Liqui-Cel液体脱气膜使用说明书(中文译本)

合集下载

liquiTOC 操作指南

liquiTOC 操作指南

liquiTOC 操作指南一.开机顺序1.开启电脑和打印机2.开启 liquiTOC主机,等待仪器初始化结束3.进入liquiTOC 软件4.开启载气: 设定气体钢瓶的减压阀的第二级表的压力指示0.1-0.12MP(1.0-1.2 bar),此时,电脑压力显示:0.95-1.0 bar 流速:200 ml/min (TOC mode)5.仪器检漏Option/Diagnosis 使用仪器专用的轮式夹,观察流速显示为零.6.仪器升温:催化剂加热炉:800℃二.测定前的检查仪器准备状态程序:1.Maintenance intervals o.k. 查看仪器维护状况。

1.Gas on 气体是否开启2.Pressure and flow rate display o.k. 压力和流速是否正常Pressure 约0.95 bar压力。

Flow rate MFC and FM流速: 200 ml/min. (TOC积分时,需一稳定的流速)3.Drying tube still enough capacity 干燥管至少1/3未消耗4.Syringe and sample loop air-free 注射器器和螺旋管无气泡5.IR signal small and stable IR信号小而稳定6.Furnace to nominal temperature 加热炉设定温度催化剂炉温:800℃, 反应炉:反应炉温:<90℃7.Water and acid stock o.k. 水和酸的储量是否正常8.单击标志“I”进入自动操作三. 初始化测试(空白测试)1.整个系统必须用去离子水(TOC < 0.5 mg/l) 清洗直至到无TOC。

程序1. options—maintenance—ventilation更换进样环管路里的水驱赶管路内气泡程序2. options—maintenance—flush排出进样气路系统空气2.空白测试(操作模式:TIC-NPOC)1)在System/Mode,选择TIC-NPOC2)打开载气并冲洗10分钟3)在System / Feeding,选择自动进样器的重复进样次数4)在Text-View / Name,双击Name下的一栏,输入“样品名称”5)在Conc.range,双击conc.range下的一栏,选择并输入指定浓度(标准曲线浓度)6)激活“I”是自动操作 .7)激活“I/O”是单次分析.8)超纯去离子水的空白测定:a)100ml C/l 浓度范围样品测试时,TIC和NPOC的空白的峰面积要求应小于<7.0而且测定结果稳定b) 5 ml C/l 浓度范围样品测试时: TIC和NPOC的空白的峰面积要求应小于<2.0而且测定结果稳定9.样测定: 例如:20mg TIC/20mg NPOC /l或50mg TIC/50mg NPOC/ l,检查测量结果的稳定性。

去除水中二氧化碳

去除水中二氧化碳

Membrana – CharlotteA Division of Celgard, LLC 13800 South Lakes Drive Charlotte, North Carolina 28273 USAPhone: (704) 587 8888Fax: (704) 587 8585Membrana GmbHOehder Strasse 2842289 WuppertalGermanyPhone: +49 202 6099 - 658Phone: +49 6126 2260 - 41Fax: +49 202 6099 - 750Japan OfficeShinjuku Mitsui Building, 27F1-1, Nishishinjuku 2-chomeShinjuku-ku, Tokyo 163-0427JapanPhone: 81 3 5324 3361Fax: 81 3 5324 3369ISO 9001:2000ISO 14001:2004去除水中二氧化碳就小水量的反渗透(RO)和离子交换的水处系统而言,Liqui-Cel脱气膜能够为最终用户在化学再生费用上每年节约数千美金的运行费用。

二氧化碳很容易被脱气膜去除,当二氧化碳(CO2)脱除后,阴离子交换负荷会大大降低。

从而减少阴离子的再生频率通过减少阴离子的再生频率, 从而减少NaOH的消耗量。

图示:6m3/h水处理系统NaOH年节约成本。

这些数据是按50%的NaOH 成本USD0.27/Kg计算的。

图示中显示在三种不同的PH值下,采用1支4英寸Liqui-Cel脱氧膜的情况。

能够实现最大的成本节约的情况是PH小于7,此时有更多的二氧化碳得以去除。

而在高PH值时,二氧化碳以离子形态出现而不容易除去。

脱气膜中空纤维需要空气吹扫。

空气吹扫可采用空压机,鼓风机,或是用真空泵抽吸举例,采用0.5KW的小型鼓风机,年电力消耗成本为:USD300.00/年。

LIQIUCELL脱气膜膜手册

LIQIUCELL脱气膜膜手册

涂敷工厂的200 立方米/小时(880加仑/分钟)的14英寸膜系统微电子研究领域的18 立方米/小时(79加仑/分钟)的10英寸膜系统行业业绩 C on t a ct o rT yp ea聚烯烃膜容量Fiber Type1x3 辐射流式2.5x8 外流式4x13 外流式6x28 外流式6x28 无挡板10x28 外流式高纯度14x28 外流式X40X50XIND 聚烯烃膜微型膜组件 最大到200毫升/分钟X–1升/分钟布水管中空纤维液体出口膜丝滤芯外壳封闭端盖真空单个Liqui-Cel 6 x 28 NBTM膜元件处理容量:5-50加仑/分钟(1.1-11.4 立方米/小时)。

主要应用领域:只用于真空抽吸去除溶解氧。

Liqui-Cel NBTM设计是采用中空纤维膜的辐射流装置。

Liqui-Cel NBTM膜组件没有中间挡板。

而是由一个封闭端盖起导流挡板作用。

Liqui-Cel NBTM膜组件液体出口端在膜组件的侧面,液体辐射状流经中空纤维。

NB(无中间挡板)设计在没有吹扫气体只能采用真空抽吸操作模式的领域中具MiniModule ® 小型膜组件设计MiniModule ® 小型膜组件没有采用中间挡板导流设计。

这种膜组件采用液体从膜丝内壁流过,而膜丝外壁采用真空抽吸。

这些小型膜组件是为小流量而设计。

这些装置是专门用于生化技术和分析仪器的水中气体脱除。

模块化设计能够灵活地实现您的系统未来快速平衡方式保证了设备迅速启动。

单位体积内的膜面积最大化保证了产品的优秀性能和空间的使用效率。

不同的膜组件尺寸和材料选择适合于各种系统设计反渗透锅炉Liqui-Cel ®膜组件广泛用于各行各业。

在高纯和工业领域使用Liqui-Cel ®膜组件以提高产能和实现腐蚀控制已成为行业的标准。

下面图示当今Liqui-Cel ®膜组件的一些应用。

电脱盐/连续电脱盐反渗透离子交换反渗透反渗透在反渗透后离子交换或电脱盐(EDI)前去除CO2, 不仅减少化学消耗而且能使EDI达到最佳的运行状态。

3M Liqui-Cel 膜接触器入口水和扫气气体指南说明书

3M Liqui-Cel 膜接触器入口水和扫气气体指南说明书

Inlet Water & Sweep Gas Guidelines for 3M™ Liqui-Cel™Membrane ContactorsInlet water and sweep gas quality are important considerations when operating 3M™ Liqui-Cel™ Membrane Contactors. This document provides guidelines for inlet water and sweep gas conditions that may help prevent fouling of the membrane surface or scaling which can negatively impact performance. Design and operating guidelines are also available in the3M™ Liqui-Cel™ Membrane Contactor Design & Operating Guide which can be found on the /Liqui-Cel web site. This document and the Design &Operating Guide should be thoroughlyreviewed before designing andoperating a system.When operating a Liqui-Celmembrane contactor system, note thefollowing general recommendationsand considerations:• a comprehensive water qualityanalysis should be completed.Changes in water quality, such asseasonal variation, should be takeninto consideration;• a softener or cation exchanger ishighly recommended;• l iquid and gas inlet streamsshould always be pre-filtered; and• t he potential for a pH shift shouldbe assessed (for CO2removalapplications)The optimal filtration andpre-treatment arrangement willdepend on several variables,including the water source,operating conditions, biologicalmatter, organics, Total DissolvedSolids (TDS) and other factors.Additionally, some dissolved compounds will pass through any filter and could potentially deposit on the membrane surface. Particularly, agglomeration or precipitationof certain dissolved compounds could occur with pH changes. To prevent blocking or precipitation,we recommend a softener or cation exchanger followed by 5 µm absolute pre-filter as a minimum re-quirement. Seawater needs to be filtered to ≤ 5 microns and, depending upon the pH, further preventative action may be needed to prevent scaling. Placement downstream of a Sulphate Removal Unit (SRU) is highly recommended. The tables above provide minimum guidelines that may prevent potential membrane fouling and blockage.Additional Requirements Feedwater should be free of surfactants/solvents or oxidants (e.g. ozone, chlorine) to prevent wet-out or oxidation of the hydrophobic membrane. Small amounts of chlorine and oil can be removed by activated carbon. Biological fouling can be reduced with regular, frequent chemical cleaning or sanitization procedure (see Cleaning Guide for additional information).The physical operating limitationsof 3M™ Liqui-Cel™ Membrane Contactors, such as maximum operating temperatures or pressures, should also be considered. For additional information, refer to the3M™ Liqui-Cel™ Membrane Contactor Design & Operating Guide available at /Liqui-Cel.Technical Information: The technical information, guidance, and other statements contained in this document or otherwise provided by 3M are based upon records, tests, or experience that 3M believes to be reliable, but the accuracy, completeness, and representative nature of such information is not guaranteed. Such information is intended for people with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. No license under any 3M or third party intellectual property rights is granted or implied with this information.Product Selection and Use: Many factors beyond 3M’s control and uniquely within user’s knowledge and control can affect the use and performance of a 3M product in a particular application. As a result, customer is solely responsible for evaluating the product and determining whether it is appropriate and suitable for customer’s application, including conducting a workplace hazard assessment and reviewing all applicable regulations and standards (e.g., OSHA, ANSI, etc.). Failure to properly evaluate, select, and use a 3M product and appropriate safety products, or to meet all applicable safety regulations, may result in injury, sickness, death, and/or harm to property.Warranty, Limited Remedy, and Disclaimer: Unless a different warranty is specifically stated on the applicable 3M product packaging or product literature (in which case such warranty governs), 3M warrants that each 3M product meets the applicable 3M product specification at the time 3M ships the product. 3M MAKES NO OTHER WARRANTIES OR CONDITIONS, EXP RESS OR IMP LIED, INCLUDING, BUT NOT LIMITED TO, ANY IMP LIED WARRANTY OR CONDITION OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR ARISING OUT OF A COURSE OF DEALING, CUSTOM, OR USAGE OF TRADE. If a 3M product does not conform to this warranty, then the sole and exclusive remedy is, at 3M’s option, replacement of the 3M product or refund of the purchase price.Limitation of Liability: Except for the limited remedy stated above, and except to the extent prohibited by law, 3M will not be liable for any loss or damage arising from or related to the 3M product, whether direct, indirect, special, incidental, or consequential (including, but not limited to, lost profits or business opportunity), regardless of the legal or equitable theory asserted, including, but not limited to, warranty, contract, negligence, or strict liability.3M and Liqui-Cel are trademarks of 3M Company. All other trademarks are the property of their respective owners. © 2021 3M Company. All rights reserved.3M Company3M Separation and Purification Sciences Division13840 South Lakes Drive Charlotte, North Carolina 28273 USAPhone: +1 980 859 54003M Deutschland GmbH3M Separation and PurificationSciences DivisionÖhder Straße 2842289 Wuppertal GermanyPhone: +49 202 6099 - 0LC-1157Rev. 04/2021/Liqui-Cel。

GOALPURE 气液分离膜接触器系列产品说明书

GOALPURE 气液分离膜接触器系列产品说明书

艾科国际贸易(海南)有限公司P R O D U C T D E S C R I P T I O N产品说明书气液分离膜接触器系列产品公司简介GOALPURE是高频科技设立的产品独立子品牌,专注于超纯水与循环再生解决方案中的关键工艺产品及化学药剂的研发、推广和应用,以高频科技全资子公司艾科国际贸易(海南)有限公司为主体进行市场推广和行业应用。

我们立足自身在半导体高端制造行业超纯水领域的工艺经验和技术能力,分别与全球知名卷式膜分离制造商、国内反渗透膜龙头企业,中国离子交换树脂行业副理事长单位、国内吸附分离材料的龙头企业,以及中国膜接触器技术的“黄埔军校”、中国中空纤维膜接触器技术起源的专业化企业携手同行,聚焦于半导体超纯水工艺中反渗透、离子交换、膜脱气三大关键技术,联合研发并定向生产GOALPURE系列反渗透膜元件、树脂系列产品和气液分离膜接触器,更加精准且持续满足半导体超纯水系统中高端工艺和技术演进的要求。

此外,我们与国家科学技术进步奖获得单位、多项国家/行业标准制定单位、自然资源部直属科研机构携手,专注于半导体水处理化学药剂使用的特殊行业属性,联合研发并定制半导体制程过程中必不可缺的水处理化学药剂及相关解决方案,不断应对半导体生产高速增长、特别是高阶制程带来的多样化、高挑战的应用需求。

高频科技(高频美特利环境科技(北京)有限公司)成立于1999年,是国家高新技术企业和中关村高新技术企业。

公司专注于芯片、显示等半导体高端制造业二十多年,拥有资深的专业技术团队,立足超纯工艺能力,不断融汇国内外先进的水处理技术,积累了丰富的行业经验,长期服务于中芯国际、德州仪器、康宁、有研、燕东、格科、积塔、通威等国内半导体领域的顶级客户,同时也为饮料、医药等轻工行业提供专业水服务,获得荣获不同行业客户的高度认可。

在快速变化和发展的新时代背景下,我们秉承专业敬业,正直担当,持续精进,成就彼此的企业价值观,稳稳扎根,不惧困难,探索前行,致力于持续优化并赋能行业领先的超纯水与循环再生解决方案,为客户创造洁净、可持续的水环境。

Liqui-Cel脱气膜及常规使用问题解答

Liqui-Cel脱气膜及常规使用问题解答

Liqui-Cel脱气膜及常规使用问题解答Liqui-Cel® Extra-Flow产品对于向水或表面张力和水类似的液体中添加气体或对其脱气而言,是很理想的。

Liqui-Cel Extra-flow 接触器有多种尺寸,可以处理不同的 流量。

您只需根据您的流量需求简单选择产品尺寸即可。

接触器平行地加入,以便处理大于其在表格中列出的工艺流量。

目前为止,我们拥有最多可脱气7400 gpm (1696 m3/hr)的单系统。

我们的 SuperPhobic® 膜脱气器对于喷墨墨水、电镀溶液、显影剂和其它表面张力在20-40 dynes/cm间的溶液的脱气和去气泡,是很理想的。

我们的 MicroModules® 和 MiniModules® 是小型除泡器和脱气器,对于实验室规模流量高达3000 ml/min的成行除泡是很理想的。

请点击下面的链接,查看我们产品的完整数据表。

如果您在为您的脱气应用确定真空泵尺寸时需要帮助,请联系我们,获取更多的帮助。

除泡产品ߋ列流量 (一支膜件)MicroModule® 0.5 x 15-30 毫升/分钟MicroModule® 0.75 x 115-100 毫升/分钟小型膜元件1 x 5.5高达 500 ml/min小型膜元件1.7 x 5.5高达 2500 ml/min小型膜元件1.7 x 8.75高达 3000 ml/min气体运移 (O2、CO2、N2、VOC 去除和O2、CO2、N2、H吸收)产品ߋ列流量 (一支膜件)Liqui-Cel® 外流式2.5 x 80.1-0.7 立方米/小时Liqui-Cel® 外流式4 x 130.5-3.4 立方米/小时Liqui-Cel® 外流式4 x 28 1.1-6.8 立方米/小时Liqui-Cel® 外流式6 x 28 1.1-11.4 立方米/小时Liqui-Cel® 外流式大流量 8 x 20 5 - 50 gpm ( 1.1 - 11.4 m3/hr)Liqui-Cel® 8x20 不锈钢 5 - 50 gpm ( 1.1 - 11.4 m3/hr)Liqui-Cel® High Pressure 8 x 4025 - 125 gpm ( 5.7 - 28.4 m3/hr)Liqui-Cel® High Pressure 8 x 8050 - 150 gpm ( 11.4 - 34.1 m3/hr)Liqui-Cel® 外流式大流量10 x 2810-57立方米/小时Liqui-Cel® 工业级10 x 2810-48立方米/小时Liqui-Cel® 工业级14 x 2816-90.8立方米/小时Liqui-Cel® 工业级14 x 4016 – 125 立方米/小时低表面张力流体脱气 (墨水、显影剂、感光乳剂和油料))产品ߋ列流量 (一支膜件)SuperPhobic MicroModule® 0.5 x 15 - 30毫升/分钟SuperPhobic® 1 x 315-60毫升/分钟SuperPhobic® 2 x 6100-1,000毫升/分钟SuperPhobic® 2.5 x 80.1- 0.7 立方米/小时SuperPhobic® 4 x 130.7- 3.4 立方米/小时SuperPhobic® 4 x 281.1 - 6.8 立方米/小时技术服务产品ߋ列技术服务此文档涵盖了广泛的支持选项真空泵(配用于大型膜管)产品ߋ列 5.3 标准平方英尺/每分钟 (9 m 3/hr )到242标准平方英尺/每分钟(420 m 3/hr )50Hz 5.9 标准平方英尺/每分钟 (10 m 3/hr )到307 标准平方英尺/每分钟(520 m 3/hr )50Hz4x28、10x28等数字是什么意思?这些数字代表Liqui-Cel膜接触器外壳内芯子的大致尺寸。

真空脱气膜MD

真空脱气膜MD
Liquid Inlet
10 2021/2/10
GSMC UPW系统一段MD设计模式
进水
1
234
5
出水
进0.7Mp N2
共五组并联,每组2个串联
实用文档
11 2021/2/10
MD串联系统架构
N2 FEED
PI FI
FI
PRODUCT WATER
SAMPLE
CONTACTOR
CONTACTOR
FEED WATER
Gas strip
实用文档
5 2021/2/10
MD操作模式的发展
Strip gas
WaterTo Vacuum outlet
Water outlet
Strip gas
Water outlet
Strip gas
A
To Vacuum
Water
inlet
B
目前,一般采用C模式
实用文档
To Vacuum
DI Tank
Recycle
实用文档
Liqui-Cel Liqui-Cel
UPW Tank
Polisher No.1
Polisher No.2
UV No.2
UV No.1
ቤተ መጻሕፍቲ ባይዱ
CfoOr2
Removal Ion Bed
Life
Extension
Final
Filter
POU
N2 , O2 Removal
14 2021/2/10
Membrane Area: 15.1 ft2 (1.4 m2) All Polyolefin Contactor
MD 之性能曲线
Water Flow Rate (gpm)

内冷水真空膜脱气装置运行维护说明

内冷水真空膜脱气装置运行维护说明

内冷水真空膜脱气装置运行维护说明一、目的发电机内冷水真空膜脱气装置包括:真空泵、脱气单元、真空泵冷却系统、流量计、阀门等组件。

连续对部分内冷水进行旁路脱氧处理,降低内冷水中溶解氧和二氧化碳的含量。

二、技术原理膜脱气工艺是选择了一种微孔性聚丙烯憎水性膜,该膜表面对水没有亲和力,气体不能透过该膜,膜脱气元件采用了管壳式设计,憎水膜成了水、气的分界面,降低溶液的溶解气体分压,将水中的溶解气体向真空侧渗透。

本脱气装置中采用的脱气膜为美国Liqui-Cel®脱气膜。

水流在中空纤维的里面通过,而中空纤维的外面在真空泵的作用下将气体不断的抽走,并形成一定的负压,从而达到去除水中气体的目的。

三、运行步骤1、真空脱气装置运行条件:内冷水系统正常运行,内冷水微碱性处理装置正常投入,内冷水水箱充氮密封。

2、保持脱气装置真空泵冷却水系统处于流动状态,启动真空泵。

3、依次全部开启脱气装置出水总阀,开启进水总阀,利用进水阀调节脱气装置进水流量为2.0t/h。

4、为防止脱气膜的超压损坏,保持脱气装置出水阀处于全开状态,整定进水稳压阀至0.15MPa。

5、正常运行条件下,真空脱气装置单流程脱氧效率大于70%,在连续运行后,即可将内冷水中的溶解氧含量降至要求范围。

四、注意事项1、内冷水水箱必须充氮密封,充氮压力根据有关发电机运行说明实施。

2、为保护脱气膜,必须利用进水阀调节流量,出水阀保持全开状态,避免膜内管超压。

进水温度应小于50℃。

3、真空泵冷却系统必须保证有冷却水流过,才能开启,避免真空泵损坏。

4、发电机内冷水微碱性处理装置的技术原理是:通过提高内冷水PH值,使得铜线棒进入自钝化状态而达到防腐要求。

微碱性处理方式既可以在内冷水富氧状态下实现,也可以在内冷水处于贫氧状态下实施,实施效果与内冷水中含氧量无明显相关性,但与内冷水中二氧化碳含量相关。

东丽液体分离膜产品 RO 膜元件说明书

东丽液体分离膜产品  RO 膜元件说明书

目录第一章东丽集团及水处理事业介绍........................................................... - 5 -第一节东丽集团概况.. (5)第二节蓝星东丽膜科技(北京)有限公司简介 (6)第三节东丽集团水处理事业概要 (8)第二章东丽反渗透膜的研发及UTC膜片性能特点 ............................................. - 11 -第一节东丽反渗透膜的研发历史 (11)第二节东丽UTC膜片性能特点 (13)第三章东丽反渗透膜及纳滤产品选用指南 .................................................... - 19 -第一节东丽ROMEMBRA TM膜元件简介..................................................... - 19 -第二节东丽反渗透/纳滤膜产品命名方式...................................................... - 20 -第三节东丽反渗透/纳滤膜产品一览表 ....................................................... - 21 -3.1ROMEMBRA TM低压反渗透/纳滤膜元件 ................................................................................... - 21 -3.2ROMEMBRA TM高压反渗透膜元件............................................................................................. - 22 -第四节东丽反渗透/纳滤膜产品选用指南 (22)4.1按给水含盐量(TDS:mg/L) ............................................................................................................... - 23 -4.2用途分类表...................................................................................................................................... - 23 -4.3按给水类型及预处理方法分类...................................................................................................... - 24 -第四章东丽反渗透/纳滤膜元件性能特点与规范 (25)第一节极超低压反渗透膜元件TMH系列 (25)1.极超低压反渗透膜元件的性能 (25)2.TMH10A4英寸极超低压反渗透膜元件 (27)3.TMH20A-400C8英寸极超低压反渗透膜元件 (29)4.TMH20A-440C8英寸极超低压反渗透膜元件 (31)第二节超低压反渗透膜元件TMG系列 (33)1超低压反渗透膜元件的性能.......................................................................................................... - 33 -2TMG10D 4英寸超低压化学耐久性反渗透膜元件........................................................................ - 36 -3TMG20-370C 8英寸超低压反渗透膜元件.................................................................................. - 38 -4TMG20-400C 8英寸超低压反渗透膜元件.................................................................................. - 40 -5TMG20-440C 8英寸超低压反渗透膜元件.................................................................................. - 42 -6TMG20D -400 8英寸超低压高化学耐久性反渗透膜元件 ........................................................ - 44 -7TMG20D -440 8英寸超低压高化学耐久性反渗透膜元件 ........................................................ - 45 -第三节低压反渗透膜元件TM7系列 (48)1低压反渗透膜元件的性能.............................................................................................................. - 48 -2TM710D 4英寸低压高化学耐久性反渗透膜元件 ................................................................... - 51 -3TM720-370 8英寸低压反渗透膜元件 ...................................................................................... - 53 -4TM720-400 8英寸低压反渗透膜元件 ........................................................................................ - 55 -5TM720-440 8英寸低压反渗透膜元件 ........................................................................................ - 57 -6TM720C-440 8英寸低压高脱硼反渗透膜元件 .......................................................................... - 59 -7TM720D-370 8英寸低压高化学耐久性反渗透膜元件.............................................................. - 61 -8TM720D-400 8英寸低压高化学耐久性反渗透膜元件.............................................................. - 63 -9TM720D-440 8英寸低压高化学耐久性反渗透膜元件.............................................................. - 65 -第四节抗污染反渗透膜元件TML系列. (67)1抗污染反渗透膜元件的性能.......................................................................................................... - 67 -2TML10D 4英寸高化学耐久性抗污染反渗透膜元件 ................................................................. - 69 -3TML20N-400 8英寸宽流道抗污染反渗透膜元件 .................................................................... - 71 -4TML20D-370 8英寸高化学耐久性抗污染反渗透膜元件 .......................................................... - 73 -5TML20DA400 8英寸高化学耐久性抗污染反渗透膜元件 ......................................................... - 75 -6TML20D-400 8英寸高化学耐久性抗污染反渗透膜元件 .......................................................... - 77 -第五节海水淡化反渗透膜元件TM8系列 (79)1海水淡化反渗透膜元件的性能...................................................................................................... - 79 -2TM810C 4英寸标准型海水淡化反渗透膜元件 ............................................................................ - 82 -3TM820C-400 8英寸标准型海水淡化反渗透膜元件 ................................................................ - 84 -4TM820M-400 8英寸标准型高脱盐高脱硼海水淡化反渗透膜元件....................................... - 86 -5TM820M-440 8英寸标准型高脱盐高脱硼海水淡化反渗透膜元件....................................... - 88 -6TM820E-400 8英寸大通量海水淡化反渗透膜元件 ................................................................ - 90 -7TM820R-400 8英寸大通量高脱盐高脱硼海水淡化反渗透膜元件 ........................................ - 92 -8TM820R-440 8英寸大通量高脱盐高脱硼海水淡化反渗透膜元件 ........................................ - 94 -9TM810V 4英寸高通量高脱盐节能型海水淡化反渗透膜元件 .................................................... - 96 -10TM820V-400 8英寸高通量高脱盐节能型海水淡化反渗透膜元件 ........................................ - 98 -11TM820V-440 8英寸高通量高脱盐节能型海水淡化反渗透膜元件 ...................................... - 100 -12TM820K-400 8英寸超高脱盐高脱硼海水淡化反渗透膜元件 .............................................. - 102 -13TM820K-440 8英寸超高脱盐高脱硼海水淡化反渗透膜元件 .............................................. - 104 -第六节低压纳滤复合膜元件 (106)1TM610 4英寸低压纳滤膜元件 ................................................................................................ - 107 -2TM620N-400 8英寸低压纳滤膜元件...................................................................................... - 109 -3TM620-440 8英寸低压纳滤膜元件 ........................................................................................ - 111 -4TMN10H 4英寸低压纳滤膜元件............................................................................................. - 113 -5TMN20H-400 8英寸低压纳滤膜元件..................................................................................... - 115 -第七节东丽反渗透膜元件温度校正系数 .. (117)第五章水化学与预处理................................................................... - 118 -第六章反渗透单元设计................................................................... - 139 -第一节反渗透和纳滤的基本原理和概念 (139)1.1渗透 (139)1.2反渗透 (140)1.3反渗透和纳滤机理 (140)第二节基本术语和定义 (141)2.1死端过滤/错流过滤 (141)2.2回收率 (142)2.3脱盐率/透盐率 (143)2.4通量 (144)2.5浓差极化因子 (145)第三节系统的组成和配置 (145)3.1单膜组件系统 (146)3.2单段系统 (146)3.3多段系统 (147)3.4多级系统 (148)第四节系统的设计步骤 (149)第五节东丽反渗透系统设计软件使用指南 (152)第六节设计应用举例 (172)第七章反渗透膜元件的安装、操作与维护 ................................................... - 183 -第一节膜元件安装.. (183)1.1安装前准备工作 (183)1.2拆开膜元件包装 (183)1.3膜元件和零部件的组装 (185)1.4装填过程记录 (187)1.5初次启动检查 (187)第二节膜元件拆卸 (188)第三节RO系统启动检查 (188)3.1试运行前检查 (188)3.2日常操作中的定期启动校验 (190)3.3启动过程参数 (190)3.4高压泵(HPP)启动程序 (190)第四节RO系统关机注意事项 (193)4.1短期停机 (193)4.2长期停机 (193)第五节反渗透系统冲洗步骤 (194)第六节反渗透膜元件停机维护与保存 (194)6.1停机维护注意事项 (195)6.2反渗透膜元件保存 (195)第八章反渗透系统的化学清洗............................................................. - 196 -第一节反渗透化学清洗概述 (196)1.1引言 (196)1.2反渗透系统清洗说明 (196)1.3不使用化学物质的清洗程序 (197)1.4化学清洗药剂的选择与条件 (197)第二节几种典型清洗与消毒方法 (199)2.1柠檬酸清洗程序 (199)2.2十二烷基磺酸钠(N A-SDS)清洗剂清洗程序 (200)2.3六聚偏磷酸钠+盐酸的清洗程序 (201)2.4反渗透/纳滤膜元件的消毒方法 (202)第三节反渗透清洗系统的设计 (204)3.1典型清洗系统流程 (204)3.2清洗系统容积的计算 (205)3.3清洗泵的确定 (205)第九章反渗透系统的运行监控与故障分析 ................................................... - 206 -第一节反渗透系统的运行监控及数据记录 (206)第二节反渗透系统故障快速诊断与排除 (225)第三节常用的故障检测方法 (230)第十章技术文献、专题研讨、质量保证与产品认证............................................ - 234 -第一节科威特SULAIBIYA世界最大的膜法污水回用系统. (234)第二节特立尼达.多巴哥岛136,000M3/D海水淡化系统 (237)第三节新加坡TUAS环太平洋最大的海水淡化系统 (241)第四节日本冲绳海水淡化厂的十年运行经验 (243)第五节高脱硼率的海水淡化膜 (247)第六节红海岸SHUAIBAH3期扩建反渗透海水淡化厂的两年运行历史 (256)第七节最新的高性能反渗透膜研发成果 (269)第八节高耐久性低污染RO膜及其应用 (278)第九节百万吨级SWRO项目中化学药剂投加对触发生物污染的机理研究 (286)第十节百万吨级海水淡化系统的低压反渗透膜 (295)第十一节东丽新型苦咸水淡化RO膜 (301)第十二节改进型RO系统在阿拉伯海湾高温高浓度海水淡化中的应用 (307)第十三节改进型生物生长速度监测设备及其作为RO系统运行和优化的指标 (315)第十四节海水淡化反渗透膜氧化的定量化分析 (324)第十五节东丽膜产品应用最新进展-东丽株式会社新闻稿 (330)第十六节专题研讨 (356)16.1专题一:反渗透系统新膜投运注意事项 (356)16.2专题二:如何控制微生物污染 (357)16.3专题三:反渗透系统氧化事故的发生与预防 (358)16.4专题四:高水温条件下的系统维护 (359)16.5专题五:及时的化学清洗是保证系统稳定运行的必要条件 (360)16.6专题六:低温对RO系统的影响及应对方法 (362)16.7专题七:反渗透膜元件的更换 (363)16.8专题八:反渗透膜清洗系统的设计指南 (364)16.9专题九:RO系统停机保存方法 (366)16.10专题十:反渗透系统污染的简易判断方法 (368)16.11专题十一:RO系统运行数据标准化的意义 (370)16.12专题十二:市政饮用水用什么膜 (372)16.13专题十三:怎样选择合适的反渗透膜产品 (374)16.14专题十四:反渗透系统仪表校正 (376)16.15专题十五:反渗透膜系统对预处理的要求 (378)16.16专题十六:干式膜元件和湿式膜元件的区别 (379)第十七节东丽反渗透膜元件三年按比例有限质量保证书 (381)第十八节东丽反渗透膜元件的质量认证 (384)第一章东丽集团及水处理事业介绍第一节东丽集团概况1东丽集团简介企业理念:我们通过创造新的价值,为社会作贡献东丽株式会社(Toray Industries, Inc.)成立于1926年,总部位于日本东京;东丽集团是一家以有机合成化工、高分子化学和生物化学为核心技术的世界领先的综合性高科技企业;在全球21个国家和地区设有240家企业;拥有雇员约4万名;年度净销售总额约167亿美元(2014财政年度);主要业务范围◇纤维和纺织品◇塑料和薄膜◇化工产品◇情报通讯相关产品◇复合材料◇医药·医疗·保健◇环境与土木工程◇时装·商贸◇软件·信息2东丽集团在中国开展的主要业务活动11956年在香港成立商社;11973年向上海石油化工公司提供涤纶纤维原料以及聚合成套设备;11985年设立北京事务所;11990年向上海石化出口工业用长丝成套设备,设立香港TAL Knits Ltd.;11992年在陕西合资成立陕西华昌纺织印染有限公司;11994年在南通成立东丽酒伊印染有限公司;在上海成立上海三井复合塑料有限公司;11995年成立东丽酒伊织布(南通)有限公司;成立丽碧复合塑料(深圳)有限公司;成立东丽合成纤维(南通)有限公司;11997年成立东丽商事(上海)有限公司;12000年成立东丽酒伊织染(南通)有限公司;12001年与中国仪化集团公司合资成立仪化东丽聚酯薄膜有限公司;12002年在上海成立东丽(中国)投资有限公司(地区总部);在香港成立东丽(华南)有限公司;在南通成立东丽纤维研究所(中国)有限公司;12004年东丽水处理技术研究所在上海成立,重在提高液体分离膜在中国市场的研发、应用与全面技术服务;12005年成立东丽塑料(香港)有限公司;成立丽碧复合塑料(深圳)有限公司;成立东丽(广州)贸易有限公司;成立东丽即发(青岛)染织股份有限公司;12006年投资中国企业成立东丽吉祥塑料科技(苏州)有限公司;与日本PIGMENT·丰田通商合资成立天津碧美特工程塑料有限公司;12007年成立东丽精密科技(苏州)有限公司;12 2008年成立东丽(北京)科技咨询服务有限公司,负责协调和管理在大中华地区膜产品的销售;22 2009年东丽公司与中国蓝星(集团)股份有限公司在北京合资成立了蓝星东丽膜科技(北京)有限公司,引进全球最先进的全自动制膜和卷膜生产线,为中国广大客户提供优质的反渗透膜产品和技术服务;1997年至今东丽是上海国际马拉松赛的创始赞助商第二节蓝星东丽膜科技(北京)有限公司简介1 公司概况近年来,全球水资源短缺及水质污染问题日趋严重。

脱气膜元件及脱气设备使用手册

脱气膜元件及脱气设备使用手册

* 这就驱使从液体中的气体从液体移向气体。

液/气接触面在孔隙位置脱气膜元件具有脱气效率高、使用寿命长(正常使用寿命5年以上)的特点,主要是通过以下二方面来达到:n 采用增强型中空纤维膜孔隙率达到50%以上,分布均匀,脱气效率高,强度高;n 专利的布水结构,布水均匀使水放射形的流经中空纤维膜以增大接触面积,提高了气体透过膜的几率。

3、根据不同的脱气要求,可以采用不同的设计模式,常用的有三种模式(见图3):二、加气吹脱操作模式加气吹脱模式是待脱气的液体在中空纤维膜的外侧流动,在中空纤维膜的内侧通压缩气体(通常为压缩空气)进行吹扫。

气体吹扫的目的是为了将膜内侧的待脱除气体分压降低至几乎为零。

气相和液相总是要趋向动态的溶解平衡点,由于分压不同,液相中的气体就不断由液相向膜内侧的气相移动,并由吹扫气体带走。

这就降低了液相中的溶解气体浓度。

从而达到脱除气体的目的。

注:加气吹脱操作模式常见的应用是在二级反渗透系统之间脱除CO2,或者在进EDI系统前脱除CO2,通过多级串联,可以把CO2浓度降低至1ppm。

是最经济有效的方法。

1、加气体侧的基本配置和操作:当使用压缩气体作为吹扫气体时仪表基本配置(参见图4)。

2、脱除二氧化碳时可以采用压缩气体或无油的压缩空气,基本操作步骤:1) 通过调整压力调节阀门(PCV201),把进气压力设置压力在0.7 kg/cm2以下。

2) 通过调整针形阀门(V-212),观察流量计至设计的空气流量。

3) 通空气到每根脱气膜组件。

4) 出气气体排放到一个开阔地带以避免在密闭空间内氧气耗尽.。

5) 如果采用压缩空气,必须是无油压缩空气的。

6) 如果在高纯度要求的情况下,在压力调节阀门之前须采用0.2微米空气过滤器;一般工业应用采用1.0微米过滤器即可。

如果在脱除二氧化碳时没有压缩气体或无油压缩空气,可以使用鼓风机进行空气扫除。

鼓风机的选择可以根据脱气膜需要的风量以及气相侧的压降来确定。

吹风机的出风温度不能升高(>30℃)过高的空气温度会影响中空纤维膜的使用寿命。

脱气膜-脱氨原理说明

脱气膜-脱氨原理说明

处理流量达250 加仑/分钟 ( 56 m3/h) 的 10x28 膜组件成 功商业化生产并 用于饮料行业。
研发并投入商业化应 用 SuperPhobic® 产品, 用于墨水脱 气、光刻胶和其他低 表面张力液体脱气。
推出14 英寸大 流量膜组件满 足流量的脱氧 和脱CO2要求
在电厂脱CO2和O2 在电厂脱CO2和O2 的应用 的应用
光循环回路
推出低成本的 10英寸膜组件 用于脱除CO2
在瑞典垃圾焚 烧电厂脱氨的
应用
推出8X20和 8X40在海上油 田回注水脱氧 的应用
2013
2015
膜接触器在宝钢锅 炉补给水除氧上的 应用。
2015
-4-
选择性透过&传质材料 Selective&Mass Transfer Material
膜接触器采用的是气体传输膜材料,其 特性与细胞壁相似,是一种物质选择性 透过材料。气体可以双向透过而液体不 可以透过,可以在材料两侧表面建立

技术原理
2015
-5-
气体传输膜对比其它膜--过滤/传质
技术原理
Difference Between Gas-Transfer Membrane&Other Membranes
其它膜是过滤的概念:得到干净水
气体传输膜是传质的概念:遵守M=KA(ΔP)传质方程,替 代传统的塔器,如:真空塔、汽提塔、吸收塔、吹脱塔等 ,实现气液接触传质。膜接触器本质上是传质单元。
脱气膜-脱氨原理说明
-1-
一 技术原理 二 技术
-3-
膜接触器发展历程 History of Membrane Contactor
技术原理
Celanese Chemical (赛拉 尼斯) 开发了中 空纤维膜丝小平 流式 Liqui-Cel 品 牌的脱气膜组件

美国liqui-cel脱气膜简介

美国liqui-cel脱气膜简介

美国liqui-cel脱气膜简介美国liqui-cel脱气膜简介美国liqui-cel脱气膜脱氧膜,产要应用在热力除氧、化工、钢铁、集成电路、光电、封装、电厂、食品、啤酒饮料、摄像及医药等领域。

Liqui-Cel?膜组件在全世界范围内用于脱气液体。

它们被广泛用于从水中脱除氧气、二氧化碳。

这些装置可以代替全世界范围内真空蒸馏塔、强制通风脱气器和除氧剂20年。

O2 对很多过程都有负面影响,它具有腐蚀性,可以氧化多种材料。

在能源和工业领域,如果没有使用脱气,管道系统、锅炉和设备易受蚀。

Liqui-Cel?膜组件易于操作,对于脱气和去除O2提供模块化的解决方案,不需要化学药品,也不需要大的真空塔或脱气器。

Liqui-Cel?膜组件也有同时去除水中O2 和CO2 的好处,以及可在一个步骤内完成N2 控制。

美国liqui-cel脱气膜是利用扩散的原理将水中的气体,如二氧化碳、氧气去除的膜分离产品。

脱气膜内装有聚丙烯中空纤维,纤维的壁上的微孔水分子不能通过,而气体分子却能够穿过。

水流在一定的压力下从中空纤维的里面通过,而中空纤维的外面在真空泵的作用下将气体不断的抽走,并形成一定的负压,这样水中的气体就不断从水中经中空纤维向外溢出,从而达到去除水中气体的目的,脱气膜中装有大量的中空纤维可以扩大气液界面的面积,从而使脱气速度加快。

脱气膜的脱气效率可高达99.99%,出水二氧化碳和氧气浓度可小于2ppb。

无论是从液体中脱除气体、或是向液体中添加气体,世界技术领先的脱气膜-气液膜件无疑是您的最佳选择。

脱气膜可以处理各种大小不同的流量。

流量小至10毫升每分钟,大到数百吨每小时的系统都可满足要求。

脱气膜已经在世界各地广泛应用。

市场涵盖集成电路﹑光电﹑封装﹑电厂﹑食品﹑啤酒饮料﹑摄像及医药等领域。

主要产品型号:产品序列流量(一支膜件)Liqui-Cel? 4 x 28 1-6.8立方米/小时Liqui-Cel? 6 x 28 1.1-11.4 立方米/小时Liqui-Cel?8 x 20 5 - 50 gpm ( 1.1 - 11.4 m3/hr) Liqui-Cel?10 x 28 10-57立方米/小时。

脱气膜清洗手册

脱气膜清洗手册

Cleaning GuidelinesCleaning GuidelinesThe NewStandard ForDissolved Gas ControlLiqui-Cel® Membrane ContactorsCLEANING GUIDELINESCONTENTS Page1. Intent of Document 22. Cleaning Parameters 23. Chemical Compatibility / Sanitizing / Detergents 34. Cleaning Solution Flow Rate and Back Pressure Guidelines 45. High Temperature Cleaning / CIP 56. Cleaning Protocol for Biological Soil Removal 67. Cleaning Protocol for Mineral Deposits Removal 98. Cleaning Protocol for Particle Fouling 119. Membrane Drying 1210. Membrane Contactor Integrity Test 1411. Storage and Handling Guidelines 1512. Contactor Decontamination for Return to MEMBRANA 16Schematics Page1. Biological Soil Removal 82. Acid Cleaning for Mineral Deposit Removal 103. Particle Fouling Cleaning 114. Bulk and Final Drying 13IMPORTANT INFORMATION - PLEASE READ CAREFULLY1.0 INTENT OF DOCUMENTThere are many different types of contaminants that may adhere to the membrane. The cleaning protocol, which covers chemical cleaning agents, concentrations, time and flow rates, will be specific to your system. The cleaning guidelines contained in this document represent a starting point and may require modification to suit your specific application.2.0 CLEANING PARAMETERSThere are four parameters that affect the cleaning process:•Time (duration and frequency)• Temperature• Mechanical agitation•Chemical type (caustic, acid, alcohol, etc.)Changing any of these parameters can affect the others. Therefore, it is important to develop a specific cleaning protocol that best suits your application. The following guidelines will help you to begin and guide you through the cleaning process. We recommend that you start with cleaning chemicals that are generally used within your industry.The initial performance of the contactor should be monitored to establish its baseline performance.This baseline performance can be compared to the performance of the contactor after cleaning.Other considerations for establishing the best protocol for your applications are:• Experimentation with time (frequency and duration), temperature, chemical concentration and flow rate will determine the best method for cleaning the contactor.•Refer to the Liqui-Cel Membrane Contactor product data sheet for maximum temperature and pressure ratings. Take into account the temperature rise that occurs during a chemicalreaction (caustic in water) or from pumping.•An aggressive cleaning protocol may clean the contactor in a shorter time period, but can also reduce the contactor service life.The frequency of cleaning can generally be determined by monitoring a drop in the systemperformance.3.0 CHEMICAL COMPATIBILITY / SANITIZATION / DETERGENTSFor general questions about chemical resistance, refer to the Liqui-Cel® Membrane Contactor Chemical Resistance Guide available at or from your Membrana representative.Table 1 shows the maximum recommended exposure times for several chemicals, which can be used to clean or sanitize a Liqui-Cel Membrane Contactor. To determine the total exposure time as a function of concentration,divide the value shown in column 2 of Table 1 by your actual chemical concentration. The resulting value is the total number of hours the contactor can be exposed to a specific chemical concentration.Table 1: Sanitizing GuidelinesColumn 2 Column 3Chemical Concentration-hours at RoomTemperature Maximum Recommended Chemical Concentration *Chlorine pH > 7 24000 ppm-hours 100 ppmHydrogen Peroxide 4800 %-hours 10% wt.Peracetic acid 4800 ppm-hours 100 ppm* Exposure times were determined when the fiber tensile strength and elongation values just began to decrease.The test conditions did not exceed these maximum concentrations, and testing was completed at 23°C. Using higherconcentrations is not recommended, and at elevated temperatures the expected life is much shorter.Exposure Time CalculationsCase 1: 2% hydrogen peroxide sanitation everyday for 30 minutes.a) What is the total exposure time for a solution of hydrogen peroxide at 2% concentrationat room temperature?b) What is the maximum number of 30 minute cycles that the contactor can be subjectedto using this solution at room temperature?c) Assume the desired number of cycles will be 365 times per year and the contactor willhave a lifetime of 3 years.Should this cleaning chemical protocol be used?Solutiona) Divide 4800 % - hours by 2%. Total exposure time = 2400 hours.b) Divide 2400 hours by 0.5 hours (30 minutes). Total number of cycles = 4800.c) Using 365 cycles per year and an expected lifetime of 3 years, the total number ofexposure cycles is 1095 (365 * 3 years). It would be safe to use this chemical for dailycleaning for 30 minutes per day at 2% concentration at room temperature since 1095cycles < 4800 cycles.The total life expectancy of a Liqui-Cel Membrane Contactor is affected by many factors, one of which is the chemical cleaning cycle. Do not assume the total number of exposure cycles can be used to predict the ultimate lifetime of a contactor. Use this total number of cycles to judge whether the contactor lifetime will be affected by the cleaning cycle. In the case above, compare the number of theoretical cleaning cycles (4800 cycles) to the desired number of cleaning cycles over the expected lifetime of the contactor (1095 cycles). The conclusion in this example is that cleaning cycles will probably not reduce the 3-year lifetime of themembrane.Case 2 illustrates a cleaning protocol that we DO NOT RECOMMEND.Case 2: 200 ppm peracetic acid sanitization every day for 30 minutes.a) What is the total exposure time for a solution of peracetic acid at 200 ppmconcentration at room temperature?b) What is the maximum number of 30 minute cycles that the contactor can be subjectedto using this solution at room temperature?c) Assume the desired number of cycles will be 365 times per year and the contactor willhave a lifetime of 3 years.Should this cleaning chemical protocol be used?Solutiona) Divide 4800 ppm - hours by 200 ppm. Total exposure time = 24 hours.b) Divide 24 hours by 0.5 hours (30 minutes). Total number of cycles = 48.c) Using 365 cycles per year and an expected lifetime of 3 years, the total number ofexposure cycles is 1095 (365 * 3 years).It would NOT be safe to use this chemical for daily cleaning for 30 minutes per day at200 ppm concentration at room temperature since the required number of cycles(1095) is much greater than the maximum number of 48 cycles.However, the protocol could be used if the cleaning frequency was changed to 4 times peryear for 3 years = 12 cycles, which is less than maximum number of 48 cycles.IMPORTANT NOTES FOR CLEANING SOLUTION SELECTION:DO NOT USE STRONG OXIDIZING AGENTS such as ozone.Do NOT use any chemicals that contain DETERGENTS or surfactants.Surfactants may allow liquids to pass through the membrane. This phenomenon is called break-through or wet-out. The membrane can be restored to a hydrophobic state by rinsing thedetergent from the contactor and then drying it but this is a time consuming process.4.0 CLEANING SOLUTION FLOW RATE AND BACKPRESSURE GUIDELINESIt is important to apply a backpressure to the system to insure a liquid-full system during the cleaning cycle. To increase the cleaning solution backpressure, slowly close the outlet flow valve.Refer to Table 2 for general guidelines. Indicated flow rate is for a single unit and should be used just as a guideline. Depending on the fouling nature, the flow rate should be adjusted accordingly.Table 2: Cleaning Solution Flow Rate and Backpressure GuidelinesContactor Size MiniModule®Contactors2 × 6Contactor2.5 × 8Contactor4 × 28 & 6 × 28Contactor10 × 28Contactor14 × 28ContactorShellside Flow Rate≤ 0.13 gpm(≤ 500 ml/min)≤ 0.26(≤ 1 lit/min)1 –2 gpm(0.23 – 0.45 m3/h)10 – 30 gpm(2.3 – 6.8 m3/h)30 – 40 gpm(4.5 – 9.0 m3/h)50 – 60gpm(11.4 – 13.6 m3/h)Shellside Backpressure10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 Kg/cm2)10 – 30 psig(30 psig/2.1 Kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)10 – 30 psig(30 psig/2.1 kg/cm2)Lumenside Flow Rate≤ 0.08 gpm(≤ 300 ml/min)NotApplicable≤0.5 gpm(≤ 0 .11 m3/h)3 - 7 gpm(0.68 - 1.60 m3/h)10 - 20 gpm(2.3 - 4.5 m3/h)10 - 20 gpm(2.3 - 4.5 m3/h)Lumenside Backpressure5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)5 – 10 psig(0.35-0.70 kg/cm2)NOTE: Shellside = Outside of fiber. Liquid flows shellside for 2x6, 2.5, 4, 6, 10 and 14-inch contactors Lumenside = Inside of fiber. MiniModules run with liquids on the lumenside. Since gas normally flows through lumenside with 2 x 6, 2.5, 4, 6, and 10-inch contactors, lumenside cleaning is less frequent.To prepare a cleaning solution when using untreated raw water, it is important to know the water chemistry. We recommend using water that has been filtered and de-chlorinated. We recommend using de-ionized water for cleaning if possible. We also recommend paying attention to metals, such as Mg, iron, Al, and to SiO2. These elements can precipitate onto the membrane when there is a pH shift in the water.5.0 HIGH TEMPERATURE & CIP CLEANINGHot water or hot caustic can be used to clean Liqui-Cel Membrane Contactors in stainless steel housings, depending upon the specific contactor. Please contact your representative prior to using temperatures above 122ºF (50ºC) at105 psi (7.4 kg/cm2).Circulate all solutions through theshellside.Table 3: CIP Cleaning GuidelinesStep Description Chemical Solution Time (min.)1 Water flush / oncethrough10 micron filtered, ambient to cold water 52 Alkalinewash/recirculated 2% to 5.5% w/w caustic (NaOH or KOH) solution, using 10micron filtered water.Suggested temperature ambient-122ºF (ambient-50ºC)30 min – 2 hours3 Water flush / oncethrough 10 micron filtered, ambient to cold, water Until neutral pH isachieved4 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3%phosphoric acid solution or 3% Nitric and 3% HCL usingfiltered (10 micron) water at ambient temp.30 – 605 Water flush / oncethrough 10 micron filtered, ambient to cold, water Until neutral pH isachieved6 Purgelumens CO2, N2, air, or gas at maximum flow rate. If operating in combomode, use maximum sweep gas in combination with yourvacuum pump. Until no water droplets appear from exit sweep portNOTE: in steps 1 - 6, always keep a water backpressure less than 30 psig.•Do not use a commercial caustic that contains surfactants.•Do not purge CO2 during alkaline wash. If vacuum is in the system, pull a vacuum during Hot CIP. Always purge with gas after the Hot CIP process is complete. (So long as the contactor has cooled down to room temperature, air sweep can be used for a final lumen purge).5.0 HIGH TEMPERATURE & CIP CLEANING CONTINUEDOnce the membrane has been cleaned, it is ready for the high temperature sanitization guidelines below. Be careful not to exceed 85ºC. Also note that only SS vessels are recommended for Hot CIP cycles to 85ºC.Table 4: High Temperature Sanitization Guidelines Stainless Steel Housings, X40 Fiber in 4 and 10-inch sizes. X-50 in 4-inch OnlyMaximum Temperature Maximum OperatingPressureMaximum exposure cycles(at 30 minutes per cycle)181ºF-185ºF(83 - 85ºC)30 psig (2.11 kg/cm2) 1000NOTE: The lumenside should have N2 or vacuum flow, if available, during high temperature cleaning cycle. Always purge with gas after the Hot CIP process is complete. (So long as the contactor has cooled down to room temperature, air sweep can be used for a final lumen purge).To maintain the product warranty, the maximum normal operating feed water temperature should not exceed 122ºF (50ºC).The water temperature during the sanitization cycle should be accurately controlled so it does not exceed 185ºF (85ºC).6.0 CLEANING PROTOCOL FOR BIOLOGICAL SOIL REMOVALA. Biological Soil RemovalIf the performance of the contactor is decreasing, the contactor probably needs to be cleaned. If the soil has not penetrated the membrane pore structure, surface cleaning of the wetted side of the membrane (normally the shellside) is usually sufficient to restore performance. If theperformance is not restored after two cleaning cycles, then use the Severe Biological Soil Cleaning Protocol – see 6.0 section B.Table 5: Normal Biological Soil Cleaning ProtocolStep Description Chemical Solution Time (min.)1 Water flush /once throughAmbient to cold water filtered to 10 micron 52 Alkalinewash/ recirculate 2% w/w caustic (NaOH or KOH) solution, using 10micron filtered water.Suggested temperature ambient-104ºF (up to-40ºC)45 min to 2 hrs.3 DrainContactor4 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3%phosphoric acid solution or 3% Nitric and 3% HCLusing filtered (10 micron) water at ambient temp.45 min to 2 hrs.5 Rinse Contactor /once through Ambient to cold water filtered to 10 micron 15-30 oruntil neutral pHis achievedNOTES: in steps 1 - 6, always keep a water backpressure less than 30 psig.Do not use a commercial caustic that contains surfactants.Do not purge the lumens with CO2 during an alkaline wash.B. Severe Biological Soil Cleaning ProtocolWet-out occurs when the membrane looses its hydrophobic property, thus allowing liquids to pass through the pore structure. Wet-out can also occur when the membrane is exposed to protein containing liquids such as beer, wine, or fruit juice. Removing the biological deposits that have penetrated the membrane pore structure will restore the membrane hydrophobicity.To remove the proteins adhering to the polymer surface, a Severe Biological Soil cleaning Protocol is recommended. This Severe Biological Soil Cleaning protocol uses an alcohol-water solution followed by caustic solution and a drying step. The frequency of cleaning will depend upon the types and concentrations of proteins. In order to prevent wet-out, a daily cleaning protocol should be used until an appropriate cleaning frequency for your system is determined.The drying step is critical in removing any liquid remaining in the pore structure. If liquidremains in the pore structure, any liquid that is introduced into the contactor will pass through the membrane. Therefore, the contactor must be dried before it is put back into service.Contact your Membrana representative to learn more about contract cleaning servicesavailable in our facility for your convenience.Table 6:Severe Biological Soil Cleaning ProtocolStep Description / FlowSchematic Chemical Solution Time(min.)1 Waterflush/Once-through Filtered (10 micron) water 52 Wet-outmembrane/ Recirculate 50% isopropyl alcohol + 50% filtered (10 micron)water (v/v).15-303 Pressurize shell side and let liquid come out of lumen sides4 Alkaline wash / recirculate 2-5% w/w. caustic (NaOH or KOH) solution usingfiltered (10 micron) water. Suggested temperature86ºF – 122ºF (30ºC – 50ºC) 1 to 4 hrs.5 Draincontactor6 Acid rinse /recirculated 5% w/w citric, or 3% Nitric or phosphoric, or 3%hydrochloric or a combination of 3% Nitric and 3% phosphoric acid solution or 3% Nitric and 3% HCLusing filtered (10 micron) water at ambient temp.1 to 2hrs.7 Draincontactor8 Water flush/Once-through Filtered (10 micron) water – ambient temperature.Flush until pH in = pH out.20-309 Drying Inert gas is preferred. Clean, dry, oil free air canalso be used. Do not exceed 122ºF (50ºC) gastemperature when using air to dry the contactorsSee section 8.010 Membrane Integrity Test Seesection9.0*Note that the air temperature should not exceed 30ºC (86ºF) in normal operations. Higher temperatures are only recommended for short cleaning/drying cycles.Flow Schematics for Normal Biological Soil RemovalFlow Schematics for Severe Biological Soil Removal7.0 CLEANING PROTOCOL FOR MINERAL DEPOSITS REMOVALThe inlet water should be treated to prevent mineral precipitation. For example changes in pH due to carbon dioxide removal may initiate a precipitation reaction.If the performance of the contactor decreases and the inlet water source is not treated to remove minerals, such as calcium carbonate, it is likely that a layer of mineral scale has formed on the wetted side (normally the shellside) of the contactor. A simple acid clean followed by a water flush should restore the performance. The contactor does not need to be dried after this protocol. Also note that phosphoric acid is more efficient for removing hard mineral deposits or other precipitated deposits.Table 7: Cleaning Protocol for Mineral Deposit RemovalStep Description / Flow Schematic Chemical Solution Time(min.)1 Waterflush/Once-through Filtered (10 micron) water 52 Acid wash / recirculate (repeatif necessary) 5% w/w citric, or 3% Nitric or phosphoric,or a combination of 3% Nitric and 3%phosphoric acid solution using filtered(10 micron) water – ambient temperature30-603 Draincontactor4 Water flush /Once through Filtered (10 micron) waterFlush until pH in = pH out5-10If silica, aluminum or a combination of these is found in the inlet water source, it is likely that they will precipitate on the membrane surface. If CO2 is used as a sweep gas, precipitation can occur depending on the concentration and the water pH shift. For aluminum precipitation follow the mineral deposit removal procedure. For Silica precipitation use the Biological soil removal procedure, but increase the caustic concentration to 5.5% by weight and increase the temperature to 50 C. If possible try to clean the contactors using similar process water flow rates and do not change the direction of the water flow.Flow Schematics for Acid Cleaning to Remove Mineral Deposits8.0 CLEANING PROTOCOL WHEN PARTICLE FOULING IS SUSPECTEDFollow the steps described in Sections 6.0(a.) and 7.0, with the following exceptions: •Backflush the cleaning solutions (i.e. introduce the cleaning solutions in the direction opposite of the normal operating flow direction).•Once the cleaning solution is flowing into the contactor, introduce clean, dry, and oil free compressed air into one gas port, in the same direction as the liquid flow. Valve off, or cap, the other gas port.•Regulate the air pressure 5-10 psig GREATER than the liquid pressure, such that the air will bubble vigorously into the cleaning solution.•At the end of the cleaning procedure, shut off the air supply first, then the liquid.9.0 MEMBRANE DRYINGThe drying process involves two steps:• Bulk Water Removal• Final DryingThe purpose of the Bulk Water Removal is to quickly remove water prior to passing the drying gas through the contactor. The purpose of the Final Drying is to evaporate the remaining water from the contactor. Dry air, nitrogen, and carbon dioxide gas can be used to facilitate drying. Tables 8 and 9 provide a reference point for flow rates and drying times.Vacuum is not recommended for drying the contactor. Tests have shown residual water after several hours of vacuum operation.A. Bulk Water RemovalTo reduce the drying time, it is recommended to first remove the bulk water by flowing room temperature gas into the top shellside and lumenside ports. See the Bulk Water Removalschematic on page 10. Use clean, dry filtered (0.2 micron) gas at flow rate shown in Table 8.Keep the lower lumen and shellside ports open.Discontinue the gas flow after the water discharge rates decreases to a few drips. Close the bottom shellside port when finished.Table 8: Bulk Water Removal ConditionsLiqui-Cel Membrane Contactor Size Gas Flow Rate scfm*MiniModules and 2 x 6 0.5 scfm (0.84 m3/hr)2.5 x 8 1 scfm (1.7 m3/hr)4 x 28 and 6 x 28 10 scfm (17 m3/hr)10 x 28 and 14 x 28 70 scfm (120 m3/hr)*Maximum gas pressure = 10 psig (0.7 kg/cm)B. Final DryingThe final drying step involves flowing a clean, dry, filtered (0.2 micron) gas into the top shellside port. Using a warm gas will reduce drying time. We recommend using Nitrogen as the gas in the final drying step, as hot air can shorten the membrane life.Table 9 can be used as a guide for the Final Drying step.Table 9: Final Drying ConditionsLiqui-Cel Membrane Contactor Size Gas Flow Rate* Estimated Drying Time**2 x 6 0.5 scfm (0.84 m3/hr) 1 hr @ 60ºC (140ºF)2.5 x 8 1 scfm (1.7 m3/hr) 1 hr @ 60ºC (140ºF)4 x 28 10 scfm (17 m3/hr) 4 hr @ 60ºC (140ºF)6 x 28 25 scfm ( 40 m3/hr) 8 hr @ 60ºC (140ºF)10 x 28 70 scfm (120 m3/hr) 16 hr @ 60ºC (140ºF)14 x 28 80 scfm ( 130 m3/hr) 24 hr @ 60ºC (140ºF)*Maximum gas pressure = 10 psig (0.7 kg/cm) **If using air in the final drying step, do not exceed 30ºC (86ºF)Drying SchematicsBulk Water Removal/Initial Drying StepFinal Drying*If using air in the final drying step, do not exceed 30ºC (86ºF)10.0 MEMBRANE CONTACTOR INTEGRITY TESTThere are three conditions, which will cause the contactor to leak.• Membrane wet-out• A fiber break•O-ring / seal failureMembrane wet-out can occur from solutions containing surfactants or proteins, such as beer, juice, wine, fermentation broth or other organic solutions. This is a reversible condition once the contactor is cleaned. The integrity test can be used to verify that the hydrophobic property of the membrane has been restored. This test involves pressurizing the shellside with water andmeasuring the drip rate leaving the lower lumenside port. The integrity test should be completed after cleaning.Table 10: Membrane Contactor Integrity TestSteps1. Relieve lumenside pressure. Blow-out lumenside stream with nitrogen or oil-free air. Openthe lower lumenside port connection so an observation can be made.2. Close the shellside outlet valve3. Fill the shellside with filtered (10-micron) water. Slowly apply 60 psig (4.2 kg/cm2) pressureto the shellside.4. Measure the drip rate from the lumenside port for 1 hour.5. Release the shellside pressure by slowly opening the outlet valve.Drain the contactor.If the contactor leaks at a higher rate than the value listed in Table 11, either the cleaning protocol needs to be repeated, a fiber is broken or an O-Ring is damaged. Contact your Membranarepresentative for further help.Table 11: Guidelines for Typical Amounts of Liquid Passing to the Lumenside2 x 6 Contactor2.5 x 8Contactor4 x 28Contactor10 x 28Contactor14 x 28ContactorCondensation <0.5ml/hr@60 psig<5ml/hr < 1.2 ml/min. <7 ml/min. <11ml/min.It is normal for water vapor to collect in the lumenside of the membrane. It can condense and flow out of the contactor. The condensate rate can be compared to a new contactor to establish a baseline. The rates vary slightly depending on the fiber types but table 11 provides a good guideline.11.0 STORAGE AND HANDLING GUIDELINESThe Liqui-Cel Membrane Contactor that you have purchased can be damaged through improper handling and storage. The following guidelines are intended to provide a framework for successful storage of these contactors. If you have any questions, please contact your Membrana representative. HandlingProper handling of contactors is critical. Care must be taken not to hit or jar (shock) the contactor to minimize the possibility of internal damage or damage to plastic parts from the contactor being knocked over or dropped. All four (4) ports should be protected to prevent the introduction of contaminants into the contactor. It is recommended that the contactors be stored in a dry, heat-sealed plastic bag or shrink-wrap material [0.076 mm (0.003 in.) wall thickness] in their original box.All plastic port extensions should be supported to prevent bending of extensions under excessive piping loads.TemperatureStore the contactors dry in their original boxes at temperatures not to exceed 49o C (120o F). Contactors stored at very low temperatures < 5o C (41o F) should be allowed to equilibrate to room temperature prior to introducing water.HumidityIt is recommended that contactors be stored at low to moderate humidity levels (< 60% relative humidity). Humidity will not affect the components of the contactor but exposure at high humidity levels may affect the integrity of any cardboard packaging.Storage PositionStore the contactors in the horizontal position. Ten-inch contactors with SS housings packaged in wooden crates and 14-inch contactors should not be stacked more than two crates/boxes high. Ten- inch contactors with FRP housings and six-inch contactors are packaged in foam reinforced cardboard boxes. For safety considerations, they should not be stacked more than 3 boxes high. Four-inch contactors are packed in cardboard boxes and can be stacked up to 7 boxes high.Shelf LifeMembrane samples from contactors stored for 4 years (room temperature, low to moderate humidity, heat-sealed bag but not stored in a box) have shown no changes in physical properties (hollow fiber tensile strength and elongation).Exposure to SunlightContactors should not be stored where they are exposed to direct sunlight. Contactors should always be stored in sealed bags, or shrink wrap material, in the original box or other opaque box.12.0 Contactor Decontamination for Return To MEMBRANAIn the event that a contactor needs to be returned to MEMBRANA for analysis, it must be cleaned and dried. A Returned Material Authorization (RMA) form must be obtained from MEMBRANA before a contactor is returned. Please follow the instructions below when returning a contactor.Call your MEMBRANA Representative at (704) 587-8888 to obtain an RMA Form. Complete the Form and return it by fax to (704) 587-8585, Attn: Liqui-Cel® Membrane ContactorTechnical Service.I. If Non-Hazardous materials (water, air, nitrogen, oxygen, and carbon dioxide) were used,clean and dry the contactor, and place it in a clean leak-proof plastic bag.II. Write the RGA number on the outside of the shipping box.III. If Hazardous Materials were used in the contactor, follow the cleaning procedure in section 6.0. Provide a Material Safety Data Sheets (MSDS) of any chemical(s) introducedinto the contactor to your product representative. Even though these chemicals need to beflushed from the contactor prior to shipment, the MSDS is required information to safe-guard our personnel when handling the returned contactor. Place the contactor in a cleanleak-proof plastic bag. Write the RGA number on the outside of the shipping box.If non-human (or other non-primate) blood or blood products were used in thecontactor, follow your established normal cleaning protocol. In addition, flush thecontactor with water until the rinsed water is completely clear. Continue rinsing for30 more minutes to ensure complete removal of any blood product.Prior to returning the contactor to MEMBRANA, it must be sterilized. The followingsanitizing protocol is recommended: (5.25% available chlorine) diluted 1:500 withfiltered water (final concentration = ~100 ppm available chlorine). Adjust the pH >10using caustic prior to adding the hypochlorite solution.Recommended contact time and temperature with the contactor is 30 minutes at 70°F -100°F (21°C - 38°C). The active chlorine level should be maintained at 100 ppm during theduration of the cleaning cycle. The entire cartridge needs to be contacted with this solutionto kill bacteria or viruses. Therefore, both the shell and tube side flow paths need to bedecontaminated.Dry the contactor as per section 8.0 and place the contactor in a leak-proof plastic bag.Write the RGA number on the outside of the shipping box.It is important to Fax a copy of the RMA form to MEMBRANA prior to shipping.Fax to: (704) 587-8585, Attn: Liqui-Cel® Membrane Contactor Technical Service.。

liqui脱氧膜1028

liqui脱氧膜1028

FRP
23.4 公升 (6.2 加仑) 9.0 公升 (2.4 加仑)
316L SS
19.3 公升 (5.1 加仑) 4.9 公升 (1.3 加仑)
Fiber Reinforced Plastic (FRP) with PVDF for all wetted surfaces and FRP flanges
内容积 (约略) 液相 气相
外壳选项与特性
材质
法兰接头
液相进出口端
气相二端
最高承受工作温度/压力 l*
(122°F, 105 psig) (158°F, 30 psig)
FRP 26.1 公升 (6.9 加仑) 10.6 公升 (2.8 加仑)
(77°F, 150 psig) (122°F, 105 psig) (158°F, 30 psig)
大流量型并含中央隔板装置
X50: 10 – 48 m3/hr (44 – 210 gpm) X40: 10 – 57 m3/hr (44 – 250 gpm)
X50 丝膜
X40丝膜
除水中CO2为主 ~40%
其它气体质量传送用途 ~25%
300 / 220 micron
300 / 200 micron
0
水流量 (US gpm)
88
132
176
220
真空吹扫模式
50 毫米汞柱真空度
20
30
40
水流量 (m3/hr)
水流量 (US gpm)
50
100 150 200
液相
11
23
34
45
水流量 (m3/hr)
50
250 6.0 5.0 127.5 3.0 2.0 1.0 0.0

脱气膜介绍

脱气膜介绍

脱气膜介绍脱气膜介绍脱气膜是控制液体脱气、供气的中空纤维膜组件。

具有致密表皮层的独特中空纤维不透过液体,只透过气体,适合用于液体的脱气、供气。

主要用途· 超纯水的脱氧、脱二氧化碳· 锅炉供水的脱氧· 超声波清洗机用水的除泡处理优良的耐久性脱气膜,具有致密表皮层与内部的支撑层完全融为一体。

并非复合而成的结构。

这种一体化结构,不仅是性能优越,耐久性也很好。

通过采用具有致密表皮层的中空纤维脱气膜,可以将凝结水的产生控制在较低水平。

脱气膜,脱气膜元件,Liqui-Cel® 膜组件脱气膜不同与过滤膜过滤膜过滤超过一定大小的颗粒,水直接透过膜的微孔。

脱气膜只透过气体,而不透过液体。

特征性能参数☆、膜外径:350~360μm☆、膜内径:250~260μm☆、膜壁厚:50μm☆、微孔孔径:0.01~0.2μm☆、透气率:>7.0×10-2(cm3/cm2 ·S· cmHg)☆、孔隙率:45~65%☆、水通量:0.25T/H/支(0.10Mpa/25℃);1T/H/支(0.10Mpa/25℃); 3.5T/H/支(0.10Mpa/25℃);4T/H/支(0.10Mpa/25℃)☆、单支面积:15m2/22 m245m2/50 m2☆、型号:XY-G4040/ XY-G4050/ XY-G6040/ XY-G6050☆、脱除率:≥85%(单级)☆、工作运行跨压≥0.1Mpa脱气膜,脱气膜元件,Liqui-Cel® 膜组件☆、膜材料:采用进口膜丝材料☆、对应大规模化的超纯水供给设备☆、由于不使用氮气,可实现低成本、高效率的运转(进行脱气处理需要使用真空泵作为气体移动的动力源。

)制造方法:不使用一切溶剂和其它添加物质运行条件:单级膜组件:脱气率:85%两级膜组件串联,脱气率:95%·源水要去除游离氯、臭氧等氧化性强于脱气膜组件的物质。

Liqui-Cel 6x28 液体脱气膜技术参数

Liqui-Cel 6x28 液体脱气膜技术参数

当本品完全遵照我方各产品文件中的建议, 低于室温下使用于酒精类/非酒精类饮料业, 与一般水/酸性/非酸性食品业的水处理设备时, 本品符合相关的 美国 Title 21 of the Code of Federal regulations 之 FDA 规定.注意:: 所有尺寸为一参考代表值; 锁套支撑器非标准品需另购6x28 Extra-Flow 产品参数型录168mm (6.63 in.)768 m m (30.23 i n .)Membrana - Charlotte A Division of Celgard Inc. 13800 South Lakes DriveCharlotte, North Carolina 28273 USA Phone: (704) 587 8888 Fax: (704) 587 8585 Europe OfficeNorderstedt Erlengang 3122844 Norderstedt GermanyPhone: +49 40 5261 0878 Fax: +49 40 5261 0879 Japan OfficeShinjuku Mitsui Building, 27F 1-1, Nishishinjuku 2-chome Shinjuku-ku, Tokyo 163-0427 JapanPhone: 81 3 5324 3361 Fax: 81 3 5324 3369 膜管规格书 特性 测试条件规格 溶氧去除效率水流量: 27gpm, 20°C (68°F)N 2 流量: 1scfm 最小88%液相压损水流量: 27 gpm, 20°C (68°F)最大5.26 psi资料曲线代表值是用水温 250C 条件测出 不同运行条件可能有不同资料测试条件: 空气吹入法, G/L = 5, 25 °C测试条件: 真空+ N2 1 scfm, 20 °C6x28 Extra-Flow 产品参数型录本产品只限于熟悉者使用.应于载明之规范内运行之. 本品只保障无制造瑕疵, 不对其他范畴保证. 任何销售都应遵循卖方的术语与条款. 采购人应对本品之使用与安全承担负责.我方尽能力对于文内的资料常保精确. 但是卖方或服务代理商对此文内数据之准确与完整性无需承担任何责任, 又卖方保有权力在修改资料后不另通知买方或使用者. 最终产品选用之决定与工艺是否侵权纯属使用人之个人责任. 财产用户应满意于对该品之使用安全之自我评估. 我方可能有说明对膜件的危害物种类, 但无法保证那些就是唯一的种类. Celgard, SuperPhobic, MiniModule 及 NB 为 Celgard Inc. (注册)商标2002 Membrana – Charlotte A Division of Celgard Inc. (D67__Rev.6 _12/02)。

Liqui-Cel液体脱气膜使用说明书(中文译本)

Liqui-Cel液体脱气膜使用说明书(中文译本)
Lequi - Cel
液体脱气膜使用说明
目录
目 录 ..................................................................................... 2
第一节
技术概述 ....................................................................... 3

Liqui-Cel 膜组件在用于吸收或分离技术中有两种不同的纤维可供选择,即 X-30 和 X-40
中空纤维膜。X-30 膜壁薄而且内径大。这种特性使其与 X-40 相比有更大的二氧化碳的去除率,
但对操作压力和温度有一定的限制。X-40 壁厚且内径小,这种特性使得 X-40 有更高的操作温
度和压力。X-40 推荐用于氧气的脱除。X-30 与 X-40 比较参考表一: 中空纤维类型
B. 第五节
A.
空气泄漏和对溶解氧浓度的影响 .................................................. 13 启动和停运步骤 ................................................................ 14 启动步骤 ...................................................................... 14
D. 膜污染 ........................................................................ 11
E. 第四节
A.
仪表的最小配置 ................................................................ 11 系统设计要求 .................................................................. 13 获得较含量的溶解氧 ............................................................ 13

(整理)脱气膜元件及脱气设备使用手册

(整理)脱气膜元件及脱气设备使用手册

* 这就驱使从液体中的气体从液体移向气体。

液/气接触面在孔隙位置脱气膜元件具有脱气效率高、使用寿命长(正常使用寿命5年以上)的特点,主要是通过以下二方面来达到:n 采用增强型中空纤维膜孔隙率达到50%以上,分布均匀,脱气效率高,强度高;n 专利的布水结构,布水均匀使水放射形的流经中空纤维膜以增大接触面积,提高了气体透过膜的几率。

3、根据不同的脱气要求,可以采用不同的设计模式,常用的有三种模式(见图3):二、加气吹脱操作模式加气吹脱模式是待脱气的液体在中空纤维膜的外侧流动,在中空纤维膜的内侧通压缩气体(通常为压缩空气)进行吹扫。

气体吹扫的目的是为了将膜内侧的待脱除气体分压降低至几乎为零。

气相和液相总是要趋向动态的溶解平衡点,由于分压不同,液相中的气体就不断由液相向膜内侧的气相移动,并由吹扫气体带走。

这就降低了液相中的溶解气体浓度。

从而达到脱除气体的目的。

注:加气吹脱操作模式常见的应用是在二级反渗透系统之间脱除CO2,或者在进EDI系统前脱除CO2,通过多级串联,可以把CO2浓度降低至1ppm。

是最经济有效的方法。

1、加气体侧的基本配置和操作:当使用压缩气体作为吹扫气体时仪表基本配置(参见图4)。

2、脱除二氧化碳时可以采用压缩气体或无油的压缩空气,基本操作步骤:1) 通过调整压力调节阀门(PCV201),把进气压力设置压力在0.7 kg/cm2以下。

2) 通过调整针形阀门(V-212),观察流量计至设计的空气流量。

3) 通空气到每根脱气膜组件。

4) 出气气体排放到一个开阔地带以避免在密闭空间内氧气耗尽.。

5) 如果采用压缩空气,必须是无油压缩空气的。

6) 如果在高纯度要求的情况下,在压力调节阀门之前须采用0.2微米空气过滤器;一般工业应用采用1.0微米过滤器即可。

如果在脱除二氧化碳时没有压缩气体或无油压缩空气,可以使用鼓风机进行空气扫除。

鼓风机的选择可以根据脱气膜需要的风量以及气相侧的压降来确定。

吹风机的出风温度不能升高(>30℃)过高的空气温度会影响中空纤维膜的使用寿命。

Liqui-Cel 4x28 液体脱气膜技术参数

Liqui-Cel 4x28 液体脱气膜技术参数

Membrana - Charlotte A Division of Celgard Inc. 13800 South Lakes DriveCharlotte, North Carolina 28273 USA Phone: (704) 587 8888 Fax: (704) 587 8585 Europe OfficeNorderstedt Erlengang 3122844 Norderstedt GermanyPhone: +49 40 5261 0878 Fax: +49 40 5261 0879 Japan OfficeShinjuku Mitsui Building, 27F 1-1, Nishishinjuku 2-chome Shinjuku-ku, Tokyo 163-0427 JapanPhone: 81 3 5324 3361 Fax: 81 3 5324 3369 当本品完全遵照我方各产品文件中的建议, 低于室温下使用于酒精类/非酒精类饮料业, 与一般水/酸性/非酸性食品业的水处理设备时, 本品符合相关的 美国 Title 21 of the Code of Federal regulations 之 FDA 规定.膜管规格书特性 测试条件 规格X50 与 X40X50 and X40 溶氧去除效率液相水流量: 27 gpm, 20οC (68οF) 气相 N 2 吹入量:1.0 ft 3/min, 1.0 atm at 20οC 最低 78% 液相压损液相水流量 27 gpm, 20οC最高7.7 psi资料曲线代表值是用水温 20 - 250 C 条件测出 不同运行条件可能有不同资料4 x 28 Extra-Flow 产品参数型录测试条件: 空气吹入与真空150 torr at 25 °C本产品只限于熟悉者使用.应于载明之规范内运行之. 本品只保障无制造瑕疵, 不对其它范畴保证. 任何销售都应遵循卖方的术语与条款. 采购人应对本品之使用与安全承担负责.我方尽能力对于文内的资料常保精确. 但是卖方或服务代理商对此文内数据之准确与完整性无需承担任何责任, 又卖方保有权力在修改资料后不另通知买方或使用者. 最终产品选用之决定与工艺是否侵权纯属使用人之个人责任. 财产用户应满意于对该品之使用安全之自我评估. 我方可能有说明对膜件的危害物种类, 但无法保证那些就是唯一的种类. Celgard, SuperPhobic, MiniModule 及 NB 为 Celgard Inc. (注册)商标2002 Membrana – Charlotte A Division of Celgard Inc.(D60_Rev3_7/02 4x28)2.3 4.5 6.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 和图 4):
·高压压力开关
·真空压力表
·止回阀 按以上步骤
A.清扫气模式 .................................................................................................................................... 4 B.气侧抽真空模式 ............................................................................................................................ 6 C.组合模式 ........................................................................................................................................ 7 第三节 常规系统设计导则 .................................................................................................................. 10 A. 水流侧配置 .............................................................................................................................. 10 B. 最大操作压力和温度 .............................................................................................................. 11 C. 过滤的要求 .............................................................................................................................. 11 D. 膜污染 ...................................................................................................................................... 11 E. 仪表的最小配置 ...................................................................................................................... 11 第四节 系统设计要求 .......................................................................................................................... 13 A. 获得较含量的溶解氧 .............................................................................................................. 13 B. 空气泄漏和对溶解氧浓度的影响 .......................................................................................... 13 第五节 启动和停运步骤 ...................................................................................................................... 14 A. 启动步骤 .................................................................................................................................. 14 B. 停运步骤 .................................................................................................................................. 14 C. 停运后启动的步骤 .................................................................................................................. 15 第六节 问题解答 .................................................................................................................................. 16

Liqui-Cel 膜组件在用于吸收或分离技术中有两种不同的纤维可供选择,即 X-30 和 X-
40 中空纤维膜。X-30 膜壁薄而且内径大。这种特性使其与 X-40 相比有更大的二氧化碳的去
除率, 但对操作压力和温度有一定的限制。X-40 壁厚且内径小,这种特性使得 X-40 有更高
的操作温 度和压力。X-40 推荐用于氧气的脱除。X-30 与 X-40 比较参考表一:
注意事项:
当使用空气作清扫气时,一定注意: · 水温不能超过 30 摄氏度。 · 源水要去除游离氯、臭氧等氧化性强于 Liqui-Cel 膜组件的物质。
如果以上情况发生,膜的寿命会减短,性能无法保证。
当使用惰性气体作为清扫气时,一定注意: ·源水要去除游离氯、臭氧等氧化性强于 Liqui-Cel 膜组件的物质。 ·对于城市自来水,在水温<30 摄氏度时,游离氯<1ppm 是可行的。无论如何,为
维膜外即壳侧流动。气体的分压力可以调节气体溶解量的大小。 气体脱除
当用于气体脱除例如脱碳或脱氧时,中空纤维膜内侧需要真空或者清扫气。液体在中空纤 维膜外即壳侧流动。气体分压力除低以除去溶解气体。
第二节 气体脱除技术
一种溶解气体可用以下三种方法去除: · 使用清扫气 · 气侧抽真空 · 组合方式
A.清扫气模式
Lequi - Cel
液体脱气膜使用说明
目录
第一节 技术概述 .................................................................................................................................... 3 第二节 气体脱除技术 ............................................................................................................................ 4
避免 管中或膜中气侧积水。如果水蒸汽不排去,将会影响膜的性能。水温越高,水蒸汽越
多。这种 现象很普遍。
表 2 列出了各种尺寸的膜对清扫气量的要求。
膜组件
清扫气(scfm)
M3/hr
2.5×8
0.1-1.1
0.16-1.77
4×28
1-6
1.61-9.65
10×28
4-25
6.43-40.19
水路的配置和操作参考(第三节:一般系统设计方案)。
空度对 脱气的影响。
表 3: 真空度
越大出水溶 解氧浓度,ppb
125mmHg 1400
74mmHg 850
50mmHg 580
36mmHg 425
条件:两级 4×28,X-40 膜组件串联。 流量:5.7m3/hr 温度:25 摄氏度 计算基
于给水氮气、氧气、二氧化碳饱和。 真空
侧的配置和操作:
下面列出了当 Liqui-Cel 膜组件使用运行在真空模式时,所需要的最小配置。(详见工艺图
第4页/共16页
压缩气体可用作清扫气,按下述步骤操作系统: 1.通过调节压力控制阀使压力控制在<0.7Kg。 2.通过调节针阀并观察流量计使气体总流量在推荐值。 3.将每个组件内的气体更新。 4.使排出气体排向大气,避免操作区附近缺氧。 5.如果使用压缩空气,确定已除油。强列要求在压力控制阀前加一个 0.2 微米的过滤 器。
虽然 Liqui-Cel 膜组利用的是微孔膜,但它的分离原理实质上不同与其它的例如渗滤膜 和 气体分离膜等膜分离技术。在 Liqui-Cel 膜组件里,没有连续透过微孔的液流。LiquiCel 膜 组件像一个惰性的支撑物使水相和液相直接接触而不需分散。相间物质的转移几乎完 全受气相 侧压力的控制。原因在于 Celgard 中空纤维的接触的几何原理,它的每列单元的接 触表面积要 比传统的接触高一个数量级。这样将使在分离性能不变的情况下组件的体积大大 减小。
注:这种方法是最经济的去除 CO2 的方法。 清扫气模式即将气体以与水流相反的方向流过中空纤维膜的内侧。在清扫气被选择为与要 脱除气体不同的气体,一个分压力的梯度会在气相和液相之间建立。这将使目标气体进入中空 纤维膜内侧而被清扫掉。清扫气体的纯度将影响溶解气体脱除的完全程度。使用这种技术时, 液相被吹扫气体饱和。 清扫模式的配置和操作: 下面列出了当 Liqui-Cel 膜组件使用压缩气体作为清扫气时,所需要的最小配置。(详见工 艺图 1 和图 2): · 压力控制阀 · 针阀 · 压力表 · 流量计
相关文档
最新文档