海浪谱公式总结 PPT
海洋要素计算与预报(海浪3)
4
( 0 )2 exp 2 2 2 0
0.076~ x 0.22
~ x gx / U 2 ~ U / g
0 0
JONSWAP谱相对于风区的成长
文氏谱(1994)
~ 无因次化
0
j 1
S ( )0 ~ ~ S ( ) m0
H1/10 1 N10
H ,
i i 1
N10
T1/10
1 N10
T ,
i i 1
N10
N10 N / 10
H1/100
1 N100
N100 i 1
H ,
i
T1/100
1 N100
N100 i 1
T ,
i
N100 N / 100
H1% H i ,
H 4% H i ,
1 H F ( H ) exp
其中
2.126, 8.42
假定波动能量集中于谱重心频率附近(Longuet-Higgins,1975) :
S ( )d
0
S ( )d
0
m1 m0
(t ) Re an expi(n t n )
n
(t ) Re ei exp(i t )
ei an exp{ i[(n )t n ]}
1
12 22 32 42 f (1 , 2 , 3 , 4 ) exp exp 2 (2 ) 0 2 2 0 22
其中
r
0
海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2
3
g2
式中:U为海面上19.5 m高处的风速。下图为不同风速 下的P-M谱分布。
PM谱的一般特性: ①与Neumann谱相比,两者比 较接近。 ②风速相同,低风速时: Neumann谱的峰值<PM谱的峰 值,高风速时:Neumann谱的 峰值>PM谱的峰值。
频率 无关,只是组成波方向 的函数,如
G ( ) An cos n
一种简单的近似处理方法是假定方向分布函数 G 与
n
2 范围内传播与分布。 2 2
为方向分布参数, ,波浪能量在主波向 ;
2 An ITTC(国际船舶拖曳水池会议)建议取n=2, 8 An ISSC(国际船舶结构会议)建议取n=4, 3 。
《海洋工程环境学》
第四章 海洋波浪
船舶工程学院 马山 副教授
5、海浪谱
前面我们讲解的都是确定性意义上的规则波理论。如线性 艾瑞波、椭圆余弦波、孤立波等。解释自然界波浪运动特征( 深水、浅水、非线性特征等)
自然界中的海浪随时间和空间随机性地发生变化。随机过 程的海浪远比采用一个确定函数描述的规则波复杂,属于非周 期性的不规则波,各种海浪要素都是随机变量。
t an cos(nt n )
n1
相位。
an 、 n 、 n 分别是第n个余弦组成波的振幅、圆频率和
下图表示某固定点5个简谐波叠加得到的合成海面波 动结果。
5.2 频谱
对任一组成波,其单位面积波能形式为:
En ga
1 2
n
2 n
对其任意圆频率间隔 内的波能求得总 能量后再除以圆频率间隔得到的表达式为:
海浪谱公式总结
exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
m0
S
d
0
0
A
5
exp
B
4
d
A 4B
因 W /3
4
m0
1/ 2
m0
2 W /3 16
所以:B
4A
2 W /3
由于P M谱中A 0.0081g 2
0.78,
B
4A
2 W /3
3.12
2
4
W /3
代入后得ITTC谱:
S
0.78
5
exp
3.12
2
4
W /3
式中:ζw/3为三一平均波高(不是波幅)。 金品质•高追求 我们让你更放心!
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
第六章 海浪.ppt
H
4
1
H
2
ln
1 F
2
H 为浅水系数, H H d
当水很深时,即H*=0,则上式还原为深水公式。
深水及浅水中各种累积频率所对应的波高模比系数: 当波由深水处移向浅水处时,平均波高将发生变化,波列
的分布规律也发生变化。
HF H
H* F%
0.5 1 2 5 … 90 95
例3:已知某浅水区d=20m,H1%=5.0m,求H5%=?
解:采用试算法
设 H =2.2m
H /d=0.11
计算得 H1% / H =2.273,查表得 H1% / H =2.239
H5% / H =1.85
则H5%=4.1m
2.周期的理论分布函数 周期的概率密度函数:
f
T
4 4
• 惯性离心力同运动方向相垂 直,自曲率中心沿半 径指向 外缘,其大小同空气运动的 线速度(U)的 平方成正比, 与曲率半径(r)成反比。
• 实际大气空气运动曲率半径(几十千米——几千千米)很 大,故C很小。但在低纬度或空气运动速度大而曲率半很小时, C 较大并可能超过G。
• 作用——只改变风向,不改变风速大小。
例:△p=5hPa, △n=3.5, F=30°, △T=5℃, 则:Us=? m/s,
Ug=? m/s
二、我国近海风况的特点
1.季风——海陆间热力差异导致。 2.寒潮大风——气温在24小时内降低10度以上,且最低气 温降至5度以下,称为寒潮。 3.台风——热带气旋
台风(12级及以上) 强热带风暴(10~11级) 热带风暴(8~9级) 热带低压(8级以下)
海浪谱公式总结ppt课件
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964 年提出。适用于充分成长的海浪。
S
式中:a=0.0081;
β=0.74;
ag2
5
exp
g
U
4
g为重力加速度;
U为离海面19.5m处的风速。
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
%3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on
S 1 4
j
4j
4
1
mj
4
j
j
H sj2
4 j1
exp
4j
4
1
mj
4
式中:j=1、2分别表示低频和高频部分。 六参数谱可表达任何发展阶段的风浪谱。
10.Wallops谱
1981年,美国Huang等基于理论研究和美国航空航天局wallops飞 行中心风浪流水槽实验资料,提出通用的二参数谱—wallops。他们认 为此谱适用于波浪发展、成熟和衰减各个阶段。合田把它改进成下列 形式,建议用于工程设计(Goda, 1999)
S f
0.257
海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2
gF 0.22 ) 2 U10
为量纲为一的常数
F为风区长度,
U10为海面上10m高处风速;
为峰形参数,取
或
=0.07 =0.09
m m
第17届ITTC推荐如下的JONSWAP波浪谱。并引入 有义波高h1/3和特征周期T1两个参数,并考虑 T1=0.834T0得:
频率 无关,只是组成波方向 的函数,如
G ( ) An cos n
一种简单的近似处理方法是假定方向分布函数 G 与
n
2 范围内传播与分布。 2 2
为方向分布参数, ,波浪能量在主波向 ;
2 An ITTC(国际船舶拖曳水池会议)建议取n=2, 8 An ISSC(国际船舶结构会议)建议取n=4, 3 。
2g S ( ) 6 exp( 2 2 ) U
式中:U为海面上7.5 m高处的风速。下图给出不同 风速下的Neumann谱分布。
2.4
2
海浪谱特征初步认识: 谱的能量集中在窄的频带内; 随着风速的增大,谱峰频率变小。
不同风速下的Neumann谱分布
② Pierson-Moscowitz谱(P-M谱):根据北大西洋 1955~1960年间的观测资料进行谱分析得到,并被第11届 ITTC(国际船模水池会议)(1966)列为标准单参数谱。
不同风速下的P-M谱分布
③单参数谱不能合理表征非充分发展海浪特征,第15届 ITTC(1978)给出的频谱形式为:
S ( )
173H123 T 5
2m0 T m1
4
exp(
691
4T
4
海洋工程环境课件第5章 海洋波浪
5.1 海洋波动现象概述
海洋波浪
海洋中存在着各种形式的波动, 它既可发生在海洋的表面, 又可发生在海洋内部不同密 度层之间,有着不同的波动尺度、机理和特性,各种波动现象复杂。海洋波动是海水运动的 主要形式之一。 海洋表面总被形容为时而波涛汹涌,时而涟漪荡漾,呈现出一种复杂的波动现象。引 起海水表面波动的自然因素有很多, 如海洋表面受到风与气压的作用、 天体的引潮力及海底 地震与火山的作用等,它们引起的波动现象有不同的尺度,造成各种波动的周期、波高、波 长等波动特性的不同,各自具有不同的能量范围,对海洋工程结构的作用影响也不同。如图 5-1 所示。
5.1.1 海浪概述
海浪(Ocean Wave)是海洋中常见的一种自然现象,海面风力的作用是其起因,一般可将 海浪分为由风直接驱动产生的风浪 (Wind Wave)及由风浪随后发展形成的涌浪 (Swell) 两部 分。
1.海浪类型
风浪因受到海面风的直接作用,其传播方向基本与风同向。风浪的形成及其浪高、周期 等大小自然与风的状态,如海面作用风速的大小、作用风区( Fetch)的范围及作用风时(Wind Duration)的长短直接相关,它们相互间存在着很复杂的非线性关系,这些构成了海浪研究和 海浪预报的主要内容。此外风浪的产生还与作用海域的水深、地形等有关。风浪的波形外观 表现奈乱,背风面比迎风面更陡,波峰线较短,在时间上和空间上都表现为不规则的随机变
对于实际海面波动直接应用海洋观测仪器进行观测将是对现场海浪的真实记录此时的海面波动杂乱无章而可看作一个随机过程应用数理统计分析的方法可进行合理分析和研究并可得到海浪的运动方向特征其结果将反映现场实际海浪的运动情况其实测资料也可用于检验海浪理论为海洋工程设计提供最可靠的数据但观测仪器的精确度及大范围的现场观测带来的大量费用成本等是其主要制约
第四章 海浪观测
100
( 4 )频率直方图
以模比系数为纵坐标,平均频率为横坐标, 以模比系数为纵坐标,平均频率为横坐标,绘 制波高平均频率直方图(见图.1)。 )。图上各个 制波高平均频率直方图(见图 )。图上各个 矩形的面积正是各组的区间频率, 矩形的面积正是各组的区间频率,其面积之和 为1.0。当组距趋于无限小时,直方图趋于曲线, 。当组距趋于无限小时,直方图趋于曲线, 该曲线与纵轴包围的面积就是 1.0,此时横坐标 , 转化为频率密度,而曲线即频率密度曲线。 转化为频率密度,而曲线即频率密度曲线。该 曲线的特点是“中间大、两头小” 曲线的特点是“中间大、两头小”,即平均值 附近的波高出现机会最多。 附近的波高出现机会最多。
压力测波仪
美国Inter Ocean公司的S4ADW型系列产品
五、波浪玫瑰图
表示某海区各向各级波浪出现频率基多大小的图. 表示某海区各向各级波浪出现频率基多大小的图 绘制方法同风玫瑰图类似
波向 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW ╳ C ∑ 观测总 数
0.8~1.0 m m p /% 4 0.14 9 0.33 4 0.14 2 1 0.07 0.04
1.1~1.2 m m p /% 4 0.14 6 0.22 2 0.07
1.3~1.5 m m p /% 6 0.22
1
0.04
7 20 6
0.25 0.72 0.22
3 4
0.11 0.14
1 4 4
H /m 1.3 3.2 5.3 3.3 1.5 1.2 1.9 1.5 3.1 1.8 1.4 1.8 1.8 1.5 4.3 4.8 4.1 3.9 2.9 0.7
海浪谱公式总结
m,βw为两个参数,改变m即可改变谱的宽窄形状,βw用于调整
谱面积,使之等于波浪总能量。
形状参数m和JONSWAP谱中的γ一样,其选用依靠工程师的经验 和判断。一般小的无因次风距gX/U2和大的γ或m值相关,而大的无因
次风距值gX/U2导致γ=1或m=5。在浅水,上述谱中采用m=3或4是合
适的。
3.12
2
W /3
4
S
0.78
5
3.12 exp 2 4 W /3
式中:ζw/3为三一平均波高(不是波幅)。
4.双参数海浪谱
1978年第15届ITTC采用了双参数谱,双参数谱改进了ITTC谱,对成 长中的海浪也适用。
基于ITTC谱有: 1 A 3 B exp d 1 4 3/ 4 0 0 5 3B 4 3 式中:为函数, 1 0.91906 ,因此有: 4 m1 S d
11.方向谱
长峰不规则波是假定海浪沿单一方向传播的;实际海浪除了沿 主方向传播外,还向其他方向扩散,称为短峰不规则波;短峰不规则 波可以看成传播方向不同的长峰不规则波叠加而成。描述海浪沿不同 方向组成的波谱,称为方向谱。
S , S D,
式中:S(ω)为长峰不规则波的海浪谱;θ为组成波与主浪向的夹角。
9.六参数谱
奥启和汉伯尔(Ochi,Hubble, 1976)提出了一个六参数谱公式, 它把整个谱分成低频部分和高频部分两个组成部分,每一部分分别用 三个参数—有效波高Hs、谱峰频ωp和形状参数λ表示。
4 j 1 4 mj 4 2 H sj 4 j 1 mj 1 4 S exp 4 j 1 4 j j 4
海浪谱公式总结.
年提出。适用于充分成长的海浪。
4 ag g S 5 exp U 式中:a=0.0081; β=0.74; 2
g为重力加速度; U为离海面19.5m处的风速。
8.斯科特谱
斯科特(Scott,1965)对于充分发展的海浪建议用下列谱公式:
1/ 2 2 2 p S 0.214H s exp 0 . 065 0 . 26 p
式中:-0.26<ω-ωp<1.65, Hs为有效波高;ωp为谱峰频率。 此谱和北大西洋以及印度西海岸实测谱符合得很好。
b.由波高和波浪周期表示的谱公式
0.159 Tp 1 2 exp 2 2
1948 S 319 .34 4 5 3.3 4 Tp Tp
2
W /3
式中:Tp为谱峰周期,波谱峰值对应的周期。
0 0
A B exp d 4 5 4B A
因 W / 3 4m0 所以:B
1/ 2
m0
2
W /3
16
4A
2
W /3
由于P M谱中A 0.0081 g 2 0.78, B 代入后得ITTC谱:
4A
2
W /3
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包 含一个参数U,不足以表征复杂的海浪情况。
3. ITTC谱
《海浪谱公式总结》课件
海浪是海洋中的一种重要现象,它们的形成和特征对于许多领域有着深远的 影响。本课件将为您介绍海浪谱的定义、特征及其应用领域。
海浪谱
定义
海浪谱是描述海浪高度和能量随频率变化规律的数学函数。
特征
海浪谱可以用来描述海浪的高度、周期、相速度等参数,以及海浪的谱峰、谱宽等特征。
浪形成机制
1 风起因素
海浪的形成主要与风的作用有关,风的能量 传递到海面上产生了波浪。
2 其他因素
除了风起因素外,地球自转、海洋地形和海 洋潮汐等因素也会影响海浪的形成和发展。
浪高的测量方法
海面高度计
通过安装在设备上的传感器测量海浪的高度,可以 得到准确的浪高数据。
测量船
在海上使用测量船进行实地观测,可以获得更详细 的海浪数据。
海浪谱公式的局限性
海浪谱公式在描述复杂海洋 环境下的海浪时存在一定的 局限性。
发展前景
随着科技的进步和数据的积 累,海浪谱公式将不断得到 改进和应用,为海洋相关领 域的发展提供支持。
海浪能量传递
1
总能量
海浪在传播过程中会损失部分能量,但
固定平台能量传递
2
总能量保持不变。
海浪与固定平台相互作用,使平台受到
力的作用,能量传递到平台上。
3
浮动平台能量传递
海浪与浮动平台相互作用,使平台上的 部分能量被吸收或反射。
海浪预报
1 海浪预报方法
通过分析风向、风速、海洋地形等因素,使用数学模型进行海浪预报。
海浪参数
周期
海浪的周期是指波峰或波谷通过 给定点所需的时间。
频率
海浪的频率是指单位时速度是指波峰或波谷在 水平方向上传播的速度。
海浪谱公式总结84313
exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
◆语文•选修\中国小说欣赏•(配人教版)◆
1.Neumann谱
由半经验的方法,假定海浪的某些外观特征反映其内部结构,由 观测到的波高和周期间的关系推导出来。于50年代首先提出。
S
C
4
1
6
exp
2g2
U 22
式中:U为海面上7.5米高处的风速;常数C=3.05m/s2
金品质•高追求 我们让你更放心!
S f
H T2 1m w 1/3 p
f
m
exp
m 4
Tp f
4
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
10.Wallops谱
式中:
w
0.06238mm1/ 4 4m5/ 4 m 1
1 0.7458 m 2 1.057
Tp
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964
年提出。适用于充分成长的海浪。
S
式中:a=0.0081;
β=0.74;
ag2
5
exp
海浪谱
描述海浪内部能量相对于频率和方向的分布。
为研究海浪的重要概念。
通常假定海浪由许多随机的正弧波叠加而成。
不同频率的组成波具有不同的振幅,从而具有不同的能量。
设有圆频率ω的函数S(ω),在ω至(ω+ω)的间隔内,海浪各组成波的能量与S(ω)ω成比例,则S(ω)表示这些组成波的能量大小,它代表能量对频率的分布,故称为海浪的频谱或能谱。
同样,设有一个包含组成波的圆频率ω和波向θ的函数S(ω,θ),且在ω至(ω+ω)和θ至(θ+ω)的间隔内,各组成波的能量和S(ω,θ)ωθ成比例,则S(ω,θ)代表能量对ω和θ的分布,称为海浪的方向谱。
将组成波的圆频率换为波数,可得到波数谱;将ω换为2π(频率为周期的倒),得到以表示的频谱S()数。
以上各种谱统称为海浪谱。
海浪谱不仅表明海浪内部由哪些组成波构成,还能给出海浪的外部特征。
比如,理论上可由谱计算各种特征波高和平均周期,利用这些特征量连同波高与周期的概率密度分布,可推算海浪外观上由哪些高低长短不同的波所构成。
若已知海浪的谱,海浪的内外结构都可得到描述,因此谱是非常有用的概念。
事实上,海浪的研究(包括许多应用问题),大多和谱有关。
频谱在海浪谱中,风浪频谱得到最广泛的研究,因为它的应用最广,也最易于得到。
但尚无基于严格理论的风浪频谱。
已提出的经验的或半经验的频谱很多,大多数用[245-1]的乘积来表达。
通常p为5~7,q为2~4,在正量A和B之内。
除了数值常数外,还包含风要素(如风速、风时和风区)或浪要素(如特征波高和周期)作为参量,故谱的形状随风的状态或对应的浪的状态而变化。
上述两项的乘积代表的谱,在ω=0处为0,在0附近的值很小,ω增加时,它骤然增大至一个峰值,然后随频率的增大而迅速减小,在ω→∞ 时趋于0。
这表明谱的频率范围在理论上虽为0~∞,但其显著部分却集中在谱峰附近。
海面上存在的许多波,其显著部分的周期范围很小,恰和理论结果相对应。
随着风速的增大,谱曲线下面的面积(从而风浪的总能量或波高)增大,峰沿低频率方向推移,表明风浪显著部分的周期增大。
海洋要素计算与预报(海浪3)
海浪要素及统计分布(短期分布) §1.3 海浪要素及统计分布(短期分布) 海浪要素及特征波要素
通常需要对波面记录进行预处理。 通常需要对波面记录进行预处理。 上(下)跨零点法 。 谷法。 峰-谷法。 谷法 由波面记录读取的波高和周期均为随机量。 由波面记录读取的波高和周期均为随机量。
海浪要素及特征波要素 (1)部分大波平均波 )
B exp − q ωp ω A
S (ω ) =
Pierson-Moscowitz(P-M)谱(1964) ( ) ) 从北大西洋的460组风浪观测资料中挑选出 组属于充分 组风浪观测资料中挑选出54组属于充分 从北大西洋的 组风浪观测资料中挑选出 成长情形的数据,依风速分成 组并将各组谱进行平均 组并将各组谱进行平均, 成长情形的数据,依风速分成5组并将各组谱进行平均, 发现它们有良好的相似性。 发现它们有良好的相似性。 采用Kitaigorodskii的相似定律对 个平均的谱进行因次 的相似定律对5个平均的谱进行因次 采用 的相似定律对
~ ~ S (ω )dω = 1
1~ ∑ j cj =1 j =1
~ jc j e − j = 0 ∑
j =1
n
n
~ ~ dS (ω ) =0 ~ dω ω =1 ~
n
ω R= ω0
ω = ( m 2 / m 0 )1 / 2
∑
j =1
1 ~ 1 2 c = R 3 j j 2
文氏谱( 文氏谱(1994) )
1 H p = ∫ Hf ( H )dH p H0
概率密度分布函数
∞
p=
∞
∫ f ( H )dH
H0
p = 1 / 100, 1 / 10, 1 / 3, 1
海洋工程环境 4-5波浪
0
m1 S d
m0为能量谱密度函数的0 谱矩(零阶矩)。
m1为能量谱密度函数一阶矩。
其他波高特征 H1/3 4.005 m0
相应的平均周期为:
平均频率为:
T 2 m0
m1
m1
m0
其中
mn nS d
0
为能量谱密度函数的n阶矩。顺便给出谱宽系数:
2 1 m22
m0m4
50
线性变换系统
• …….
方向能量谱密度函数 方向谱的一般形式:
S , S G
G 为方向函数,有
G d 1
G An cosn
ITTC : n=2, An=2/ ISSC : n=4, An=8/(3)
4.3.2 海浪要素特征
频谱与海浪特征值有密切关系
平均波高
H 2.507 m0
其中
m0 S d
浅水波:1/2>h/>1/25
C2
g 2
tanh
2 h
深水波(短波):h/≥1/2
C2 C02
0
tanh
2
h
C02
g0 2
C2 C02
0
tanh
2
h
假定周期T随水深不变。由C=λ/T,有
所以有
C C0 0
C2 C02
2 02
0
tanh
2 h
C C0
0
tanh
2 h
谱函数的特点:
• 谱函数在整个频率范围内,两端值极小,集中在较窄 频率带内。因此频率较小或较大的波提供的能量很小, 能量较大的波主要集中在某些频率范围内。
• 谱函数为非负函数,恒等于或大于零,于第一象限。
海浪——精选推荐
海浪概述⼀、波浪(Wave)要素1、波峰――波⾯的最⾼点。
2、波⾕――波⾯的最低点。
3、波⾼(H)――相邻波峰与波⾕之间的垂直距离。
4、波幅(a)――波⾼的⼀半,a=H/2。
5、波长(λ)――相邻两波峰或相邻两波⾕之间的⽔平距离。
6、波陡(δ)――波⾼与波长之⽐,δ=H/λ。
7、周期(T)――相邻的两波峰或两波⾕相继通过⼀固定点所需要的时间。
8、频率(f)――周期的倒数,f=1/T。
9、波速(C)――波峰或波⾕在单位时间内的⽔平位移(波形传播的速度),C=λ/ T。
10、波峰线――通过波峰垂直于波浪传播⽅向的线。
11、波向线――波形传播的⽅向线,垂直于波峰线。
⼆、波浪的分类1、按周期或频率分类海浪⼤部分能量集中在周期4~12s的范围内,属重⼒波范围。
最常见的重⼒波是风浪和涌浪。
2、按成因分类1)风浪和涌浪风浪(Wind Wave)――风的直接作⽤所引起的⽔⾯波动。
(⽆风不起浪)涌浪(Swell)――风浪离开风区传⾄远处,或者风区⾥风停息后所遗留下来的波浪。
(⽆风三尺浪)2)海啸(Tsunami,⼜称地震波)――由于海底或海岸附近发⽣地震或⽕⼭爆发所形成的海⾯异常波动。
特点:周期长,波长长,波速⼤,在外海坡度很⼩,当传⾄近岸时,波⾼剧增。
世界上常受海啸袭击的国家和地区有:⽇本、菲律宾、印度尼西亚、加勒⽐海、墨西哥沿岸、地中海。
3)风暴潮(Storm Surge)――由强烈的⼤⽓扰动(强台风、强锋⾯⽓旋、寒潮⼤风等)引起的海⾯异常上升现象。
主要原因:海⾯⽓压分布不均匀――⽓压每下降1hPa,海⾯约升⾼1cm;⼤风――风暴向岸边移动时,受强风牵引海⽔涌向岸边,海⾯升⾼,升⾼幅度与风速的平⽅成正⽐。
我国风暴潮多发区:莱州湾、渤海湾、长江⼝⾄闽江⼝、汕头⾄珠江⼝、雷州湾和海南岛东北⾓,其中莱州湾、汕头⾄珠江⼝是严重多发区。
4)内波(Internal Wave)――密度相差较⼤的⽔层界⾯上的波动。
内波对航⾏船舶的影响:死⽔和共振船舶克服“死⽔”和“共振”的有效⽅法是改变航速和航向。
海浪海风及海流PPT课件
(, t)
涌浪 35
36
37
随机过程
成熟期海浪 成熟期海浪—平稳随机过程 随机扰动下的控制理论
38
风浪成长与风时、风区的关系
常言道“风大浪高”,也有“无风不起浪”等说 法,这是对风与浪关系的一种描述。但这只是部 分正确。
人所共知,小小的水湾中,那怕再大的风也决不 会掀起汪洋大海中那种惊涛骇浪,因为它受到了 水域的限制。
它们的平均振幅(或摇幅)和振荡特性随着时间的增长基本 上没有变化。显然,对于平稳随机过程它离运动的起点是 充分远的,运动的初始条件对平稳随机过程已不起作用。
Page 54
平稳随机过程和谱
由此可知,如果一个随机函数X(t)所有的概率特征都与时 间t无关,则称此X(t)是平稳的。
因为平稳随机函数的变化与时间无关,因此必然要求平稳 随机函数的数学期望是常数。
有义波高当记录到的海浪时间曲线上依次取3n个波高值从大到小进行排列取前面的n个幅值进行平4923随机海浪的统计特性和谱分析50对波高进行采样515253窄带谱和非窄带谱54随机过程概率论中的随机变量是指在某些保持不变的确定条件下由实验测得的随机量它的统计特征可在实验中得到一个唯一的值但预先是未知的
课程内容
另外,即便是在辽阔的海洋中,短暂的风也不会 产生滔天巨浪。
可见风浪的成长与大小,不是只取决于风力,而 是与风所作用水域的大小和风所作用时间的长短 有密切关系。
39
风时/风区
风时:指状态相同的风持续作用在海面上的 时间。
风区:是指状态相同的风作用海域的范围。 习惯上把从风区的上沿,沿风吹方向到某一 点的距离称为风区长度,简称为风区。
Page 53
平稳随机过程和谱
6.5_海浪谱基础知识
方向谱函数=频率谱函数×方向分布函数
1.5 海浪谱的基础知识
谱与海浪要素的关系
波谱零阶矩:
m0 0Sd Sd
0
0
已知某一经验谱,计算出谱曲线 不轴包围的面积m0 以及
m1,m2,就可求得各特征波高及特征周期。
H 2.506 m0
波浪内部能量结构
=2 f
S f =2 S S =S f /2
1.5 海浪谱的基础知识
海浪谱形式举例
一般形式: 式中:
S
A
p
exp
B
q
A、B ——包含风要素(风速、风时、风距)
或波要素(波高、周期)的参量;
p、q ——指数,p 常取4-6;q常取2-4。
海浪谱的概念
以频率 为横坐标,S 为纵坐标,绘得波能量相对于频率
的分布图。
1.5 海浪谱的基础知识
海浪谱的概念
波面纵坐标 t 的方差 2 比例于波动总能量:
2 S d m0, r 0 0
式中: m0——谱的零阶矩;
r ——阶矩数
S
波浪的外观表现
4.勃列斯奈德-光易谱(风浪成长阶段)
S f 0.257H s2Ts Ts f 5 exp 1.03Ts f 4
5.文圣常谱
1.5 海浪谱的基础知识
海浪的方向谱
在时刻t的波面,三维海浪场由具有各种方向角 ( m )
和各种频率 n(0 n ) 的无限个组成波叠加而成。
方向谱密度函数 S(, ) 为:
12an2 S(, )dd
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
exp
691
T14 4
5.ISSC谱
国际船舶结构会议ISSC1964推荐下列谱公式,且常 称之为ISSC谱。
2
S
f
0.11
Hs T2
0.1
1 f5
exp
0.44
1 T0.1
f
4
6.JONSWAP谱
该谱由“北海海浪联合计划”测量分析得到,在60年代末期提 出,适合像北海那样风程被限定是海域,有两种表示形式。
4
W /3
代入后得ITTC谱:
S
0.78
5
exp
3.12
2
4
W /3
式中:ζw/3为三一平均波高,有义波高(不是波幅)。
4.双参数海浪谱
1978年第15届ITTC采用了双参数谱,双参数谱改进了ITTC谱,对成 长中的海浪也适用。
基于ITTC谱有:
m1
S
d
0
0
A
5
exp
B
a.由风速和风程表示的谱公式
S
g 2 5
exp
1.25
p
4
e
xp
p 2 p 2
式中:α为无因次常数,可取α=0.0076(gx/U2)-0.22; x为风区长度(风程);U为平均风速; ωp为谱峰频率,可取 ωp=22(g/U)(gx/U2)-0.33 ; γ为谱峰提升因子,平均值为3.3; σ为峰形参数,当ω≤ωp时,可取 σ=0.07;当ω>ωp时,取σ=0.09.
S f
0.257
Hs T2
H1/ 3
2
1 f5
TH1/ 3
exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
海浪谱公式总结
1.Neumann谱
由半经验的方法,假定海浪的某些外观特征反映其内部结构,由 观测到的波高和周期间的关系推导出来。于50年代首先提出。
S
C
4
1
6
exp
2g2
U 22
式中:U为海面上7.5米高处的风速;常数C=3.05m/s2
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964 年提出。适用于充分成长的海浪。
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
%3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on
国际拖曳水池会议(ITTC, 1972)对P-M谱进行了修改,得到ITTC谱。
基于P M谱有:
m0
S
d
0
0
A
5
exp
B
4
d
A 4B
因 W /3
4
m0
1/ 2
m0
2 W /3 16
所以:B
4A
2 W /3
由于P M谱中A 0.0081g 2
0.78,
B
4A
2 W /3
3.12
2
S f
H T2 1m w 1/3 p
f
m
exp
m 4
Tp f
4
10.Wallops谱
式中:
w
0.06238mm1/ 4 4m5/ 4 m 1
1 0.7458 m 2 1.057
Tp
TH 1/ 3 1 0.238 m 1.5
0.684
m,βw为两个参数,改变m即可改变谱的宽窄形状,βw用于调整 谱面积,使之等于波浪总能量。
1
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
注:ITTC谱中的三一平均波幅是按照 风速U=11.5kn,U=6.85(ζw/3 )0.5 计算得 出h=2.8。
谢谢您的聆听!
S
式中:a=0.0081;
β=0.74;
ag2
5
exp
g
U
4
g为重力加速度;
U为离海面19.5m处的风速。
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包
含一个参数U,不足以表征复杂的海浪情况。
3. ITTC谱
8.斯科特谱
斯科特(Scott,1965)对于充分发展的海浪建议用下列谱公式:
S
0.214H s 2
exp
0.065
p p
2
0.26
1/
2
式中:-0.26<ω-ωp<1.65, Hs为有效波高;ωp为谱峰频率。 此谱和北大西洋以及印度西海岸实测谱符合得很好。
9.六参数谱
奥启和汉伯尔(Ochi,Hubble, 1976)提出了一个六参数谱公式, 它把整个谱分成低频部分和高频部分两个组成部分,每一部分分别用 三个参数—有效波高Hs、谱峰频ωp和形状参数λ表示。
形状参数m和JONSWAP谱中的γ一样,其选用依靠工程师的经验 和判断。一般小的无因次风距gX/U2和大的γ或m值相关,而大的无因 次风距值gX/U2导致γ=1或m=5。在浅水,上述谱中采用m=3或4是合 适的。
11.方向谱
长峰不规则波是假定海浪沿单一方向传播的;实际海浪除了沿 主方向传播外,还向其他方向扩散,称为短峰不规则波;短峰不规则 波可以看成传播方向不同的长峰不规则波叠加而成。描述海浪沿不同 方向组成的波谱,称为方向谱。
S 1 4
j
4j
4
1
mj
4
j
j
H sj2
4 j1
exp
Hale Waihona Puke 4j 41
mj
4
式中:j=1、2分别表示低频和高频部分。 六参数谱可表达任何发展阶段的风浪谱。
10.Wallops谱
1981年,美国Huang等基于理论研究和美国航空航天局wallops飞 行中心风浪流水槽实验资料,提出通用的二参数谱—wallops。他们认 为此谱适用于波浪发展、成熟和衰减各个阶段。合田把它改进成下列 形式,建议用于工程设计(Goda, 1999)
S, SD,
式中:S(ω)为长峰不规则波的海浪谱;θ为组成波与主浪向的夹角。
D(ω,θ)的一般形式为: D , kn cosn
(|θ|≤π)
国际船舶结构协会会议(ISSC)建议用一下两种n值
n=2, k2=2/π; n=4, k4=8/3π;
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
4
d
1 3
A B3/4
1
3 4
式中:为函数,1
3 4
0.91906,因此有:
m1 0.30638A / B3/ 4
T1 2m0 / m1 5.127 / B1/ 4或B 691/ T14
A 4Bm0
B 2 W /3 4
173
2
W
T14
/3
代入后得到双参数海浪谱:
S
173
2
W
/3
T145
%4.双参数海浪谱 h=2.8; w=0.3:0.01:4; B=3.12/(h^2)./(w.^4); T1=5.127./(B.^0.25); S4=173*h^2./(T1.^4)./(w.^5).*exp(-691./(T1.^4)./(w.^4)); plot(w,S4,'m-')
1.4
1.2
6.JONSWAP谱
b.由波高和波浪周期表示的谱公式
S
319.34
2 W /3
Tp45
1948
Tp 4
3.3e
xp
0.159Tp
2 2
12
式中:Tp为谱峰周期,波谱峰值对应的周期。
7.Bretschneider谱
布氏于1959年由无因次波高和无因次波长的联合分布函数导出二参数 谱,适用于成长阶段或者充分成长的风浪。后经日本光易恒(Mitsuyasu)改进 如下: