大数据可视化分析工具有哪些
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据可视化分析工具有哪些
社会因为大数据的加入而变得更加清楚明了,大数据掌握着我们每一个用户的喜好需求,在大数据的技术下,市场就在手中,得数据者得天下!那在大数据的深度学习中,大数据专家们都用哪些可视化工具呢?听千锋教育的专家怎么说。
首先是ACTIVIS
Facebook 研发的交互式深度学习可视化系统,可以对生产环境中的大规模模型以及器运行的结果进行生动直观的呈现。这一系统可以支持四个方面的可视化。模型架构及其对应的计算图概览;用于审视激活情况的神经元激活矩阵、以及投影到2D的可视化;可以对于每一个实例结果进行可视化分析;支持增加不同的实例来对不同的实例、子集、类型的激活模式进行比较,寻找误分类的原因第二就是Grad-CAM
Grad-CAM是指Gradient-weighted Class Activation Mapping,研究人员提出利用这种梯度权重激活映射来对卷积神经网络的分类进行解释,在输入的图片中粗略地显示出模型预测出的类别对应的重要性区间。这种方式可以广泛试用于CNN模型家族的模型预测可视化过程。
第三是Deep View
研究人员基于Deep View这一可视化工具研究了训练过程中深度网络的进化情况。利用判别矩阵和密度矩阵分别评价神经元和输出特征图在训练中的进化过程,总而建立了十分细致的视觉分析框架,能够有效展示模型在训练过程中局部和全局的特征变化。
第四是LSTMV
递归神经网络特别是长短时记忆网络是对于时序信号强有力的工具,可以有效的建立和表征时序输入的隐含模式。研究人员对于其中隐藏层随时间的变化十分感兴趣,这一工作主要聚焦于对递归神经网络中的隐藏层动力学可视化。用户可以利用这一工具针对性的选取输入范围并与相同模式的大数据集进行比较,同时还可以利用这一工具对独立的模式进行统计分析。
大数据火爆进行时,学习大数据正当时,千锋教育大数据培训的大门一直为你敞开着,让千锋陪你一起抓住机遇,挑战未来!