什么是51单片机最小系统
什么是单片机最小系统_单片机的最小系统简述
什么是单片机最小系统_单片机的最小系统简述单片机简介单片机是一种集成电路芯片。
它采用超大规模技术将具有数据处理能力的微处理器(CPU)、存储器(含程序存储器ROM和数据存储器RAM)、输入、输出接口电路(I/O接口)集成在同一块芯片上,构成一个即小巧又很完善的计算机硬件系统,在单片机程序的控制下能准确、迅速、高效地完成程序设计者事先规定的任务。
所以说,一片单片机芯片就具有了组成计算机的全部功能。
由此来看,单片机有着一般微处理器(CPU)芯片所不具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。
然而单片机又不同于单板机(一种将微处理器芯片、存储器芯片、输入输出接口芯片安装在同一块印制电路板上的微型计算机),单片机芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果对它进行应用开发,它便是一个小型的微型计算机控制系统,但它与单板机或个人电脑(PC机)有着本质的区别。
单片机的应用属于芯片级应用,需要用户(单片机学习者与使用者)了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。
不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。
这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。
软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。
开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源。
要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。
单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,例如通信产品、家用电。
51单片机最小系统电路板的设计
51单片机最小系统电路板的设计51单片机是常用的单片机之一,它具有速度快、功能强大、成本低廉等优点,被广泛应用于各种电子设备中。
为了使51单片机能够正常工作,我们需要设计一个最小系统电路板,下面就是其设计内容。
1.硬件设计1.1 电源部分51单片机的供电电压范围为2.7V~5.5V,一般使用稳压电源供电,以保证稳定、可靠的工作。
电源电路主要由稳压电路和滤波电路组成。
稳压电路通常选择7805稳压器,它能将输入的直流电压稳定在5V,并且输出电路中需要连接两个电容,一个是输入电容,一个是输出电容,以保证电路的稳定性。
1.2 时钟部分51单片机需要工作时钟才能正常运行,因此时钟电路是最小系统电路板中最关键的部分。
时钟电路的主要功能是为51单片机提供稳定、准确的时钟信号。
时钟电路通常包括晶体振荡器、电容、电阻和二极管等元器件。
晶体振荡器的选用要注意其磁耦合系数和负载能力等特性。
1.3 外围设备接口部分最小系统电路板除了提供基本的电源管理和时钟信号外,还需要提供一些需要控制的外围设备接口。
比如串口、I2C总线、SPI总线等接口,其需要连接外部被控设备才能起到作用。
2.软件设计51单片机的软件设计主要分为两部分,一部分是编写应用程序,一部分是编写系统初始化代码。
其中,应用程序主要根据用户需求编写。
而系统初始化代码则包括单片机时钟频率的初始化、外设中断的初始化等操作,以保证整个系统的功能正常运行。
3.最小系统电路板的布线设计最小系统电路板的布线设计应考虑以下因素:3.1 信号布线应保持短路,以保证电路的稳定性和抗干扰性;3.2 信号箱与高压箱应分离布置,以避免高压箱的辐射干扰影响到信号箱;3.3 信号箱内应将尽可能多的元器件与信号线层级分开,以便进行布线。
4.最小系统电路板制作在制作最小系统电路板时,应注意以下问题:4.1 电源和时钟部件应位于板的边缘部分,以方便使用者连接电源和时钟信号;4.2 布线过程中,应采用放大路线等技术来针对电路的高频特性进行优化布线,以保证系统的信号完整性。
单片机复习资料
51单片机内部结构:集成了中央处理器(CPU)、存储器系统(RAM和ROM)、定时/计数器、并行接口、串行接口、中断系统和一些特殊功能寄存器中央处理器:单片机cpu包含运算部件和控制部件算数逻辑ALU为8位运算器ALU有位计算器可以对一位二进制数据进行置位、清零、求反、测试转移及位逻辑与,或等处理累加器ACC为8位寄存器是CPU中使用最频繁的存储器程序计数器PC是16位寄存器,它存放下一条要执行的指令的地址堆栈指针SP用来控制堆栈段内容的入栈(输入)与出栈(输出),51单片机中SP始终指向栈底位置数据指针DPTR是16位寄存器,通常用DPTR实现对片外数据存储器64KB空间的访问程序存储器:程序存储器外部内部共用64KB存储空间8031,8032内部没有程序存储器,只能外部扩展64KB。
8051,8751内部有4KB程序存储器地址范围0000H-0FFFH;8052,8752内部有8KB程序存储器,地址范围0000H-1FFFH,外部最多可扩展64KBEA引脚接低电平从片外程序存储器取命令,高电平从片内程序存储器取命令8031,8032的EA只能保持低电平(指令只能从片外程序存储器取得)51单片机片内随机存储块128字节编址00H-7FH 特殊功能寄存器128字节编址80H-0FFH 工作寄存器组区:00H-1FH单位为工作寄存器组区共32字节工作寄存器有0,1,2,3四组,每组8个寄存器,依次用R0-R7表示和使用堆栈在存储器中按(先入后出,后入先出)原则进行管理的一段的存储区域,通过堆栈指针SP管理堆栈主要是为子程序调用和中断调用设立的,用于保护断点地址和保护现场状态根据入栈方向堆栈分为向上,向下生长型向上生长型堆栈入栈时SP指针先加1,指向下一个高地址单元,出栈时先把SP指针指向单元的数据送出,再把SP指针减1,数据是向高地址单元储存的;向下生长型堆栈入栈时SP 指针先减1,指向下一个低地址单元,再把数据送入当前SP指针指向的单元,出栈时先把SP指针指向单元的数据送出,再把SP指针加1,数据是向低地址单元储存的51单片机堆栈是向上生长型,位于片内随机储存块中,堆栈指针SP为8位51单片机当数据存储器不够时,可扩展外部数据存储器,扩展外部数据存储器最多为64KB 51单片机输入/输出接口:P0口是三态双向口,可作为地址/数据分时复用接口,也可作为通用I/O接口P1口是准双向口,它只能作为通用I/O接口使用P2口是准双向口,用途为:通用I/O接口和高8位地址线P3口作为通用I/O接口,第二功能输出线为高电平,与非门3的输出取决于锁存器状态,作为第二功能使用时,锁存器Q输出端必须高电平,否则V1管导通引脚将被钳位在低电平外部引脚:外接晶体引脚:XTAL1、XTAL2(19、18引脚) 控制线:ALE/PROG(30引脚)、PSEN(29引脚)、RST/Vpd(9引脚)、EA/Vpp(31引脚)51单片机工作方式:复位方式、程序执行方式、单步执行方式(调试)每一个机器周期包含12个时钟周期,每个机器周期ALE信号固定出现两次,分别在(S1P2、S4P2)每出现一次信号,CPU就进行一次取指令的操作51单片机的寻址方式按操作数的类型分为数的寻址和指令寻址,数的寻址根据数的种类有常数寻址(立即寻址)、寄存器数寻址(寄存器寻址)、存储器数寻址(直接寻址方式、寄存器间接寻址方式、变址寻址方式)和位数据寻址(位寻址)。
单片机最小系统与电源电路
单片机最小系统介绍单片机最小系统主要由电源、复位、振荡电路以及扩展部分等部分组成。
最小系统原理图如图4.1所示。
图4.1最小系统电路图电源供电模块图4.1.1 电源模块电路图对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。
51单片机虽然使用时间最早、应用范围最广,但是在实际使用过程中,一个和典型的问题就是相比其他系列的单片机,51单片机更容易受到干扰而出现程序跑飞的现象,克服这种现象出现的一个重要手段就是为单片机系统配置一个稳定可靠的电源供电模块。
此最小系统中的电源供电模块的电源可以通过计算机的USB口供给,也可使用外部稳定的5V电源供电模块供给。
电源电路中接入了电源指示LED,图中R11为LED的限流电阻。
S1为电源开关。
复位电路图4.1.2 复位电路图单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。
单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。
当复位电平持续两个机器周期以上时复位有效。
复位电平的持续时间必须大于单片机的两个机器周期。
具体数值可以由RC电路计算出时间常数。
复位电路由按键复位和上电复位两部分组成。
(1)上电复位:STC89系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。
(2)按键复位:按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。
振荡电路图4.1.3 振荡电路图单片机系统里都有晶振,在单片机系统里晶振作用非常大,全程叫晶体振荡器,他结合单片机内部电路产生单片机所需的时钟频率,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率。
51单片机最小系统原理图
接触过单片机的朋友们都时常会听到别人提"最小系统"这个词.那到底什么是最小系统,有怎样设计称上"最小"呢?下面让依依电子来告诉大家:单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,单片机+晶振电路+复位电路,便组成了一个最小系统.但是一般我们在设计中总是喜欢把按键输入、显示输出等加到上述电路中,成为小系统。
应用89C51(52)单片机设计并制作一个单片机最小系统,达到如下基本要求:1、具有上电复位和手动复位功能。
2、使用单片机片内程序存储器。
3、具有基本的人机交互接口。
按键输入、LED显示功能。
4、具有一定的可扩展性,单片机I/O口可方便地与其他电路板连接。
51单片机学习想学单片机,有一段时间了,自己基础不好,在网上提了许多弱智的问题,有一些问题网友回答了,还有一些为题许多人不屑一顾。
学来学去,一年多过去了,可是还是没有入门,现在我就把我学习中遇到的一些问题和大家分享一下,希望在大虾的帮助下能快速的入门:)在学习之前我在网上打听了一下atmel公司的单片机用的人比较多,avr 系列这几年在国内比较流行,但是考虑到avr还是没有51系列用的人多,51系列的许多技术在实践中都已经的到了前人的解决,遇到问题后,有许多高人可以帮助解决,所以这次学习,选用了atmel公司的at89s52,来进行学习。
学习单片机是需要花费时间实践的;学之前我们先准备好所需的东西一、所需硬件at89s52一片;8m晶振一个,30pf的瓷片电容两个;10uf电解电容一个,10k的电阻一个;万用板(多孔板)一块;其他的器件如电烙铁一把30w的,松香,焊锡若干,如果是第一次学习,不知道这些东西,没关系,以下是它们的照片:Atmel公司生产的at89s528m晶振22pf瓷片电容电解电容图1/4 w 10k 的电阻普通的电木万用板好了,有了这些东西,我们就可以把它们组合到一起做成我们的最小系统了:)有了这些东西我们怎么焊接丫?不用着急,过一会我们把原理图给大家画出来大家就会了。
河大版-信息技术-六年级下册-单片机最小系统
单片机最小系统1.绪论由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。
目前,可用于MCS-51系列单片机开发的硬件越来越多,与其配套的各类开发系统、各种软件也日趋完善,因此,可以极方便地利用现有资源,开发出用于不同目的的各类应用系统。
单片机最小系统是在以MCS-51单片机为基础上扩展,使其能更方便地运用于测试系统中,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被测试的技术指标,从而能够大大提高产品的质量和数量。
单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,称为在实时检测和自动控制领域中广泛应用的器件,在工业生产中称为必不可少的器件,尤其是在日常生活中发挥的作用也越来越大。
本课题设计主要在MCS-51单片机上扩展I/O口,扩展定时器定时范围,扩展键盘显示接口。
适合于我们学生用于单片机的学习掌握和一些各种科研立项等的需求。
因此,研究单片机最小系统有很大的实用意义。
2.单片机概述2.1 什么是单片机单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU 集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
用专业语言讲,单片机就是在一块硅片上集成了微处理器、存储器及各种输入/输出接口的芯片。
2.2 单片机的发展简史早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
51单片机最小系统设计
一、内容及要求内容:设计制作一个51最小系统,用最小系统控制8个发光2极管。
要求:全部点亮,依次点亮,交换点亮;用最小系统控制蜂鸣器;用最小系统控制电机。
二、设计思路使用AT89C51单片机时无须外扩存储器。
因此,本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机.八个发光二极管D1-D8分别接在单片机的P2。
0-P2.7接口上,当给P2。
0口输出“0”时,发光二极管点亮,当输出“1"时,发光二极管熄灭。
可以运用输出端口指令MOV P0,A或MOV P0,#DATA,只要给累加器值或常数值,同理,接在P2.1~P2.7口的其他7个LED的点亮和熄灭的方法同LED1。
因此,要实现图2-1 主程序流程图流水灯功能,我们只要将发光二极管LED1~LED8依次点亮、熄灭,8只LED灯便会一亮一暗的成流水灯了.在此我们还应注意一点,由于人眼的视觉暂留效应以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到闪烁效果。
程序启动时跳转到键盘判断模块程序中,此程序里面包含Key1~Key5的按键情况判断,循环检测直到有按键按下的时候,程序转去相对应按键的彩灯显示的花型模块,与此同时,当按键Key6有闭合时,程序中调用延时程序程序时,给延时参数赋值上另一个值,是延时程序延时时间发生改变,以达到不同快慢节奏闪烁的彩灯.具体程序流程图2-1所示。
三、硬件设计3。
1 直流稳压电源电路对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源电路的稳定可靠是系统平稳运行的前提和基础.电子设备除用电池供电外,还采用市电(交流电网)供电。
通过变压、整流、滤波和稳压后,得到稳定的直流电。
直流稳压电源是电子设备的重要组成部分!本项目直流稳压电源为+5V。
如下图所示:直流稳压电源的制作一般有3种制作形式,分别是分立元件构成的稳压电源、线性集成稳压电源和开关稳压电源。
单片机最小系统
单片机最小系统单片机最小系统是指以单片机为核心,配以必要的外围电路,实现一定功能的电路系统。
它通常包含单片机、电源、时钟电路、复位电路和程序存储器等部分。
下面将详细介绍单片机最小系统的构成和特点。
单片机:单片机是整个系统的核心,它负责数据处理和控制信号输出。
常用的单片机型号有AT89CPIC16F877A等。
电源:为单片机提供电能,一般采用直流电源,如5V、3V等。
时钟电路:为单片机提供时钟信号,常用的时钟芯片有0592MHz和4MHz等。
复位电路:当单片机出现程序跑飞或异常情况时,可以通过复位电路使单片机重新启动。
常用的复位芯片有MAX811等。
程序存储器:用于存储单片机程序,常用的存储器有EPROM、EEPROM 和Flash等。
结构简单:单片机最小系统以单片机为核心,配以外围电路,结构简单,易于实现。
功能灵活:通过编程,单片机可以实现各种不同的功能,如数据采集、控制输出、通信等。
可靠性高:由于单片机最小系统结构简单,所以其可靠性较高,适用于各种工业控制和智能家居等领域。
成本低廉:单片机最小系统的硬件成本较低,适用于各种低成本应用场景。
单片机最小系统是一种简单、灵活、可靠且低成本的电路系统,广泛应用于各种嵌入式系统开发中。
随着物联网、智能家居等领域的快速发展,单片机最小系统的应用前景也将更加广阔。
在嵌入式系统和智能硬件领域,单片机最小系统作为一种基本的控制器单元,具有广泛的应用价值。
本文将介绍单片机最小系统的设计与应用,包括系统设计、系统应用和系统优化等方面的内容。
单片机最小系统通常由微处理器(MCU)、电源电路、时钟电路和复位电路等组成。
在设计单片机最小系统时,需要根据具体的应用需求选择合适的微处理器,并搭建相应的电源电路、时钟电路和复位电路。
单片机最小系统的架构设计应考虑应用需求和系统可靠性。
一般而言,系统架构应包括以下几个部分:(1)微处理器:作为系统的核心,微处理器负责数据计算、处理和传输等任务。
51单片机最小系统
51系列单片机最小系统设计与调试实验实验指导书目录一:实验目的 (1)二:原理 (1)三:实训任务. (2)四:最小系统的构成 (3)五:程序 (7)六:心得体会 (7)一:实验目的1. 了解单片机的基本工作原理2. 学习并掌握相关软件的使用方法(Protel、keil)2. 掌握单片机片内程序存储器下载方法3. 掌握单片机程序设计(汇编及C51)二:原理1、什么是单片机单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
用专业语言讲,单片机就是在一块硅片上集成了微处理器、存储器及各种输入/输出接口的芯片。
2、最小系统的概念单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,单片机+晶振电路+复位电路,便组成了一个最小系统.但是一般我们在设计中总是喜欢把按键输入、显示输出AT89C51高性能8位单片机功能AT89C51提供以下标准功能:8K字节Falsh闪速存储器,256字节内部RAM,32个I/O口线,3个16位定时/计数器,一个6向量两级中断结构,一个全双工串行通信口,片内震荡器及时钟电路,同时A T89C51可降至0HZ的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,时/计数器,串行通信口及中断系统持续工作。
掉电方式保存RAM中的内容,但震荡器停止工作并禁止其他所有部件工作等加到上述电路中,成为小系统三:实训任务.1)认识MCS-51的ROM及片外RAM空间:认识51系列单片机的程序存储器(ROM)的空间范围;汇编指令编码在ROM中存储形式;掌握指令编码和指令编码所在地址的概念;了解51系列单片机的程序存储器(ROM)固定地址的用途。
MCS-51单片机的引脚定义及最小应用系统(精)
XTAL2
+5V
805 1 875 1
+5V EA
图 6-2 8051/8751最小应用系统
6. 2
MCS-51单片机外部存储器的扩展
一、 外部程序存储器的扩展及取指过程
CE A15
P2.7 P2.0
~ ~
~
A8 A7
803 1
地址 锁存器 P0.7 P0.0 PSEN
外部 程序 存储器
0K~64K
8155
PC3 PC4 RD WR PC5
图 6-12 8155方式4的逻辑结构图
6.作定时/计数器用
表 6-4 8155定时器输出方式
M2 M1 方 式 定时器输出方波
0 0
单个方波
0 1
连续方波
1 0
在终止计数时输出单个脉冲
1 1
连续脉冲
P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 ¿ Ø Ö Æ Ü × Ï ß (CB) +5V PSEN EA ALE RESET VCC VSS P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 ALE G D7 D6 D5 D4 D3 D2 D1 D0 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
EF02H 通用I/O口B 0 1 I/O口 EF03H 口C
8155 RESET
EF04H 计数值低8位
图 6-10 扩展一片8155的基本方案
51单片机最小系统原理
51单片机最小系统原理
51单片机最小系统是指由51单片机芯片、时钟电路、复位电路和电
源电路等组成的最基本的硬件系统。
它是进行51单片机软件开发和运行
的基础,对于学习和应用51单片机技术来说非常重要。
下面将详细介绍
51单片机最小系统的原理。
1.51单片机芯片
51单片机是由英特尔公司推出的一种8位微控制器,是指基于哈佛
结构、具有复杂存储器结构和指令集的通用型单片机。
51单片机具有很
强的通用性,广泛应用于各种嵌入式系统和控制系统中。
常用的51单片
机芯片有AT89C51、AT89S52等。
2.时钟电路
时钟电路是指为51单片机提供稳定的时钟信号的电路。
由于51单片
机是以时序为基础进行工作的,因此时钟信号对于单片机的运行至关重要。
一般来说,时钟电路采用晶体振荡器作为时钟源,晶体振荡器的频率一般
为11.0592MHz。
时钟电路还包括电容和电阻等元件,用于保持晶体振荡
器的稳定性。
3.复位电路
复位电路是指对51单片机进行复位操作的电路。
当51单片机上电或
按下复位按钮时,复位电路会向单片机的复位引脚发送一个复位信号,使
单片机回到初始状态。
复位电路一般由电源滤波电路、复位电容和复位电
阻等元件组成。
4.电源电路
电源电路是指为51单片机提供稳定的电源电压的电路。
由于51单片机对电源电压的要求较高,一般在3.3V至5V之间,因此电源电路需要将输入的电源电压进行适当的处理,使其保持在合适的范围内。
电源电路一般由稳压电路、电容和电阻等元件组成。
C51最小系统的电路原理
C51单片机最小系统的电路原理与制作——吴越1 C51单片机最小系统电路图及电路原理单片机最小系统,是指用最少的元件组成并可工作的单片机系统,相关的资料网上或书店都很多。
图1为一个常见的单片机最小系统电路图。
C51最小系统电路由复位电路、时钟电路组成。
另外还需要DC+5V的电源最小系统才能工作。
(1)复位电路:复位电路在单片机系统中很关键,当程序运行不正常或死机时,就需要进行复位,一般有两种复位方式。
①上电复位:由电容C3和电阻R1串联组成,系统一通电,RST脚(9脚)为高电平,这个高电平持续的时间由电路的RC值来决定。
典型的C51单片机当RST脚的高电平持续两个机器周期以上就将复位,适当组合RC的取值就可以保证可靠的复位。
一般C3取10μF、R1取10K。
也有不同取值的,原则是RC组合要在RST脚上产生2个机器周期以上的高电平。
②手动复位:由电阻R2和开关S组成,R2取值没有严格的要求,一般能把复位脚的电压下拉至0.5V以下即可,可以把R2理解为缓冲电阻或与C3、R1组成防抖动电路,也有不用R2的。
单片机通电启动后,电容C3两端的电压持续充电约为5V,此时电阻R1两端的电压接近于0V,RST脚为低电平,系统进入正常工作状态。
当按下开关S时,开关导通,电容被短路,电容释放之存储的电量。
电容两端的电压从5V降到约等于0V,电阻R1两端的电压上升到约等于5V,RST脚为高电平,系统进入复位状态。
(2)时钟电路:时钟电路由晶振CY和C1、C2组成,一般晶振的取值1.2MHz~24MHz。
典型的晶振取11.0592MHz或12MHz,11.0592MHz适用于串口通讯,12MHz适用于定时控制,C1、C2一般取15pF~50pF。
如果要自己设计单片机系统的PCB板,注意,C1、C2要紧靠晶振CY,并且晶振CY和C1、C2要紧靠C51芯片,以保证振荡器可靠的工作。
系统通电后可以检测一下晶振是否起振。
若起振,可以用示波器观察到XTAL2会输出很漂亮的正弦波波型,也可以用万用表测量(用直流档)XTAL2和地之间的电压,可以看到有2V左右的电压(有效电压值)。
3-51单片机引脚与最小系统
/CE或/CS,以便选中芯片。 读 / 写:CPU向外部设备发出的读/写控制命令。
第11页,共17页。
第12页,共17页。
解决地址锁存的问题 最常用的芯片是74LS373
8D锁存器,使用方法及控制逻
XTAL 2 XTAL1
VSS
9
32
10
11
31
12 13
8051 30
14
29
15
16
28
17
18
19
20
21
p0.7 Vpp / EA ALE / PROG PSEN p2.7
p2.0
第2页,共17页。
8051 8751
8031
AT89C51 AT89S51
(1)主电源引脚
Vss 、 Vcc
(2)外接晶振引脚 XTAL1 、 XTAL2
不同机器指令周期不一样;即使相同机器,不同的指令其指令周 期也不一样。
一个指令周期含若干机器周期(单、双、四周期)
第16页,共17页。
小结:
1. MCS-51单片机有多少外部引脚?单
片机外部引脚的功能?
2. 复位的概念,复位后的状态及复位 的电路实现
3. 51单片机最小系统的特征
4. 单片机时序、机器周期的概念 5.ALE、EA、PSEN、RET的作用?
第8页,共17页。
该系统的资源如下: 4KB ROM,128B RAM;
五源中断系统;
两个十六位加一定时 / 计数器;
一个全双工串行UART;
四个并行I / O口。 2)无ROM的单片机的硬件最小系统 8031单片机片内无ROM,若要正成最小系统。外接ROM后, P2口、P0口均被占用只剩下P1、P3口作I / O口用,其它功能 不变。
DXP第四讲&51单片机第一讲---51最小系统板和IO口
1、单片机的介绍
单片机是一种集成电路芯片,是采用超大 规模集成电路技术把具有数据处理能力的中央 处理器CPU随机存储器RAM、只读存储器ROM、 多种I/O口和中断系统、定时器/计时器、UART 通信等功能(可能还包括显示驱动电路、脉宽 调制电路、模拟多路转换器、A/D转换器等电 路)集成到一块硅片上构成的一个小而完善的 微型计算机系统,在工业控制领域的广泛应用。 从上世纪80年代,由当时的4位、8位单片机, 发展到现在的32位300M的高速单片机。
DXP第四讲& 51单片机第一讲
------位风杰
课前的话
关于上次的考试,只作为院赛选拔 关于培训(很快,重点还是靠自己) 师傅领进门,修行靠个人 本学期培训计划
本学期计划
5月4日 :51最小系统和IO口的介绍 5月11日:院赛,停课 5月18日:51定时器和外部中断 5月25日:UART和AD(简易电压表) 6月1日:校赛,停课 6月8日:仿真软件(简单讲讲,自学) 6月15日:看情况,期末了
2、管脚分类
(STC12C5A60S2为例)
输入输出口,即IO口 电源(VCC, GND) 晶振(XIN, XOUT) 复位(RESET) ALE, NA, EX_LVD(了解)
32个 2个 2个 1个 3个
3、管脚复用
简单来说,就是一个管脚有多种用途; 既可以当做普通IO口来用,也可以由某 些特定的功能(外部中断口,AD输入口 等) 如P30,P31即可用作普通IO口,又可以作 为外部中断输入口
51最小系
原理图
单片机IO口
输入输出口 可以输出高低电平来控制外围电路 可以模拟通信协议,与其他芯片通信 也可以作为第二功能输入输出脚(PWM,AD) Proteus 简单介绍
[51最小单片机系统文件]用proteus绘画51单片机最小系统
[51最小单片机系统文件]用proteus绘画51单片机最小系统篇一: 用proteus绘画51单片机最小系统[单片机晶振电路原理]用proteus绘画51单片机最小系统——简介单片机的最小系统是单片机系统的核心,最小系统都包括电源、晶振、复位电路这三部分组成,怎么用proteus绘画最小系统?接下来一步一步教大家。
[单片机晶振电路原理]用proteus绘画51单片机最小系统——详细知识[单片机晶振电路原理]用proteus绘画51单片机最小系统一首先打开proteus系统软件,网上找到最小系统的原理图,按原理绘制。
[单片机晶振电路原理]用proteus绘画51单片机最小系统二在proteus中的中选择所需要的零件有电阻RES、电容CAP、电解电容CAP-ELEC、复位开关BUTTON、晶振CRYSTAL、最后是单片机A T89C51[单片机晶振电路原理]用proteus绘画51单片机最小系统——方法/步骤2[单片机晶振电路原理]用proteus绘画51单片机最小系统一接下来就开始在窗口把所需要的元件都放在绘图窗口中。
首先绘制复位电路。
[单片机晶振电路原理]用proteus绘画51单片机最小系统二复位电路绘制完成绘制晶振电路,晶振是与两个并联的电容串联在电容中间接地。
[单片机晶振电路原理]用proteus绘画51单片机最小系统三最后在EA出画出+5v电源。
在晶振与复位电路中画出电源和接地符号。
[单片机晶振电路原理]用proteus绘画51单片机最小系统四把各个元器件的属性改下,改成自己需要的大小,比如电阻的10K。
[单片机晶振电路原理]用proteus绘画51单片机最小系统五proteus中单片机的电源是默认就被接好的不需要我们绘制。
最后单片机最小系统就绘制完成。
篇二: 简单的nodejs 文件系统读写例子。
在nodejs中,可以通过fs模块进行文件的I/O操作。
API 链接地址:下面进行fs文件系统的使用实例:1、模块调用声明:var fs= require;var path = require;fs为文件模块,path为系统路径模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是51单片机最小系统
单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.
下面给出一个51单片机的最小系统电路图.
说明
复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让RC 组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路
分析相关书籍.
晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)
单片机:一片AT89S51/52或其他51系列兼容单片机
特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.
复位电路:
一、复位电路的用途
单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。
单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。
单片机复位电路如下图:
二、复位电路的工作原理
在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?
在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。
所以可以通过按键的断开和闭合在运行的系统中控制其复位。
开机的时候为什么为复位
在电路图中,电容的的大小是10uF,电阻的大小是10k。
所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。
也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。
这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。
所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。
在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,
而大于1.5V的电压信号为高电平信号。
所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。
按键按下的时候为什么会复位
在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。
当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。
随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。
根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST 引脚又接收到高电平。
单片机系统自动复位。
总结:
1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。
2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。
51单片机最小系统电路介绍
1.51单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。
2.51单片机最小系统晶振Y1也可以采用6MHz或者11.0592MHz,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。
3.51单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好
4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。
设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。
计数值N乘以机器周期Tcy就是定时时间t。
设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。
在每个机器周期的S5P2期间采样T0、T1引脚电平。
当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。
由于检测
一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。
当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。