常用软磁磁芯的特点
硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金
钢片铁芯、坡莫合金、非晶及纳米晶软磁合金一.磁性材料的基本特性. 磁性材料的磁化曲线性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
. 软磁材料的常用磁性能参数和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
形比:Br∕Bs顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ 降低,滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:功率耗散(mW)/表面积(cm2). 软磁材料的磁性参数与器件的电气参数之间的转换设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
软磁类磁芯
软磁类磁芯
软磁类磁芯是一种具有高磁导率和低磁饱和磁通密度的磁性材料,通常用于电感器、变压器和磁性传感器等应用中。
软磁类磁芯主要有两种类型:硅铁磁芯和镍铁磁芯。
硅铁磁芯是由硅和铁元素组成的磁性合金,具有较高的电阻率和较低的磁化损耗。
它在高频电感器和变压器中广泛应用,能够有效降低电感器的能量损耗,并提高变压器的效率。
镍铁磁芯是由镍和铁元素组成的磁性合金,具有良好的磁导率和低的磁化损耗。
它在磁性传感器和高频电感器中具有广泛的应用,能够提高传感器的灵敏度和响应速度。
软磁类磁芯的选择取决于应用中的特定要求,如工作频率、磁场强度和温度等。
对于高频应用,通常选择硅铁磁芯,而对于磁性传感器等应用,则常选择镍铁磁芯。
常见软磁磁芯种类及比较
常见软磁磁芯种类及⽐较常见软磁磁芯种类及⽐较从事设计变压器和电感器⼯程师在⾯临磁芯的选型时,通常会问:使⽤哪⼀种材料最好?这个问题没有通⽤答案,材料的选择取决于应⽤场合与使⽤频率。
选择任何材料都只是⼀种折中⽅案。
例如,某些材料能够使温升程度降⾄最低,但是⽐较昂贵。
但是,如果⽤户愿意忍受较⾼程度的温升,可能⼤且较便宜的组件便可胜任。
最佳材料的选择⾸先依赖于您是否将其应⽤于电感器或变压器。
从这⼀点出发,操作频率和成本也很重要。
不同的材料适⽤于不同的频率范围、操作温度和磁通密度。
将磁芯的选择范围缩⼩⾄某个特定类型后,建议试⽤各个不同的磁芯,然后做出最终选择。
下⾯表格是各种常见的软磁材料⽐较表。
常见软磁材料⽐较表软磁磁性材料组合饱和磁通密度(T)磁导率磁芯损耗相对成本温度稳定磁粉芯材料铁硅铝铁·硅·铝 1.05 14-125 低低佳铁硅铁·硅 1.6 60 ⾼低佳⾼磁通铁·鎳 1.5 14-160 中等中等更佳钼坡莫铁·鎳·鉬 0.75 14-550 最低⾼最佳铁氧体材料锰锌 0.45 900-10K 最低最低差绕带磁芯铁·鎳·鉬 0.7 100K 极低极⾼极佳铁粉芯铁 1.2-1.5 3-100 最⾼最低差磁粉芯: 磁粉芯是⼀种具有均匀分布式⽓隙的材料,拥有许多优秀的磁特性-⾼电阻,低磁滞和低涡流损耗,以及在直流和交流条件下极佳的电感稳定性。
美磁的磁粉芯材料不使⽤有机粘结剂,因此,不会有使⽤铁粉芯时出现的热⽼化现象。
分布⽓隙材料相互之间具有合⾦颗粒绝缘层。
这允许随着电流的不断增加达到软饱和,提供故障保护。
具有离散⽓隙的磁芯(铁氧体)具有⾼电感,使曲线中出现转折,造成急速饱和。
具有分布⽓隙的磁芯在⾼温条件下拥有较理想的Bmax 和直流偏置。
具有离散⽓隙的磁芯(铁氧体)将在⽓隙周围造成边缘磁通,损耗显著增加。
美磁公司现提供四种不同的磁粉芯材料,点击以下名称,即可得到各种不同材料的优势、⽤途、以及规格尺⼨。
磁性材料的基本特性
一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数∙饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列;∙剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs;∙矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等);∙磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关;∙初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp;∙居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度;∙损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r;∙在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米)3.软磁材料的磁性参数与器件的电气参数之间的转换∙设计软磁器件通常包括三个步骤:正确选用磁性材料;∙合理确定磁芯的几何形状及尺寸;∙根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
材料:B H,m 磁芯(S,l):f~F 器件(N):U~I,LI ~H: H = IN/l 磁势F =ò Hdl=Hl Nf = ò UdtL~m:L=AL N2 =4N2m SK /D′10-9 U ~B:U = Ndf/dt = kfNBS ′10-6二、常用软磁磁芯的特点及应用(一).粉芯类1.磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
非晶、纳米晶软磁合金磁芯介绍
非晶、纳米晶软磁合金磁芯介绍1、讲授人:朱正吼,非晶、纳米晶软磁合金磁芯介绍,非晶及纳米晶软磁合金,牌号和基本成分铁基非晶合金铁镍基非晶合金铁基纳米晶合金非晶及纳米晶软磁合金磁芯非晶及纳米晶磁芯应用汇总销售---思索,,牌号和基本成分,,铁基非晶合金,组成:80%Fe、20%Si,B 类金属元素性能:1.高饱和磁感应强度〔1.54T〕;2.与硅钢片的损耗比较:磁导率、激磁电流和铁损等都优于硅钢片。
特殊是铁损低〔为取向硅钢片的1/3-1/5〕,代替硅钢做配电变压器可节能60-70%。
应用:广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯,适合于10kHz以2、下频率使用。
,,铁镍基非晶合金,组成:40%Ni、40%Fe及20%类金属元素性能:1.具有中等饱和磁感应强度〔0.8T〕、较高的初始磁导率和很高的最大磁导率以及高的机械强度和优良的韧性。
2.在中、低频率下具有低的铁损。
3.空气中热处理不发生氧化,经磁场退火后可得到很好的矩形回线。
应用:广泛用于漏电开关、精密电流互感器铁芯、磁屏蔽等。
,,铁基纳米晶合金,组成:铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金,经快速凝固工艺形成一种非晶态材料。
热处理后获得直径为10-20nm的微晶,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料。
性能:具有优异3、的综合磁性能,高饱和磁感、高初始磁导率、低Hc,高磁感下的高频损耗低,电阻率比坡莫合金高。
经纵向或横向磁场处理,可得到高Br或低Br值。
是目前市场上综合性能最好的材料。
应用:广泛应用于大功率开关电源、逆变电源、磁放大器、高频变压器、高频变换器、高频扼流圈铁芯、电流互感器铁芯、漏电爱护开关、共模电感铁芯。
,,非晶及纳米晶软磁合金磁芯,磁放大器磁芯滤波电感磁芯高频大功率磁芯恒电感磁芯电流互感器磁芯实例1:磁芯在开关电源中使用实例2:非晶磁芯在LED灯具上应用,,磁放大器磁芯,什么是磁放大器性能特点应用范围计算机ATX电源和通讯开关电源,,性能特点,,应用范围4、,磁放大器能使开关电源得到精确的掌握,从而提高了其稳定性。
镍锌铁氧体磁芯
镍锌铁氧体磁芯
镍锌铁氧体磁芯是一种高频软磁铁氧体材料,具有尖晶石结构,相对初始磁导率μ在15~70之间,矫顽力为238.8~557.2A/m,居里点为350~450℃。
它的主要原料包括铁、镍、锌的氧化物或盐类。
镍锌铁氧体磁芯由于具有高频、宽频、高阻抗、低损耗的特点,在近几年越来越受到重视,成为在高频范围(1-100MHz)内应用最广、性能优异的软磁铁氧体材料。
镍锌铁氧体磁芯的磁导率从15-2000不等均有应用,常用的材料磁导率在100-1000之间。
此外,它还具有极高的阻抗率,不到几百的低磁导率等特性。
在电子设备中,镍锌铁氧体磁芯广泛应用于线圈和变压器中,因为它具有高的饱和磁感应强度,机械应力影响小,价格便宜等优点。
请注意,对于任何关于电子设备或材料的详细技术问题,最好咨询相关的专业人员或查阅专门的技术资料,以确保安全和准确性。
软磁材料
软磁材料基本知识一、软磁材料的发展及种类1.软磁材料的发展软磁材料在工业中的应用始于十九世纪末。
随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。
到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。
直至现在硅钢片在电力工业用软磁材料中仍居首位。
到二十年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。
从四十年代到六十年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。
进入七十年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。
2.常用软磁磁芯的种类铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。
按(主要成分, 磁性特点, 结构特点) 制品形态分类:1). 合金类:硅钢片、坡莫合金、非晶及纳米晶合金2). 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)3). 铁氧体类:算是特殊的粉芯类, 包括:锰锌系、镍锌系常用软磁材料的分类及其特性(Soft Magnetic Materials)二、软磁材料的分类介绍(一). 合金类1.硅钢硅钢是一种合金,在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金称为硅钢,该类铁芯具有最高的饱和磁感应强度值为20000 高斯;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。
是软磁材料中产量和使用量最大的材料。
也是电源变压器用磁性材料中用量最大的材料。
特别是在低频、大功率下最为适用。
常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。
磁芯的种类及应用
磁芯的种类及应用:1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br⁄Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
常用软磁磁芯的特点
常用软磁磁芯的特点(一). 粉芯类1. 磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。
主要用于高频电感。
磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
磁芯的有效磁导率me及电感的计算公式为: me = DL/4N2S ´ 109其中:D为磁芯平均直径(cm),L为电感量(享),N为绕线匝数,S为磁芯有效截面积(cm2)。
(1). 铁粉芯常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。
在粉芯中价格最低。
饱和磁感应强度值在1.4T左右;磁导率范围从22~100; 初始磁导率mi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。
(2). 坡莫合金粉芯坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。
MPP是由81%Ni, 2%Mo, 及Fe粉构成。
主要特点是: 饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。
主要应用于300KHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC 电路中常用, 粉芯中价格最贵。
高磁通粉芯HF是由50%Ni, 50%Fe粉构成。
主要特点是: 饱和磁感应强度值在15000Gs左右;磁导率范围从14~160; 在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。
磁性材料的基本特性及分类参数
・磁性材料的基本特性1・磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M〜H或B〜H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H, Ms保持不变;以及当材料的M值达到饱和后,外磁场H 降低为零时,M 并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M〜H曲线或B〜H 曲线上的某一点,该点常称为工作点。
2・软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列°剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br/Bs矫顽力He:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率小是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相矢。
初始磁导率L1J、最大磁导率nm>微分磁导率pd、振幅磁导率pa、有效磁导率pe、脉冲磁导率| ip。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe oc f2 t2 / , p降低,磁滞损耗Ph的方法是降低矫顽力He;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率P。
在自由静止空气中磁芯的损耗与磁芯的温升矢系为:总功率耗散(mW)/表面积(cm2)3・软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压〜电流特性。
器件的电压〜电流特性与磁芯的几何形状及磁化状态密切相矢。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换矢系。
磁性材料的基本特性及分类参数
一•磁性材料的基本特性1・磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M〜H或B〜H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H, Ms保持不变;以及当材料的M值达到饱和后,外磁场H 降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M〜H曲线或B〜H曲线上的某一点,该点常称为工作点。
2 •软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br/Bs矫顽力He:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率小是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率山、最大磁导率nm>微分磁导率pd、振幅磁导率pa、有效磁导率pe、脉冲磁导率|ip o居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe oc f2 t2 / , p 降低,磁滞损耗Ph的方法是降低矫顽力He;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率P。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3 •软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压〜电流特性。
器件的电压〜电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
磁性材料的基本特性及分类参数
一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金
硅钢片铁芯、坡莫合金、非晶及纳米晶软磁合金一.磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ 降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
软磁材料
软磁材料软磁材料软磁材料的定义:当磁化发生在Hc不大于1000A/m,这样的材料称为软磁体。
典型的软磁材料,可以用最小的外磁场实现最大的磁化强度。
目录软磁材料加工厂羰基铁。
其特点是饱和磁化强度高,价格低廉,加工性能好;但其电阻率低、在交变磁场下涡流损耗大,只适于静态下使用,如制造电磁铁芯、极靴、继电器和扬声器磁导体、磁屏蔽罩等。
②铁硅系合金。
含硅量 0.5% ~ 4.8%,一般制成薄板使用,俗称硅钢片。
在纯铁中加入硅后,可消除磁性材料的磁性随使用时间而变化的现象。
随着硅含量增加,热导率降低,脆性增加,饱和磁化强度下降,但其电阻率和磁导率高,矫顽力和涡流损耗减小,从而可应用到交流领域,制造电机、变压器、继电器、互感器等的铁芯。
③铁铝系合金。
含铝6%~16%,具有较好的软磁性能,磁导率和电阻率高,硬度高、耐磨性好,但性脆,主要用于制造小型变压器、磁放大器、继电器等的铁芯和磁头、超声换能器等。
④铁硅铝系合金。
在二元铁铝合金中加入硅获得。
其硬度、饱和磁感应强度、磁导率和电阻率都较高。
缺点是磁性能对成分起伏敏感,脆性大,加工性能差。
主要用于音频和视频磁头。
⑤镍铁系合金。
镍含量30%~90%,又称坡莫合金,通过合金化元素配比和适当工艺,可控制磁性能,获得高导磁、恒导磁、矩磁等软磁材料。
其塑性高,对应力较敏感,可用作脉冲变压器材料、电感铁芯和功能磁性材料。
⑥铁钴系合金。
钴含量27%~50%。
具有较高的饱和磁化强度,电阻率低。
适于制造极靴、电机转子和定子、小型变压器铁芯等。
⑦软磁铁氧体。
非金属亚铁磁性软磁材料。
电阻率高(10-2~1010Ω·m ),饱和磁化强度比金属低,价格低廉,广泛用作电感元件和变压器元件(见铁氧体)。
⑧非晶态软磁合金。
一种无长程有序、无晶粒合金,又称金属玻璃,或称非晶金属。
其磁导率和电阻率高,矫顽力小,对应力不敏感,不存在由晶体结构引起的磁晶各向异性,具有耐蚀和高强度等特点。
此外,其居里点比晶态软磁材料低得多,电能损耗大为降低,是一种正在开发利用的新型软磁材料。
磁性材料的特性及应用
减落因数: 减落因数: 在恒温条件下,完全退磁的磁芯的磁 导率随时间的衰减变化。 电感因数: 电感因数: 电感因数定义为具有一定形状和尺寸 的磁芯上每一匝线圈产生的电感量, 即
AL = L N2
3.电阻率: 电阻率: 电阻率 具有单位截面积和单位磁路长度的磁性 材料的电阻。与适用频率相关 由低到高排序: 硅(镍)钢片---金属磁粉芯: ( ) ----锰锌铁氧体---镁锌铁氧体---镍锌铁氧体
4.功率损耗: 功率损耗: 功率损耗 磁芯在高磁通密度下的单位体积损耗 和单位重量损耗;是磁滞损耗、涡流 损耗和剩余损耗三者之和;是衡量功 率型 材质优劣的重要参数,常用的测试 条件有100KHZ/200mT和25KHZ/200mT. (图)
5.居里温度: 居里温度: 居里温度 居里温度是磁性材料从铁磁性到顺磁性 的转变温度,或称磁性消失温度。一般 表示方法:随温度升高,磁导率下降到 最大值的80%,20%时,这二点联线,延 长到与温度轴的交点,即为居里温度。 (图)
3.磁芯型式上的优缺点 磁芯型式上的优缺点: 磁芯型式上的优缺点
EE或EI型:
结构简单,易加工,成本低. 漏磁多,空间利用率一般.
ER型: 结构相对简单,易加工,成本低. 漏磁多,空间利用率较好.
EFD,EPC型: 结构较复杂,易变形,成 本高 但可获得较低成品高 度,实现扁平化.
EP型:
结构较复杂,难加工,成本高 卓越的磁屏蔽性能,且信号传输失真度小.
2.磁导率 磁导率 初始磁导率是磁性材料的磁导率在磁化 曲线始端的极限值.它和温度、频率有关。
软磁材料介绍
*发展史:
(1)铁氧体问世之前,金属软磁材料垄断了电力、电子、通信
各领域。优点:其MS远高于铁氧体,因此电力工业中的变压器、
(3)高频、大磁场用的材料; (4)高饱和Bs低功耗材料(功率铁氧体); (5)甚高频六角铁氧体; (6)其他铁氧体:如温感、湿感、电波吸收、电极等材料。
26
2.5 纳米晶软磁材料 2.5.1 非晶态软磁材料(具有优良的综合磁性能) 一、非晶态软磁材料的结构和性能
*特征: (1)短程有序,长程无序; (2)不存在位错和晶界,具有高磁导率和低矫顽力; (3)电阻率比同种晶态材料高,适用高频(涡流损耗小); (4)体系自由能高,结构不稳定,加热时有结晶化倾向; (5)机械强度较高且硬度较高; (6)抗化学腐蚀能力强,抗射线及中子等辐射能力强。
*选择配方时更要考虑K1、S对i的作用。
*例:CoFe2O4、Fe3O4的MS虽然较高,但其K1和S值太大,因
而不宜作为配方的基本成分。
6
2、降低K1和S *提高i 的最有效方法从配方和工艺上使K1 0、S 0
*选择适当合金成分和热处理条件可以控制K1和S在较低值
*例:Fe-Ni合金质量分数Ni81%时,S0;Ni76%时, K10;Ni78.5%Fe-Ni合金经过热处理后,i可达104
*应用:电磁铁的铁芯和磁极,继电器的磁路和各种零件,感
应式和电磁式测量仪表的各种零件,扬声器的各种磁路,电话 中的振动膜、磁屏蔽,电机中用以导引直流磁通的磁极,冶金 原料等。
12
磁环分类大全
磁环分类大全(一).粉芯类1.磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。
主要用于高频电感。
磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
磁芯的有效磁导率me及电感的计算公式为:me=DL/4N2S´109其中:D为磁芯平均直径(cm),L为电感量(享),N为绕线匝数,S为磁芯有效截面积(cm2)。
(1).铁粉芯常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。
在粉芯中价格最低。
饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率mi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。
(2).坡莫合金粉芯坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。
MPP是由81%Ni,2%Mo,及Fe粉构成。
主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。
主要应用于300KHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等,在AC电路中常用,粉芯中价格最贵。
高磁通粉芯HF是由50%Ni,50%Fe粉构成。
主要特点是:饱和磁感应强度值在15000Gs 左右;磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。
pc40磁芯材料
pc40磁芯材料全文共四篇示例,供读者参考第一篇示例:PC40磁芯材料是一种常用的软磁材料,具有优良的磁性能和电磁性能,广泛应用于各种电子设备和通信设备中。
PC40磁芯材料具有低磁导率、低磁滞、高磁饱和感和低矫顽力等特点,能够有效地降低电子元器件的功耗和发热,提高设备的稳定性和可靠性。
本文将从PC40磁芯材料的基本特性、应用领域和制造工艺等方面进行详细介绍。
PC40磁芯材料是一种由铁、硅、铜和铝等合金元素组成的软磁合金材料,其主要成分为铁(Si):94%,碳(C):0.03%,硅(Si):3.8%,铝(Al):1.2%,铜(Cu):0.6%。
PC40磁芯材料具有高导磁率、低磁阻、低铜损耗、低润湿斯基粒度、低热膨胀系数、优良耐热性和耐腐蚀性等特点,适用于高频变压器、信号变压器、滤波器、电感等产品。
PC40磁芯材料的主要特性有以下几点:1. 低磁导率:PC40磁芯材料具有较低的磁导率,可以有效地降低电子元器件的磁损耗,提高设备的转换效率和功耗性能。
2. 低磁滞:PC40磁芯材料的矫顽力很小,能够快速反应外加磁场的变化,减少磁压损耗和磁滞损耗。
3. 高磁饱和感:PC40磁芯材料具有较高的磁饱和感,能够充分利用磁场激发磁芯的磁性能,提高变压器和电感的能量传输效率。
1. 通信设备:PC40磁芯材料广泛应用于通信设备中的变压器、电感、滤波器和隔离器等产品,用于干扰滤波、信号传输、电源转换和调节等功能。
2. 电源设备:PC40磁芯材料可以用于各种类型的电源设备中,包括开关电源、逆变器、稳压器、变频器等产品,用于增加稳定性、降低功耗和提高效率。
3. 汽车电子:PC40磁芯材料广泛应用于汽车电子设备中的电源管理、电机控制和通信系统中,用于提高设备的可靠性、安全性和通信效率。
1. 原料准备:首先需要准备铁、硅、铜和铝等合金元素的原料,并按照一定的配方比例进行混合。
2. 熔炼铸造:将混合原料加热至一定温度,进行熔炼铸造,得到PC40磁芯材料的块状合金材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用软磁磁芯的特点(一). 粉芯类1. 磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。
主要用于高频电感。
磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
磁芯的有效磁导率me及电感的计算公式为: me = DL/4N2S ´ 109其中:D为磁芯平均直径(cm),L为电感量(享),N为绕线匝数,S为磁芯有效截面积(cm2)。
(1). 铁粉芯常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。
在粉芯中价格最低。
饱和磁感应强度值在1.4T左右;磁导率范围从22~100; 初始磁导率mi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。
(2). 坡莫合金粉芯坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。
MPP是由81%Ni, 2%Mo, 及Fe粉构成。
主要特点是: 饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。
主要应用于300KHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC 电路中常用, 粉芯中价格最贵。
高磁通粉芯HF是由50%Ni, 50%Fe粉构成。
主要特点是: 饱和磁感应强度值在15000Gs左右;磁导率范围从14~160; 在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。
主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC电路中常用,高DC偏压、高直流电和低交流电上用得多。
价格低于MPP。
(3). 铁硅铝粉芯(Kool Mm Cores)铁硅铝粉芯由9%Al, 5%Si, 85%Fe粉构成。
主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz以上频率下使用;饱和磁感在1.05T左右;导磁率从26~125;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有最佳的性能价格比。
主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。
有时也替代有气隙铁氧体作变压器铁芯使用。
2. 软磁铁氧体(Ferrites)软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产。
有Mn-Zn、Cu-Zn、Ni-Zn 等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1~10欧姆-米,一般在100KHZ 以下的频率使用。
Cu-Zn、Ni-Zn铁氧体的电阻率为102~104欧姆-米,在100kHz~10兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器。
磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。
在应用上很方便。
由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。
而且磁导率随频率的变化特性稳定,在150kHz 以下基本保持不变。
随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。
国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况。
分为三类基本材料:电信用基本材料、宽带及EMI材料、功率型材料。
电信用铁氧体的磁导率从750~2300, 具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系, 是磁导率在工作中下降最慢的一种,约每十年下降3%~4%。
广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。
宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000。
其特性为具有低损耗因子、高磁导率、高阻抗/频率特性。
广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用。
功率铁氧体具有高的饱和磁感应强度,为4000~5000 Gs。
另外具有低损耗/频率关系和低损耗/温度关系。
也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。
广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路。
(二). 带绕铁芯1. 硅钢片铁芯硅钢片是一种合金,在纯铁中加入少量的硅(一般在4.5%以下)形成的铁硅系合金称为硅钢该类铁芯具有最高的饱和磁感应强度值为20000高斯; 由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。
是软磁材料中产量和使用量最大的材料。
也是电源变压器用磁性材料中用量最大的材料。
特别是在低频、大功率下最为适用。
常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。
但高频下损耗急剧增加,一般使用频率不超过400Hz。
从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。
对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。
在工频下使用时,常用带材的厚度为0.2~0.35毫米;在400Hz下使用时,常选0.1毫米厚度为宜。
厚度越薄,价格越高。
2. 坡莫合金坡莫合金常指铁镍系合金,镍含量在30~90%范围内。
是应用非常广泛的软磁合金。
通过适当的工艺,可以有效地控制磁性能,比如超过十万的初始磁导率、超过一百万的最大磁导率、低到千分之二奥斯特的矫顽力、接近1或接近零的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1微米的超薄带及各种使用形态。
常用的合金有1J50、1J79、1J85等。
1J50的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍。
做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100瓦以下小型较高频率变压器。
1J79具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。
1J85的初始磁导率可达十万以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。
3.非晶及纳米晶软磁合金(Amorphous and Nanocrystalline alloys)硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。
从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的。
非晶态金属与合金是70年代问世的一个新型材料领域。
它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命。
由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。
这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。
由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。
目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场。
我国自从70年代开始了非晶态合金的研究及开发工作,经过“ 六五”、“ 七五”、“ 八五” 期间的重大科技攻关项目的完成,共取得科研成果134 项,国家发明奖2 项,获专利16项,已有近百个合金品种。
钢铁研究总院现具有4条非晶合金带材生产线、一条非晶合金元器件铁芯生产线。
生产各种定型的铁基、铁镍基、钴基和纳米晶带材及铁芯,适用于逆变电源、开关电源、电源变压器、漏电保护器、电感器的铁芯元件,年产值近2000万元。
“ 九五”正在建立千吨级铁基非晶生产线,进入国际先进水平行列。
目前,非晶软磁合金所达到的最好单项性能水平为:初始磁导率 m0 = 14 ´ 104 钴基非晶最大磁导率 mm = 220 ´ 104 钴基非晶矫顽力Hc = 0.001 Oe 钴基非晶矩形比Br/Bs = 0.995 钴基非晶饱和磁化强度4pMs = 18300 Gs 铁基非晶电阻率r = 270 微欧厘米(1). 铁基非晶合金(Fe-based amorphous alloys)铁基非晶合金是由80 % Fe 及20% Si,B类金属元素所构成,它具有高饱和磁感应强度( 1.54T〕,磁导率、激磁电流和铁损等各方面都优于硅钢片的特点,特别是铁损低(为取向硅钢片的1/3-1/5〕,代替硅钢做配电变压器可节能60-70%。
铁基非晶合金的带材厚度为0.03毫米左右,广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯, 适合于10kHz以下频率使用。
(2).铁镍基钴基非晶合金 (Fe-Ni based-amorphous alloy)铁镍基非晶合金是由40%Ni、40%Fe及20%类金属元素所构成,它具有中等饱和磁感应强度〔0.8T〕、较高的初始磁导率和很高的最大磁导率以及高的机械强度和优良的韧性。
在中、低频率下具有低的铁损。
空气中热处理不发生氧化,经磁场退火后可得到很好的矩形回线。
价格比1J79 便宜30-50%。
铁镍基非晶合金的应用范围与中镍坡莫合金相对应, 但铁损和高的机械强度远比晶态合金优越;代替1J79,广泛用于漏电开关、精密电流互感器铁芯、磁屏蔽等。
铁镍基非晶合金是国内开发最早,也是目前国内非晶合金中应用量最大的非晶品种,年产量近200吨左右.空气中热处理不发生氧化铁镍基非晶合金(1K503〕获得国家发明专利和美国专利权。