018•宁波)如图,在▱ABCD 中,对角线AC 与BD 相交于点O,E 是边CD 的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1 的度数为()A.50°B.40°C.30°D.20°6.(2018•黔南州)如图在▱ABCD 中,已知AC=4cm,若△ACD 的周长为13cm,则▱ABCD 的周长为()A.26cm B.24cmC.20cm D.18cm7.(2018•泸州)如图,▱ABCD 的对角线AC,BD 相交于点O,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为()A.20 B.16C.12 D.88.(2018•玉林)在四边形ABCD 中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有()A.3 种B.4 种C.5 种D.6 种9.(2018•呼和浩特)顺次连接平面上A、B、C、D 四点得到一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有()A.5 种B.4 种C.3 种D.1 种10.(2018•眉山)如图,在▱ABCD 中,CD=2AD,BE⊥AD 于点E,F 为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()DEBCA.1 个B.2 个C.3 个二、填空题11.(2018•宿迁)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是.12. (2018•山西)图1 是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2 是从图1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.13. (2018•抚顺)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .14.(2018•十堰)如图,已知▱ABCD 的对角线AC,BD 交于点O,且AC=8,BD=10,AB=5,则△OCD 的周长为.215.(2018•株洲)如图,在平行四边形ABCD 中,连接BD,且BD=CD,过点A 作AM⊥BD 于点M,过点D 作DN⊥AB 于点N,且DN=3 ,在DB 的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP= .16.(2018•泰州)如图,▱ABCD 中,AC、BD 相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为.17.(2018•无锡)如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC⊥OY 于点C,以AC 为一边在∠XOY 内作等边三角形ABC,点P 是△ ABC 围成的区域(包括各边)内的一点,过点P 作PD∥OY 交OX 于点D,作PE∥OX 交OY 于点E.设OD=a,OE=b,则a+2b 的取值范围是.三、解答题18.(2018•岳阳)如图,在平行四边形ABCD 中,AE=CF,求证:四边形BFDE 是平行四边形.19.(2018•宿迁)如图,在▱ABCD 中,点E、F 分别在边CB、AD 的延长线上,且BE=DF,EF 分别与AB、CD 交于点G、H.求证:AG=CH.20.(2018•临安区)已知:如图,E、F 是平行四边形ABCD 的对角线AC 上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.21.(2018•福建)如图,▱ABCD 的对角线AC,BD 相交于点O,EF 过点O 且与AD,BC 分别相交于点E,F.求证:OE=OF.22.(2018•大庆)如图,在Rt△ABC 中,∠ACB=90°,D、E 分别是AB、AC 的中点,连接CD,过 E 作EF∥DC 交BC 的延长线于F.(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是25cm,AC 的长为5cm,求线段AB 的长度.23. (2018•永州)如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F.(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形BCFD 的面积.2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形参考答案【备考真题过关】一、选择题1.【思路分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2 倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6-2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.2.【思路分析】根据内角和定理180°•(n-2)即可求得.【解答】解:∵多边形的内角和公式为(n-2)•180°,∴(n-2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n-2),难度适中.3.【思路分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P 的度数.【解答】解:如图,∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180(n≥3 且n 为整数).4.【思路分析】利用正十边形的外角和是360 度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数;【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°-36°=144°;故选:D.【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360 度.多边形的内角与它的外角互为邻补角.5.【思路分析】直接利用三角形内角和定理得出∠BCA 的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°-60°-80°=40°,∵对角线AC 与BD 相交于点O,E 是边CD 的中点,∴EO 是△DBC 的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO 是△DBC 的中位线是解题关键.6.【思路分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【解答】解:∵AC=4cm,若△ADC 的周长为13cm,∴AD+DC=13-4=9(cm).又∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选:D.【点评】本题考查了平行四边形的性质.此题利用了“平行四边形的对边相等”的性质.7.【思路分析】首先证明:1,由AE+EO=4,推出AB+BC=8 即可解决问题;OE= BC2【解答】解:∵四边形ABCD 是平行四边形,∴OA=OC,∵AE=EB,∴1OE= BC,2∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD 的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.【思路分析】根据平行四边形的判定方法中,①②、③④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有4 种,分别是:①②、③④、①③、③④.故选:B.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3 种来判定.9.【思路分析】根据平行四边形的判定定理可得出答案.【解答】解;当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.10.【思路分析】如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH 是菱形即可解决问题;【解答】解:如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S 四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH 是平行四边形,∵CF=BC,∴四边形BCFH 是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题11.【思路分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n 边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n-2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.12.【思路分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.【思路分析】直接利用三角形内角和定理得出∠6+∠7 的度数,进而得出答案.【解答】解:如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,2 2 2 ∴∠5=180°-(∠6+∠7)=40°. 故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确应用三角形内角和定理是解 题关键.14. 【思路分析】根据平行四边形的性质即可解决问题;【解答】解:∵四边形 ABCD 是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD 的周长=5+4+5=14,故答案为 14.【点评】本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟 练掌握平行四边形的性质,属于中考基础题.15. 【思路分析】根据 BD=CD ,AB=CD ,可得 BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到 DN=AM=3 ,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到 AP= AM=6.【解答】解:∵BD=CD ,AB=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴DN=AM=3 ,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,∴∠P=∠PAM ,∴△APM 是等腰直角三角形,2∴AP= AM=6,故答案为:6.【点评】本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM 是等腰直角三角形.16.【思路分析】根据平行四边形的性质,三角形周长的定义即可解决问题;【解答】解:∵四边形ABCD 是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC 的周长=BC+OB+OC=6+8=14,故答案为14.【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【思路分析】作辅助线,构建30 度的直角三角形,先证明四边形EODP 是平行四边形,得EP=OD=a,在Rt△HEP 中,∠EPH=30°,可得EH 的长,计算a+2b=2OH,确认OH 最大和最小值的位置,可得结论.【解答】解:过P 作PH⊥OY 交于点H,∵PD∥OY,PE∥OX,∴四边形EODP 是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt △HEP 中,∠EPH=30°,∴ 1 1 EH= EP= a , 2 2 ∴a+2b=2( 1 a+b )=2(EH+EO )=2OH , 2 当 P 在 AC 边上时,H 与 C 重合,此时 OH 的最小值 1,即 a+2b 的 最小值是 2; 当 P 在点 B 时,OH 的最大值是:1+ 3 2 =OC= OA=1 2= 5 ,即(a+2b )的最大值是 5, 2∴2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形 30 度角的性质、平行四边形的判定和性质,有难度,掌握确认 a+2b 的最值就是确认 OH 最值的范围.三、解答题18. 【思路分析】首先根据四边形 ABCD 是平行四边形,判断出 AB ∥CD ,且AB=CD ,然后根据 AE=CF ,判断出 BE=DF ,即可推得四边形 BFDE 是平行四边形.【解答】证明:∵四边形 ABCD 是平行四边形,∴AB ∥CD ,且 AB=CD ,又∵AE=CF ,∴BE=DF ,∴BE ∥DF 且 BE=DF ,∴四边形 BFDE 是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理 1:SSS--三条边分别对应相等的两个三角形全等.②判定定理 2:SAS--两边及其夹角分别对应相等的两个三角形全等.③ 判定定理 3:ASA--两角及其夹边分别对应相等的两个三角形全等.④判定定理⎨ ⎩4:AAS--两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理 5:HL--斜边与直角边对应相等的两个直角三角形全等.19. 【思路分析】利用平行四边形的性质得出 AF=EC ,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形 ABCD 是平行四边形,∴AD=BC ,∠A=∠C ,AD ∥BC ,∴∠E=∠F ,∵BE=DF ,∴AF=EC ,⎧∠A =∠C 在△AGF 和△CHE 中⎪ AF =EC , ⎪∠F =∠E ∴△AGF ≌△CHE (ASA ),∴AG=CH .【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.20. 【思路分析】(1)要证△ADF ≌△CBE ,因为 AE=CF ,则两边同时加上EF ,得到 AF=CE ,又因为 ABCD 是平行四边形,得出AD=CB ,∠DAF=∠BCE ,从而根据 SAS 推出两三角形全等;(2)由全等可得到∠DFA=∠BEC ,所以得到 DF ∥EB .【解答】证明:(1)∵AE=CF ,∴AE+EF=CF+FE ,即 AF=CE .又 ABCD 是平行四边形,∴AD=CB ,AD ∥BC .∴∠DAF=∠BCE.在△ADF 与△CBE中AF=CE∠DAF=∠BCEAD=CB,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.【思路分析】由四边形ABCD 是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD 是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE 和△OCF 中,∠OAE=∠OCFOA=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.22.【思路分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE 的周长=AB+BC,故BC=25-AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D、E 分别是AB、AC 的中点,F 是BC 延长线上的一点,∴ED 是Rt△ABC 的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC=EF,∵DC 是Rt△ABC 斜边AB 上的中线,∴AB=2DC,∴四边形DCFE 的周长=AB+BC,∵四边形DCFE 的周长为25cm,AC 的长5cm,∴BC=25-AB,∵在Rt△ABC 中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.23.【思路分析】(1)在Rt△ABC 中,E 为AB 的中点,则1 1CE= AB,BE= AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得2 2∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60 度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD 是平行四边形.(2)在Rt△ABC 中,求出BC,AC 即可解决问题;【解答】(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E 为AB 的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC 中,∠ACB=90°,E 为AB 的中点,3 3 3 3 ∴ 1 1 CE= AB ,BE= AB .2 2∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC ∥BD .又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即 FD ∥BC .∴四边形 BCFD 是平行四边形.(2)解:在 Rt △ABC 中,∵∠BAC=30°,AB=6, ∴ 1 BC= AB=3,AC= BC=3 , 2∴S 平行四边形 BCFD =3×3 =9 .【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等 三角形解决问题,属于中考常考题型.。
2019年山西省中考数学试题及参考答案
2019年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2019·山西)61-的相反数是( )A .61 B .-6 C .6 D .61- 2.(2019·山西)不等式组⎩⎨⎧<>+6205x x 的解集是( )A .x >5B .x <3C .-5<x <3D .x <53.(2019·山西)以下问题不适合全面调查的是( )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高4.(2019·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( )5.(2019·山西)我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( ) A .6105.5⨯ B .7105.5⨯ C .61055⨯ D .81055.0⨯ 6.(2016·山西)下列运算正确的是 ( ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 7.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x8.将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y9.如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则FE 的长为( ) A .3π B .2πC .πD .π2 10.宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH二、填空题(本大题共5个小题,每小题3分,共15分)11.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 .12.已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y 2y (填“>”或“=”或“<”)13.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).14.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 15.(2016·山西)如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---(2)先化简,在求值:112222+---x xx x x ,其中x =-2.17.(本题7分)解方程:93222-=-x x )(18.(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人?(3)要从这些被调查的 学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是19.(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(Archimedes,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB和BC是O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC内接于O,AB=2,D为O上一点, ︒ABD,AE⊥BD与点E,则△BDC的长是.∠45=20.(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.21.(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)22.(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角 α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.23.如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1) 求抛物线的函数表达式,并分别求出点B 和点E 的坐标; (2) 试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3) 若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ∆是等腰三角形.2019年山西省中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.61-的相反数是( A ) A .61 B .-6 C .6 D .61- 解答:因为a +(-a )=0∴61-的相反数是612.不等式组⎩⎨⎧<>+6205x x 的解集是( C )A .x >5B .x <3C .-5<x <3D .x <5解答: 解⎩⎨⎧<>+②①6205x x由①得x >-5 由②得x <3所以不等式组的解集是-5<x <33.以下问题不适合全面调查的是( C )A .调查某班学生每周课前预习的时间B .调查某中学在职教师的身体健康状况C .调查全国中小学生课外阅读情况D .调查某篮球队员的身高解答:A .调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查 B .调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C .调查全国中小学生课外阅读情况 ,中学生的人数比较多,适合采取抽样调查;D .调查某篮球队员的身高,此种情况数量不是很大,故必须普查;4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的个数,则该几何体的左视图是( A )解答:从左面看第一列可看到3个小正方形,第二列有1个小正方形 故选A .5.我国计划在2020年左右发射火星探测卫星.据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为( B )A .6105.5⨯B .7105.5⨯C .61055⨯D .81055.0⨯ 解答:将55 000 000用科学记数法表示为:7105.5⨯.6.下列运算正确的是 ( D ) A .49232-=⎪⎭⎫ ⎝⎛-B .63293a a =)( C .251555-3-=÷ D .23-50-8= 解答:A .49232=⎪⎭⎫ ⎝⎛-,故A 错误 B .632273a a =)(,故B 错误 C .255551515155253535-3-==⨯=÷=÷,故C 错误. D .23252250-8-=-=,故选D .7.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运xkg 货物,则可列方程为( B )A .x x 80006005000=-B .60080005000+=x x C .x x 80006005000=+ D .60080005000-=x x 考点:分式方程的应用解答:甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,所以60080005000+=x x 故选B .8.将抛物线442--=x x y 向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( D )A .13)1(2-+=x yB .3)5(2--=x yC .13)5(2--=x yD .()312-+=x y解答:将抛物线化为顶点式为:8)2(2--=x y ,左平移3个单位,再向上平移5个单位得到抛物线的表达式为()312-+=x y故选D .9.如图,在ABCD 中,AB 为O 的直径,O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,︒=∠60C ,则FE 的长为( C )A .3π B .2πC .πD .π2 解答:︒=︒︒︒=∠∠︒=∠3090-60-1803-2-180EOF r =12÷2=6∴FE =πππ=⋅⋅=180630180r n故选C10.宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( D ) A .矩形ABFE B .矩形EFCD C .矩形EFGH D .矩形DCGH解答:CG =CF )15(-,GH =2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形 选D .二、填空题(本大题共5个小题,每小题3分,共15分) 11.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是 (3,0) .解答:太原火车站的点(正好在网格点上)的坐标 (3,0)12.已知点(m -1,1y ),(m -3,2y )是反比例函数)0(<=m xmy 图象上的两点,则1y > 2y (填“>”或“=”或“<”) 解答:在反比函数xmy =中,m <0,m -1<0,m -3<0,在第四象限y 随着x 的增大而增大 且m -1>m -3,所以1y > 2y13.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有(4n +1)个涂有阴影的小正方形(用含有n 的代数式表示).解答:(4n +1)14.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动.让转盘自动转动两次,当指针指向的数都是奇数的概率为 94分析:列表如图: 解答:由表可知指针指向的数都是奇数的概率为 941 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)15.如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD =AB =4,连接AD ,BE ⊥AB ,AE 是DAB ∠的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 )(或152525-3+-解答:如图(1)由勾股定理可得 DA =52422222=+=+CD AC由 AE 是DAB ∠的平分线可知21∠=∠由CD ⊥AB ,BE ⊥AB ,EH ⊥DC 可知四边形GEBC 为矩 形,∴HE ∥AB ,∴32∠=∠ ∴31∠=∠ 故EH =HA 设EH =HA =x则GH =x -2,DH =x -52 ∵HE ∥AC ∴△DGH ∽△DCA ∴AC HG DA DH =即2252-52-=x x 解得x =5-5 故HG =EH -EG =5-5-2=53-三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分) (1)计算:()01222851)3(-+⨯-⎪⎭⎫⎝⎛---解答:原=9-5-4+1 ……………………………(4分) =1. ……………………………(5分) (2)先化简,在求值:112222+---x xx x x ,其中x =-2. 考点:分式的化简求值分析:先把分子分母因式分解,化简后进行减法运算解答:原式=1)1)(1()1(2+-+--x xx x x x ……………………………(2分)=112+-+x xx x ……………………………(3分) =1+x x……………………………(4分)当x =-2时,原式=21221=+--=+x x ……………………(5分)17.(本题7分)解方程:93222-=-x x )(解答:解法一:原方程可化为)3)(3(322-+=-x x x )(……………………………(1分) 0)3)(3()3(22=-+--x x x . ……………………………(2分) 0)]3()3(2)[3(=+---x x x . ……………………………(3分)0)9-)(3(=-x x . ……………………………(4分) ∴ x -3=0或x -9=0. ……………………………(5分) ∴ 31=x ,92=x . ……………………………(7分) 解法二: 原方程可化为027122=+-x x ……………………………(3分)这里a =1,b =-12,c =27. ∵0362714)12(422>=⨯⨯--=-ac b ∴2612123612±=⨯±=x . ……………………………(5分) 因此原方程的根为 31=x ,92=x . ……………………………(7分)18.(本题8分)每年5月的第二周为:“职业教育活动周”,今年我省展开了以“弘扬工匠精神,打造技能强国”为主题的系列活动,活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加“职教体验观摩”活动,相关职业技术人员进行了现场演示,活动后该校随机抽取了部分学生进行调查:“你最感兴趣的一种职业技能是什么?”并对此进行了统计,绘制了统计图(均不完整). (1)补全条形统计图和 扇形统计图;(2)若该校共有1800名学生,请估计该校对“工业设计”最感兴趣的学生有多少人? (3)要从这些被调查的 学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 解答:(1)补全的扇形统计图和条形统计图如图所示(2)1800×30%=540(人)∴估计该校对“工业设计”最感兴趣的学生是540人(3)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到对“机电维修”最感兴趣的学生的概率是 0.13(或13%或10013)19.(本题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理 阿基米德(Archimedes ,公元前287~公元212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD .下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图2,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG . ∵M 是ABC 的中点, ∴MA =MC ...任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图(3),已知等边△ABC 内接于O ,AB =2,D 为O 上一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 的长是 222+ . 解答:(1)证明:又∵C A ∠=∠, …………………(1分) ∴ △MBA ≌△MGC . …………………(2分) ∴MB =MG . …………………(3分) 又∵MD ⊥BC ,∵BD =GD . …………………(4分) ∴CD =CG +GD =AB +BD . …………………(5分) (2)填空:如图(3),已知等边△ABC 内接于O ,AB =2,D 为O 上 一点, ︒=∠45ABD ,AE ⊥BD 与点E ,则△BDC 的长是 222+ .20.(本题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg ~5000kg (含2000kg 和5000kg )的客户有两种 销售方案(客户只能选择其中一种方案): 方案A :每千克5.8元,由基地免费送货. 方案B :每千克5元,客户需支付运费2000元.(1)请分别写出按方案A ,方案B 购买这种苹果的应付款y (元)与购买量x (kg )之间的函数表达式;(2)求购买量x 在什么范围时,选用方案A 比方案B 付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.解答:(1)方案A :函数表达式为x y 8.5=. ………………………(1分)方案B :函数表达式为20005+=x y ………………………(2分) (2)由题意,得200058.5+<x x . ………………………(3分)解不等式,得x <2500 ………………………(4分) ∴当购买量x 的取值范围为25002000<≤x 时,选用方案A比方案B 付款少. ………………………(5分) (3)他应选择方案B . ………………………(7分) 21.(本题10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为︒30,BE =CA =50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,AB FE ⊥于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)解答:过点A 作CD AG ⊥,垂足为G .…………(1分)则︒=∠30CAG ,在Rt ACG ∆中,25215030sin =⨯=︒⋅=AC CG .…………(2分)由题意,得203050=-=GD .…………(3分) 452025=+=+=∴GD CG CD (cm ).…(4分)连接FD 并延长与BA 的延长线交于点H .…(5分) 由题意,得︒=∠30H .在Rt CDH ∆中,90230sin ==︒=CD CDCH .……………………(6分)290905050300=+--=+--=+=∴CH AC BE AB CH EC EH .………(7分) 在Rt EFH ∆中,332903329030tan =⨯=︒⋅=EH EF (cm ).……………(9分) 答:支撑角钢CD 的长为45cm ,EF 的长为33290cm .……………………(10分) 22.(本题12分)综合与实践 问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD (︒>∠90BAD )沿对角线AC 剪开,得到ABC ∆和ACD ∆. 操作发现(1)将图1中的ACD ∆以A 为旋转中心, 逆时针方向旋转角α,使 BAC ∠=α, 得到如图2所示的D C A '∆,分别延长BC 和C D '交于点E ,则四边形C ACE '的 状是 菱形 ;……………(2分) (2)创新小组将图1中的ACD ∆以A 为旋转中心,按逆时针方向旋转角 α,使BAC ∠=2α,得到如图3所示的D C A '∆,连接DB ,C C ',得到四边形D C BC ',发现它是矩形.请你证明这个论; (3)缜密小组在创新小组发现结论的基础上,量得图3中BC =13cm ,AC =10cm ,然后提出一个问题:将D C A '∆沿着射线DB 方向平移acm ,得到D C A ''''∆,连接D B ',C C '',使四边形D C BC '''恰好为正方形,求a 的值.请你解答此问题;(4)请你参照以上操作,将图1中的ACD ∆在同一平面内进行一次平移,得到D C A '''∆,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明. 解答:(1)菱形(2)证明:作C C AE '⊥于点E .…………………………………………(3分)由旋转得AC C A =',BAC AE C CAE ∠=='∠=∠∴α21.四边形ABCD 是菱形,BC BA =∴,BAC BCA ∠=∠∴,BCA CAE ∠=∠∴,BC AE //∴,同理C D AE '//,C D BC '∴//,又C D BC '= ,∴ 四边形D C BC '是平行四边形,…………………(4分)又BC AE // ,︒=∠90CEA ,︒=∠-='∠∴90180CEA C BC ,∴四边形D C BC '是矩形…………………………………………(5分) (3)过点B 作AC BF ⊥,垂足为F ,BC BA = ,5102121=⨯===∴AC AF CF .在Rt BCF ∆ 中,125132222=-=-=CF BC BF ,在ACE ∆和CBF ∆中,BCF CAE ∠=∠ , ︒=∠=∠90BFC CEA .ACE ∆∴∽CBF ∆,BC AC BF CB =∴,即131012=CE ,解得13120=CE , C A AC '= ,C C AE '⊥,132401312022=⨯=='∴CE C C .…………………(7分) 当四边形D C BC '''恰好为正方形时,分两种情况:①点C ''在边C C '上.1371131324013a =-=-'=C C .…………………(8分) ②点C ''在边C C '的延长线上,13409131324013a =+=+'=C C .……………(9分) 综上所述,a 的值为1371或13409. (4):答案不唯一.例:画出正确图形.……………………………………(10分)平移及构图方法:将ACD ∆沿着射线CA 方向平移,平移距离为AC 21的长度,得到D C A ''∆, 连接DC B A ,'.………………………(11分) 结论:四边形是平行四边形……(12分) 23.(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B 和点E 的坐标;(2)试探究抛物线上是否存在点F ,使FOE ∆≌FCE ∆,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P 是y 轴负半轴上的一个动点,设其坐标为(0,m ),直线PB 与直线l 交于点Q .试探究:当m 为何值时,OPQ ∆是等腰三角形.解答:(1) 抛物线8y 2-+=bx ax 经过点A (-2,0),D (6,-8), ⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a …………………………………(1分) ∴抛物线的函数表达式为83212--=x x y ……………………………(2分)()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又 抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分)设直线l 的函数表达式为kx y =. 点D (6,-8)在直线l 上,∴6k =-8,解得34-=k .∴直线l 的函数表达式为x y 34-=………………………………………………………(5分)点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分) (2)抛物线上存在点F ,使FOE ∆≌FCE ∆.点F 的坐标为(4,173--)或(4,173-+).……………………………………(8分)(3)解法一:分两种情况:①当OQ OP =时,OPQ ∆是等腰三角形.点E 的坐标为(3,-4),54322=+=∴OE ,过点E 作直线ME //PB ,交y 轴于点M ,交x 轴于点H ,则OQOEOP OM =,5==∴OE OM ……………………………………(9分)∴点M 的坐标为(0,-5).设直线ME 的表达式为51-=x k y ,∴4531-=-k ,解得311=k ,∴ME 的函数表达式为531-=x y ,令y =0,得0531=-x ,解得x =15,∴点H 的坐标为(15,0)…(10分)又 MH//PB ,∴OH OB OM OP =,即1585=-m ,∴38-=m ……………………………(11分) ②当QP QO =时,OPQ ∆是等腰三角形. 当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8), ∴5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,又因为QP QO =,∴31∠=∠, ∴32∠=∠,∴CE//PB ………………………………………………………………(12分)设直线CE 交x 轴于点N ,其函数表达式为82-=x k y ,∴4832-=-k ,解得342=k ,∴CE 的函数表达式为834-=x y ,令y =0,得0834=-x ,∴6=x ,∴点N 的坐标为(6,0)………………………………………………………………(13分)CN//PB ,∴ON OB OC OP =,∴688=-m ,解得332-=m ………………(14分) 综上所述,当m 的值为38-或332-时,OPQ ∆是等腰三角形. 解法二:当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8),∴点E 的坐标为 (3,-4),54322=+=∴OE ,5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,设抛物线的对称轴交直线PB于点M ,交x 轴于点H .分两种情况:① 当QP QO =时,OPQ ∆是等腰三角形.∴31∠=∠,∴32∠=∠,∴CE //PB ………………………………………(9分)又 HM //y 轴,∴四边形PMEC 是平行四边形,∴m CP EM --==8, ∴5384)8(4=-=--=--+=+=BH m m EM HE HM ,HM//y 轴,∴BHM ∆∽BOP ∆,∴BOBHOP HM =……………………………………………………(10分)∴332854-=∴=---m m m ………………………………………………………(11分)②当OQ OP =时,OPQ ∆是等腰三角形.y EH // 轴,∴OPQ ∆∽EMQ ∆,∴OPEMOQ EQ =,∴EM EQ =……………(12分)mm OP OE OQ OE EQ EM +=--=-=-==∴5)(5,)5(4m HM +-=∴,y EH // 轴,∴BHM ∆∽BOP ∆,∴BOBH OPHM =…………………………………………………(13分) ∴38851-=∴=---m m m ………………(14分)∴当m 的值为38-或332-时,OPQ ∆是等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校网址
【第3题】平行四边形
平行四边形是基本的平面图形,也是空间与图形的重要组成部分。
理解平
行四边形及特殊平行四边形之间的区别与联系,对灵活运用四边形的知识起着
重要的作用。
请使用素材,整理归纳相关知识点,形成知识体系,掌握证明中
从一般到特殊再到一般的方法。
(注:本题所有素材均存放于“素材”文件夹中)
活动要求:
活动一、加工动画素材(共3分)
1.打开“平行四边形定义.fla”文件。
2.完善动画内容。
在图层3的第25到40帧制作平行四边形变为菱形的形变动画,延
长时间线与其它图层相同。
调整帧频,慢速播放动画。
3.保存并测试影片,导出GIF动画。
生成“平行四边形定义.swf”,导出“平行四边形定义.gif”
活动二、整理相关文本(共3分)
4.打开“轴对称图形.doc”文件。
5.编辑文本。
设置标题字体、字号并居中显示,使其醒目。
增大正文行距。
更改五角星图片的版式。
添加页面边框。
6.保存文件。
活动三、归纳总结知识点(共4分)
7.打开“平行四边形.ppt”文件。
8.归纳整理知识点。
观看演示文稿,添加封面标题“平行四边形”,并设置动画效果。
在相应的页面中插入“平行四边形定义.gif”。
为平行四边形的性质表
格内容设置统一的对齐方式,将文字“轴对称图形”与素材中同名文档
建立超链接。
在平行四边形的判定页面制作动作按钮,返回到目录页。
9.保存文件。