八下分式知识点总结
初二数学下册分式知识点
![初二数学下册分式知识点](https://img.taocdn.com/s3/m/61931a6d6bec0975f565e2cf.png)
初二数学下册分式知识点(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)?(a+b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
八年级分式方程数学知识点
![八年级分式方程数学知识点](https://img.taocdn.com/s3/m/0760b3d618e8b8f67c1cfad6195f312b3069eb72.png)
八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。
如:\frac{x+1}{2}=3,其中x为未知量。
二、分式方程的解法1. 化简分式,使其成为整式方程。
如:\frac{x+1}{2}=3化简为x+1=6。
2. 通分,消去分母。
如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。
3. 变形化简后求解。
如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。
三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。
如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。
2. 通分时应注意分母因式分解。
如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。
3. 将解代回原分式方程检验。
如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。
四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。
已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。
设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。
由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。
2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。
八年级下册数学第一章知识点归纳:分式
![八年级下册数学第一章知识点归纳:分式](https://img.taocdn.com/s3/m/ea971b265a8102d277a22f02.png)
学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。
下面小编为大家整理了八年级下册数学第一章知识点归纳:分式,欢迎大家参考阅读!1 分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2 分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减; 异分母分式相加减,先通分,变为同分母的分式,再加减3 整数指数幂的加减乘除法4 分式方程及其解法以上就是查字典数学网为大家整理的八年级下册数学第一章知识点归纳:分式,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。
八年级数学下册 分式知识点总结
![八年级数学下册 分式知识点总结](https://img.taocdn.com/s3/m/cc358a0be45c3b3567ec8b9e.png)
八年级数学下册 分式知识点总结1.分式的定义:如果A 、B 表示两个整式;并且B 中含有字母;那么式子BA 叫做分式。
分式有意义的条件是分母不为零;分式值为零的条件分子为零且分母不为零。
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式;分式的值不变。
(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式;用分子的积作为积的分子;分母的积作为分母。
分式除法法则:分式除以分式;把除式的分子、分母颠倒位置后;与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减;分母不变;把分子相加减。
异分母的分式相加减;先通分;变为同分母分式;然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1; 即)0(10≠=a a ;当n 为正整数时;n n a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m ;n 是整数)(1)同底数的幂的乘法:m n m n a a a+•=; (2)幂的乘方:()m n mn a a=;(3)积的乘方:()n n n ab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式;并且分母中含未知数的方程——分式方程。
解分式方程的过程;实质上是将方程两边同乘以一个整式(最简公分母);把分式方程转化为整式方程。
解分式方程时;方程两边同乘以最简公分母时;最简公分母有可能为0;这样就产生了增根;因此分式方程一定要验根。
解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母;化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0;二是其值应是去分母后所的整式方程的根。
(word完整版)八年级数学下册___分式知识点总结,推荐文档
![(word完整版)八年级数学下册___分式知识点总结,推荐文档](https://img.taocdn.com/s3/m/4ecedaac856a561253d36f2b.png)
第十六章 分式1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a+•=; (2)幂的乘方:()m nmn a a =; (3)积的乘方:()n n nab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
;a c ac a c a d ad b d bd b d b c bc •=÷=•=()n n n a a b b =A A C B B C •=•A A C B B C ÷=÷解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
八年级下数学知识点归纳笔记
![八年级下数学知识点归纳笔记](https://img.taocdn.com/s3/m/cb192ab1cf2f0066f5335a8102d276a2002960d5.png)
1. 无理数的性质(无限不循环小数)2. 实数的运算(有理数和无理数的加、减、乘、除运算)3. 实数的开方运算(正数和负数的平方根和立方根)
函数
1. 一次函数的图象和性质(一条直线,斜率和截距是关键参数)2. 反比例函数的图象和性质(双曲线,位于两个象限,常与坐标轴相交)3. 一次函数与反比例函数的实际应用(如速度、时间、距离等问题)
二次根式
1. 二次根式的定义和性质(非负性、算术平方根的性质)2. 二次根式的乘除法(通过将根号内的数相乘或相除,进行乘除运算)3. 二次根式的加减法(先将根号内的数化为最简形式,再进行加减运算)
勾股定理
1. 勾股定理的表述(直角三角形的两条直角边a、b的平方和或其他方法证明)3. 勾股定理的应用(利用勾股定理解决实际问题)
八年级下数学知识点归纳笔记
章节/主题
主要知识点
分式
1. 分式的定义(分母中含有字母的整式)2. 分式的基本性质3. 分式的约分(通过约去分子和分母中的公因式,将分式化为最简形式)4. 分式的通分5. 分式的乘除法(通过将分式相乘或相除,将分子和分母分别相乘或相除)6. 分式的加减法(通过通分,将分式化为同分母,再进行加减运算)7. 分式方程(含有分式的等式,通过去分母转化为整式方程)
平行四边形
1. 平行四边形的性质(对边相等、对角相等、对角线互相平分)2. 平行四边形的判定(一组对边平行且相等、两组对边分别相等、对角线互相平分)3. 特殊平行四边形(矩形、菱形、正方形)的性质和判定
轴对称、中心对称和旋转对称
1. 轴对称(关于一条直线对称的两个图形完全重合)2. 中心对称(关于一点对称的两个图形完全重合)3. 旋转对称(绕某点旋转一定角度后与另一个图形重合)
八年级下册数学知识点分式
![八年级下册数学知识点分式](https://img.taocdn.com/s3/m/6f26ac12302b3169a45177232f60ddccdb38e66f.png)
八年级下册数学知识点分式八年级下册数学知识点——分式一、定义分式是指由分子和分母以及分割符号(如:横线或斜线等)组成的算式,通常表示为a/b的形式,其中a、b均为整数,b不为0。
二、基本概念1. 真分数:分子小于分母的分式称为真分数,如1/2、2/3等。
2. 假分数:分子大于或等于分母的分式称为假分数,如5/3、9/4等。
3. 通分:对于分母不同的分式,将它们的分母约分至相同,即将它们化为相同分母的分式,这个过程称为通分。
4. 约分:对于分子分母有公共因数的分式,可以将它们约分成最简分式,即分子分母同时除以它们的公共因数,得到的分式称为最简分式。
三、分式的四则运算1. 加减法分式的加减法其实就是先通分,再将分子按照加减法的规则相加减,然后将结果约分为最简分式。
例如:7/10 + 5/6 = 21/30 + 25/30 = 46/30 = 23/152. 乘法分式的乘法就是将两个分式的分子和分母分别相乘,然后将结果约分为最简分数。
例如:2/3 × 3/4 = 6/12 = 1/23. 除法分式的除法相当于将分式的乘数乘上被除数的倒数,即将分子与被除数的分母相乘,分母与被除数的分子相乘,得到的结果再约分为最简分数。
例如:3/4 ÷ 2/3 = 3/4 × 3/2 = 9/8四、分式的应用1. 分式在比例问题中的应用分式在比例问题中的应用非常广泛,例如在解题时需要求出比例中某一部分的值,在这种情况下,就可以通过分式的运算来求解。
例如:若三个数的比例为a : b : c,且a = 3/4,b = 1/2,求c的值。
根据比例的定义,可得a : b = 3/4 : 1/2 = 3/2,那么c : a = 3/2 : 1,即c = (3/2) ÷ 1 × a = (3/2) × (3/4) = 9/8。
因此c = 9/8。
2. 分式在解方程中的应用在解方程中,有时需要将方程变形成分式的形式,然后进行分式的运算,最后再将分式恢复为方程,从而得到方程的解。
分式典型知识点与例题总结
![分式典型知识点与例题总结](https://img.taocdn.com/s3/m/67d5b825482fb4daa58d4b90.png)
人教版八年级下册分式全章 知识点和典型例习题 知识点回顾知识点一:分式形如 的式子叫做分式 。
知识点二:分式B A 的值1.当 时,分式有意义;2.当 时,分式无意义;3.当 时,分式的值为0;4.当 时,分式的值为1;5.当 时, 分式的值为正;6.当 时,分式的值为负; 知识点三:分式的基本性质用式子表示 知识点四:分式中的符号法则用式子表示 知识点五: 分式的约分 约去分子、分母的最大公因式,使分式变成最简分式或者整式 1.最大公因式= 。
2.当分式的分子和分母为多项式时, 知识点六:分式的通分把异分母分式变成同分母分式的过程。
1.最简公分母= 。
2.当分式的分子和分母为多项式时,知识点七:分式的乘除法法则(用式子表示)乘法法则:用式子表示 除法法则: 用式子表示 知识点八:回顾因式分解总步骤:一提二套三分组1. 提公因式: 套 平方差公式: 2 . 公 完全平方和:式 完全平方差:知识点九:分式的加减法法则 加法法则:减法法则:知识点十:分式的混合运算先 再 最后再 。
知识点十一:整数指数幂七大公式1.同底数幂的乘法2.同底数幂的乘法3.幂的乘方4.积的乘方5.分式的乘方法则6.0指数幂7.负整数指数幂 知识点十二:科学计数法1.绝对值大于1数都可表示成2. 绝对值小于1数都可表示成 其中101<≤a 。
知识点十三:分式方程 1. 概念 2. 解法:①去分母:② ③知识点十四:分式方程解应用题的步骤 、 、 、 、【例题】下列有理式中是分式的有(1)-3x ;(2)yx ;(3)22732xy y x -;(4)x 81-;(5)35+y ; (6)112--x x ;(7)π12--m ; (8)5.023+m ;【练习】1、在下列各式ma m x xb a x xa,),1()3(,43,2,3222--÷++π中,是分式的有 个2.找出下列有理式中是分式的代号(1)-3x ;(2)yx ;(3)22732xyy x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7) π-12m ; (8)5.023+m .二.分式的值 【例题】 1.当a 时,分式321+-a a 有意义;2.当_____时,分式4312-+x x 无意义;3.若分式33x x --的值为零,则x = ;4.当_______时,分式534-+x x 的值为1;5.当______时,分式51+-x 的值为正;6.当______时分式142+-x 的值为负.【练习】1.①分式36122--x x 有意义,则x ;②当x_____时,分式1x x x-- 有意义;③当x ____时分式x x 2121-+有意义;④当x_____时,分式11x x +-有意义;⑤使分式9x 1x 2-+有意义的x 的取值范围是 ; 2.当x = 3时,分式bx a x +-无意义,则b ______ 3. ①若分式11x x -+的值为零,则x 的值为 ;②若分式)1x )(3x (1|x |=-+-,则x 的值为_________________; ③分式392--x x 当x __________时分式的值为0;④当x= _时,分式22943x x x --+的值为0;⑤当a=______时,分式2232a a a -++ 的值为零;4.当x __ 时,分式x -51的值为正.5.当x=_____时,分式232x x --的值为1.6.若分式231-+x x 的值为负数,则x 的取值范围是__________。
数学八下分式
![数学八下分式](https://img.taocdn.com/s3/m/a9260b5b6d175f0e7cd184254b35eefdc8d315a4.png)
数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
八年级下册数学分式ppt[初二数学下册分式知识点]
![八年级下册数学分式ppt[初二数学下册分式知识点]](https://img.taocdn.com/s3/m/9235248daf1ffc4ffe47acf6.png)
八年级下册数学分式ppt[初二数学下册分式知识点]初二数学下册分式知识点初二数学下册分式知识点初二数学下册分式知识点(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义. 但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn) =a(m+n)+b(m+n)=(m+n)(a+b). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式. 2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数. 3.将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进行约分的目的是要把这个分式化为最简分式. 3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3. 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方. 6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减. (八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定几个分式的公分母. 通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
(word完整版)新人教版八年级数学下册第十六章分式知识点总结,文档
![(word完整版)新人教版八年级数学下册第十六章分式知识点总结,文档](https://img.taocdn.com/s3/m/fe4f8405551810a6f4248634.png)
一、分式的定义: 若是 A 、 B 表示两个整式,并且B 中含有字母,那么式子A叫做分式。
B例 1. 以下各式 a ,1, 1x+y ,a 2b 2 ,-3x 2,0?中,是分式的有〔 〕个。
x 15ab二、 分式有意义的条件是分母不为零; 【B ≠0】分式没有意义的条件是分母等于零; 【B=0】分式值为零的条件分子为零且分母不为零。
【B ≠0 且 A=0 即子零母不零】例 2. 以下分式,当 x 取何值时有意义。
〔 1〕2x1 ;〔 2〕 3 x2。
3x 22x 3例 3. 以下各式中,无论 x 取何值,分式都有意义的是〔 〕。
A .1 B . xC .3x 1D .x 212x 12x 1x 22x 2例 4.当 x______时,分式2x1没心义。
当 x_______时,分式x 21 的值为零。
3x 4x 2x 2例 5. 1 - 1 =3,求5x3xy 5 y的值。
x y x2xyy三、分式的根本性质: 分式的分子与分母同乘或除以一个不等于0 的整式,分式的值不变。
〔 CA A C A A C0 〕B C B B CB四、分式的通分和约分:要点先是分解因式。
1 x 1 y例 6. 不改变分式的值,使分式510的各项系数化为整数,分子、分母应乘以〔 ? 〕。
1 x 1 y3 9例 7. 不改变分式2 3x 2 x 的值,使分子、分母最高次项的系数为正数,那么是〔 ?〕。
5x 3 2x 3分式 4 y 3x , x2 1 , x2xy y 2, a22ab2中是最简分式的有〔例 8. 4x 〕。
4ax1 y ab 2b例 9. 约分:〔1〕x 26x9 ; 〔2〕 m 23m 2x29m2m例 10. 通分:〔 1〕x ,y;〔2〕a 1,66ab 29a 2bc22a 2a 1 a 1例 11. x 2 +3x+1=0,求 x 2+12 的值. x例 12. x+ 1=3,求x 4x 2 2 的值. xx 1五、分式的运算:分式乘法法那么:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
初二数学下册知识点归纳
![初二数学下册知识点归纳](https://img.taocdn.com/s3/m/f3c83956a88271fe910ef12d2af90242a995ab50.png)
初二数学下册知识点归纳初二数学下册知识点归纳篇1第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2、分式的运算(1)分数的乘除乘定律:分数乘以分数,分子的乘积作为乘积的分子,分母的乘积作为乘积的分母。
除法定律:分数被分数除,除数的分子和分母颠倒后,再乘以除数。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3、整数指数幂的加减乘除法4、分式方程及其解法第二章反比例函数1、反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形第四章四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;在同一个底边上有两个等角的梯形是等腰梯形。
八年级分式知识点归纳总结
![八年级分式知识点归纳总结](https://img.taocdn.com/s3/m/f87f69ae6394dd88d0d233d4b14e852458fb39a3.png)
八年级分式知识点归纳总结分式作为数学中重要的概念之一,在八年级的数学学习中占据着重要的地位。
了解和掌握分式的相关知识点对于学生的数学学习至关重要。
本文将就八年级分式的各个知识点进行总结和归纳,并提供一些解题技巧和注意事项。
一、分式的基本概念分式由分子和分母构成,可以用来表示两个数之间的比值关系。
其中,分子表示被分割的部分,分母表示分割的总数。
例如,$\frac{3}{4}$表示将一个整体分成4份后的3份。
二、分式的化简与简化当分式的分子和分母存在公因数时,可以对分子和分母进行因式分解后约分,从而简化分式。
例如,$\frac{6}{8}$可以化简为$\frac{3}{4}$。
三、分式的四则运算1. 分式的加法和减法:当分式的分母相同时,只需对分子进行相加或相减即可;当分式的分母不同时,需要找到它们的最小公倍数,然后进行通分,最后再进行加法或减法。
2. 分式的乘法:将两个分式的分子相乘,分母相乘。
3. 分式的除法:将两个分式的第二个数取倒数,然后进行乘法运算。
四、分式的混合运算分式与整数或代数式进行混合运算时,可以先化简分式,再进行相应的运算。
例如,$2\frac{1}{3} + \frac{4}{5}$可以先化简为$\frac{7}{3} + \frac{4}{5}$,然后进行通分得到$\frac{35}{15} + \frac{12}{15}$,最后得到$\frac{47}{15}$。
五、分式方程的解法对于分式方程的解法,我们需要通过化简和变形将其转化为整式方程。
例如,$\frac{x}{3} + \frac{1}{5} = 1$可以将其通过通分得到$\frac{5x + 3}{15} = 1$,然后通过等式两边的乘法和加法运算,解得$x = 4$。
六、分式的应用分式在实际问题中有广泛的应用。
例如,在比例问题中,可以将比例关系用分式表示;在容器问题中,可以将容积与总量的比例用分数表示;在时间问题中,可以将时间与速度的关系用分式表示等等。
八年级数学下册---分式知识点总结
![八年级数学下册---分式知识点总结](https://img.taocdn.com/s3/m/874296e976eeaeaad1f330fc.png)
第十六章 分式1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a+∙=; (2)幂的乘方:()m n mn a a=;(3)积的乘方:()n n n ab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);(5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
八年级下册数学《分式》分式方程 知识点整理
![八年级下册数学《分式》分式方程 知识点整理](https://img.taocdn.com/s3/m/403c8dcbb7360b4c2f3f6498.png)
15.3分式方程一、本节学习指导解分式方程和我们前面学习的解方程有很多相似之处,期间会运用到很多分式的计算方式,就这一节来说并不难。
做适当练习即能掌握。
二、知识要点1、分式方程:含分式,并且分母中含未知数的方程叫做分式方程。
(1)、分式方程的解法:解分式方程的基本思想方法是:分式方程转化去分母整式方程.解分式方程的一般方法和步骤:①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;②解这个整式方程;③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。
注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;②解分式方程必须要验根,千万不要忘了!(2)、解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.(3)、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
(4)、含有字母的分式方程的解法:在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。
计算结果是用已知数表示未知数,不要混淆。
2、列分式方程解应用题(1)列分式方程解应用题的步骤:①审:审清题意;②找: 找出相等关系;③设:设未知数;④列:列出分式方程;⑤解:解这个分式方程;⑥验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;⑦答:写出答案。
(2)应用题有几种类型;基本公式是什么?常见的有以下五种:①行程问题基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.②数字问题:在数字问题中要掌握十进制数的表示法.③工程问题基本公式:工作量=工时×工效.④顺水逆水问题=+•=-v v v v v v顺水静水水逆水静水水3、科学记数法:把一个数表示成的形式10na⨯(其中≤a,n是整数)的记数方法叫做科学记数法.1<10(1)、用科学记数法表示绝对值大于1的数时,应当表示为10na⨯的形式,其中1≤︱a︱<10,n为原整数部分的位数减1;(2)、用科学记数法表示绝对值小于1的数时,则可表示为10n⨯的形式,其中n为原数第1个不为0的a-数字前面所有0的个数(包括小数点前面的那个0),1≤︱a︱<10.三、经验之谈:这一节考点比较多的应该是分式方程的应用题和科学计数法,但应用题基本不会单独命题,步骤虽繁琐,但是难度并不大。
八年级分式重要知识点
![八年级分式重要知识点](https://img.taocdn.com/s3/m/a3047cb8ed3a87c24028915f804d2b160b4e8617.png)
八年级分式重要知识点分式是数学中的重要概念,数学分式的习题在中学数学中出现频率较高。
八年级学生需要掌握分式的基本定义、简化、加减、乘除和应用等知识点。
1. 基本定义分式的基本定义是分数,由分子和分母两部分组成。
一般写成a/b的形式,表示a与b的商。
a是分子,b是分母。
分子可以是任何整数,分母不能为零,分母为1时,分数等于分子本身。
例如:3/4,表示三分之四。
2. 简化分数分式的简化是把分子和分母同时除以它们的公因子,使分数的分子和分母互质。
例如:12/16,可以化简为3/4,因为它们都有公因数4。
3. 分式的加减分式的加减是指分子、分母的加减。
当分母相同时,可以直接对分子进行加减运算。
当分母不同时,需要将分式化为通分后的形式再进行加减运算。
例如:1/2+2/3,可以将分母通分,化为3/6+4/6,最终结果为7/6。
4. 分式的乘除分式的乘法是指分子、分母分别相乘得到新的分子、分母,然后化简分数得到最终结果。
例如:3/4×5/6,结果为15/24,化简后为5/8。
分式的除法是指将除数的分子分母互换,再和被除数相乘。
例如:3/4÷2/5可以转化为3/4×5/2,结果为15/8。
5. 分式的应用分式在日常生活中有广泛的应用,如经济学中的计算利率、数学中的比例、化学中的摩尔质量等。
在解决实际问题时,我们可以根据公式列方程,在运用分式的知识进行求解。
综上所述,分式是数学中的基本概念,了解分式的基本定义、简化、加减、乘除和应用等知识点,对于学生学习数学具有重要意义。
同时,分式的应用具有广泛的实际意义,在日常生活中也值得我们关注和应用。
八年级数学下册分式知识点总结,推荐文档
![八年级数学下册分式知识点总结,推荐文档](https://img.taocdn.com/s3/m/b070e7fdb4daa58da1114a20.png)
第十八早分式1.分式的定义:如果AA、B表示两个整式,并且B中含有字母,那么式子叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。
2•分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
A A?CB B?C A A C (CO) BBC3•分式的通分和约分:关键先是分解因式4. 分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
a” aca c a, ad a n a n b d bdbd b c bc v b b分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减-- 心,? -bc ad bcc c c bd bd bd bd混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
(a 0)6. 正整数指数幕运算性质也可以推广到整数指数幕.(m,n是整数)(1)同底数的幕的乘法:a m ?a n a m n;(2)幕的乘方:(a m)n a mn;(3)积的乘方:(ab)n a n b n;(4)同底数的幕的除法:a m a n a m n( a工0);n(5)商的乘方:(旦)n;(b丰0)b b7. 分式方程:含分式,并且分母中含未知数的方程一一分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0, 这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.增根应满足两个条件:一是其值应使最简公分母为0, 二是其值应是去分母后所的整式方程的根。
八年级下数学知识点归纳大全
![八年级下数学知识点归纳大全](https://img.taocdn.com/s3/m/8c6bf6a89f3143323968011ca300a6c30c22f128.png)
八年级下数学知识点归纳大全一、分式1. 分式的概念- 分式就像是分数的“升级版”。
如果A、B表示两个整式,A÷B就可以写成(A)/(B)的形式,这里B要是含有字母的整式,而且B不能等于0哦,这样的式子就是分式啦。
比如说(x)/(x + 1)就是分式,而(3)/(5)是分数不是分式,因为分母没有字母。
2. 分式的基本性质- 分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。
这就好比给分式“化妆”,只要按照规则来,它的“本质”不会变。
例如(a)/(b)=(ac)/(bc)(c≠0)。
3. 分式的运算- 分式的乘除:分式相乘,分子乘分子,分母乘分母;分式相除,就把除式的分子分母颠倒位置后再相乘。
就像一群小分式在玩乘法和除法的游戏,按照规则就能算出结果。
- 分式的加减:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,要先通分,把它们变成同分母分式,然后再按照同分母分式加减的方法计算。
这就好比把不同的小伙伴拉到同一个“队伍”里,然后再进行计算。
二、反比例函数1. 反比例函数的概念- 一般地,如果两个变量x、y之间的关系可以表示成y=(k)/(x)(k为常数,k≠0)的形式,那么y是x的反比例函数。
想象一下,x和y就像两个调皮的小孩,它们的乘积是个固定的数(k),但是x越大,y就越小,就像跷跷板一样。
2. 反比例函数的图象和性质- 反比例函数的图象是双曲线。
当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内,y随x的增大而减小;当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y随x的增大而增大。
可以把图象想象成两个弯弯的“手臂”,k的正负决定了这两个“手臂”在哪个象限跳舞。
3. 反比例函数的应用- 在实际生活中,比如压力一定时,压强和受力面积的关系就可以用反比例函数来表示。
这就像我们在雪地里走路,脚面积越大,压强越小,就不容易陷进去,这里压强和受力面积就是反比例关系。
数学八年级下册分式知识点总结
![数学八年级下册分式知识点总结](https://img.taocdn.com/s3/m/a5c665210a1c59eef8c75fbfc77da26924c5967f.png)
数学八年级下册分式知识点总结
数学八年级下册分式的知识点总结包括:
1. 分式的定义:分式是由分子和分母组成的有理数表达式,分子和分母都是整数。
2. 分数的运算:加减乘除四则运算的规则同整数的运算规则。
3. 分式化简:将分子和分母的公因式约去,将分数化简为最简形式。
4. 分数的乘除法:乘法时,分子乘以分子,分母乘以分母。
除法时,乘以倒数,即分
子乘以分母的倒数。
5. 分式的加减法:分式加减法也要找到分母的最小公倍数,然后分子相加减,分母不变。
6. 分式的混合运算:先进行分数的乘除法运算,再进行分数的加减法运算。
7. 分式方程的解:分式方程的解与分式的定义域有关,需要注意排除分母为零的情况。
8. 分式不等式的解:将分数不等式转化为分母为正数的不等式,根据分母正负的不同
确定解的范围。
9. 分式的应用:分式在实际问题中的应用包括比例、速度、利润等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
,2
b , 2abc3 , x2
1 x2
, 中,分
2a
5y a3
3
x1 x
共 4 页,第 1 页。
式的个数有
个。
二、分式有意义
1 、若分式 2 有意义,则 x 的取值范围是 3x
2 、当 x
时,分式 x 无意义 . 2x 3
3 、已知分式
x 3 ,当 x =2 时,分式无意义,则 a 的值是
x2 5x a
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
⑴运算顺序与整式的乘除法完全一样;⑵多项式的要先分解因式;⑶乘除混合运算时把
除法统一成乘法(把除式的分子分母颠倒位置) ;⑷最后结果化为最简分式。
a c ac a c a d ad
?
B B C ( C 0)
3. 分式的通分和约分:关键先是 分解因式。
约分: 指把分式的分子与分母的公因式约去,化为 最简分式 。
找公因式的方法:①系数取最大公约数;②相同字母或整式取最低次幂;③分子、分母
是多项式先分解因式,然后再约去公因式;④互为相反数的整式变号后识为公因式(最好改
变偶次方的底数) ;⑤把系数与最低次幂相乘。
;
?
b d bd b d b c bc
( a )n b
an bn
分式的加减法则: 同分母的分式相加减 ,分母不变,把分子相加减。
异分母的分式相加减 ,先通分,变为同分母分式,然后再加减。
a b a b , a c ad bc ad bc c c c b d bd bd bd
混合运算 : 运算顺序和以前一样。能用运算率简算的可用运算率简算。
第十六章 分式 知识点
1. 如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A 叫做分式。 B
分式有意义 的条件是分母不为零; 分式值为零 的条件分子为零且分母不为零。
2. 分式的基本性质: 分式的分子与分母同乘或除以一个不等于 0 的整式, 分式的值不变。
A A ?C
A AC
B B ?C
A.
B.
( x y) 5
2x y
(x y) 2 C. x2 y2
x2 y2 D. x2 y 2
3a =(
5b
4 、若把分式 x y 中的 x 和 y 都ຫໍສະໝຸດ 大 2 倍,那么分式的值()
xy
A .扩大 2 倍 B .不变 C .缩小 2 倍 D .缩小 4 倍
5 、不改变分式 0、5x-1 的值,把它的分子和分母中各项的系数都化为整数, 0、3x 2
解分式方程的过程 ,实质上是 将方程两边同乘以一个整式(最简公分母) ,
把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样
就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 : ( 分式方程必须检验 )
(1) 能化简的先化简; (2) 方程两边同乘以最简公分母,化为整式方程; (3) 解
或- 3
3 、当 x=
时,分式 2x 7 的值为 1. x3
四、分式的基本性质
6a3b2 3a3
1 、填空
8b3
x2 y2 (x y)2
xy
2 、不改变分式的值,使下列分式的分子与分母都不含“
- ”号。
6b
x
7m
=(
)
=(
)
=(
)
5a
3y
6n
xy
3 、下列各式与
相等的是( )
xy
( x y) 5
2x y
则所得的结果为
应用题几种类型;基本公式 。基本上有六种:
(1) 行程问题:速度×时间 =路程。行程问题中又分 相遇问题 (速度和×相遇时
间=路程)、追及问题 (速度差×相遇时间 =路程).
(2) 数字问题:在数字问题中要掌握十进制数的表示法.
(3) 工程问题:工作效率×工作时间 =工作总量.
(4) 顺水逆水问题: v顺水 = v静水 + v水流 、 v顺水 = v静水 - v水流
(5)价格问题:单价×数量 =总价。 (6)产量问题:单产量×数量 =总产量。
9. 科学记数法:把一个数表示成 a 10n 的形式(其中 1 a 10 ,n 是整数)的
记数方法叫做科学记数法.
用科学记数法表示绝对值大于 10 的 n 位整数时,其中 10 的指数是 n 1。
用科学记数法表示绝对值小于 1 的正小数时 , 其中 10 的指数是第一个非 0 数字 前面 0 的个数 ( 包括小数点前面的一个 0) 。
整式方程; (4) 检验.分式方程检验方法:将整式方程的解带入最简公分母,如果
最简公分母的值不为 0,则整式方程的解是原分式方程的解;否则,这个解不是原
分式方程的解。
增根应满足两个条件:一是其值应使最简公分母为
0,二是其值应是去分母后
所的整式方程的根。
8. 列方程应用题的步骤: (1) 审; (2) 设; (3) 列; (4) 解; (5) 验;( 6)答.
5. 任何一个 不等于零的数 的零次幂等于 1, 即 a0 1(a 0) ;
( 3)积的乘方: ( ab) n anb n ;
( 4)同底数的幂的除法: a m a n am n ( a ≠ 0) ;
( 5)分式(商)的乘方: ( a )n b
an b n ; (b ≠ 0)
7. 分式方程:含分式,并且 分母中含未知数的方程 —— 分式方程 。
4 、下列分式,对于任意的 x 的值总有意义的是(
)
A
、
x x2
5 1
B
、
x x2
1 1
C 、 x2 1 8x
D 、 x2 1 x1
三、 分式的值为零
x2 1
1 、分式
的值为 0,则 x 的值是 ____________
x1
x2 9
2
、若分式 x2
4x
的值为零,则 x 的值为( 3
)
A.0 B.
-3 C.3 D.3
当 n 为正整数时, a n
1 ( a 0) an
6. 正整数指数幂运算性质也可以推广到 整数指数幂 .(m,n 是整数 )
( 1)同底数的幂的乘法: a m ? a n am n ;
( 2)幂的乘方: (a m )n a mn ;
一、分式的概念
《分式》练习题
在代数式 3x
1 , 5 , 6x2 y ,
通分: 把几个分式化成分母相同的分式。
找最简公分母的方法 : ①系数取它们的最小公倍数;②相同字母或整式取最高次幂;③
分母是多项式的先分解因式;互为相反数的先转化(注意偶次方)
;④各分式能化简的先化
简;⑤把系数与最高次幂相乘。
4. 分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。