数据挖掘实验报告二

合集下载

《数据仓库与数据挖掘》实验二聚类分实验报告37

《数据仓库与数据挖掘》实验二聚类分实验报告37

实验二、聚类分析实验报告一、实验目的通过计算机编程实现并验证谱系聚类法的模式分类能力,了解和掌握最小距离归类原则在模式识别中的重要作用与地位。

二、实验内容1)用Matlab 实现谱系聚类算法,并对给定的样本集进行分类;2)通过改变实验参数,观察和分析影响谱系聚类算法的分类结果与收敛速度的因素;三、实验原理、方法和手段人类认识世界往往首先将被认识的对象进行分类,聚类分析是研究分类问题的多元数据分析方法,是数值分类学中的一支。

多元数据形成数据矩阵,见下表1。

在数据矩阵中,共有n 个样品 x 1,x 2,…,x n (列向),p 个指标(行向)。

聚类分析有两种类型:按样品聚类或按变量(指标)聚类。

距离或相似系数代表样品或变量之间的相似程度。

按相似程度的大小,将样品(或变量)逐一归类,关系密切的类聚到一个小的分类单位,然后逐步扩大,使得关系疏远的聚合到一个大的分类单位,直到所有的样品(或变量)都聚集完毕,形成一个表示亲疏关系的谱系图,依次按照某些要求对样品(或变量)进行分类。

⑴ 分类统计量----距离与相似系数① 样品间的相似性度量----距离用样品点之间的距离来衡量各样品之间的相似性程度(或靠近程度)。

设(,)i j d x x 是样品 ,i j x x 之间的距离,一般要求它满足下列条件:1)(,)0,(,)0;2)(,)(,);3)(,)(,)(,).i j i j i j i j j i i j i k k j d x x d x x x x d x x d x x d x x d x x d x x ≥=⇔==≤+且在聚类分析中,有些距离不满足3),我们在广义的角度上仍称它为距离。

欧氏距离1221(,)()pi j ik jk k d x x x x =⎡⎤=-⎢⎥⎣⎦∑⏹ 绝对距离1(,)||pi j ik jk k d x x x x ==-∑⏹ Minkowski 距离11(,)()pmm i j ik jk k d x x x x =⎡⎤=-⎢⎥⎣⎦∑⏹ Chebyshev 距离1(,)max ||i j ik jk k pd x x x x ≤≤=-⏹ 方差加权距离12221()(,)pik jk i j k k x x d x x s =⎡⎤-=⎢⎥⎢⎥⎣⎦∑ 其中 221111,().1n n ik k ik k i i x x s x x n n ====--∑∑ ⏹ 马氏距离112(,)()()T i j i j i j d x x x x S x x -⎡⎤=--⎣⎦其中 S 是由样品12,,...,,...,j n x x x x 算得的协方差矩阵:1111,()()1n n T i i i i i x x S x x x x n n ====---∑∑ 样品聚类通常称为Q 型聚类,其出发点是距离矩阵。

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告目录1.关联规则的基本概念和方法 (1)1.1数据挖掘 (1)1.1.1数据挖掘的概念 (1)1.1.2数据挖掘的方法与技术 (1)1.2关联规则 (2)1.2.1关联规则的概念 (2)1.2.2关联规则的实现——Apriori算法 (3)2.用Matlab实现关联规则 (5)2.1Matlab概述 (5)2.2基于Matlab的Apriori算法 (6)3.用java实现关联规则 (10)3.1java界面描述 (10)3.2java关键代码描述 (13)4、实验总结 (18)4.1实验的不足和改进 (18)4.2实验心得 (19)1.关联规则的基本概念和方法1.1数据挖掘1.1.1数据挖掘的概念计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。

在最近十几年里,数据库中存储的数据急剧增大。

数据挖掘就是信息技术自然进化的结果。

数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。

许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。

知识发现过程如下:·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据)·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式)·数据挖掘(基本步骤,使用智能方法提取数据模式)·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式)·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。

1.1.2数据挖掘的方法与技术数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。

第二次数据挖掘实验报告

第二次数据挖掘实验报告
# j的范围是i~列表x的长度
for j in range(i, len(x)):
# 判断等式是否成立
if x[i][:l - 1] == x[j][:l - 1] and x[i][l - 1] != x[j][l - 1]:
# 对列表r中追加排好序的元素
r.append(x[i][:l - 1] + sorted([x[j][l - 1], x[i][l - 1]]))
#进行排序后的ms和x放到一个列表里赋值给x
x = list(map(lambda i: sorted(i.split(ms)), x))
#把x列表的第一个元素长度赋值给l
l = len(x[0])
#创建一个空字典r
r = []
#i的范围是0~列表x的长度
for i in range(len(x)):
print(u'数目:%s...' % len(column))
# 新一批支持度的计算函数
sf = lambda i: d[i].prod(axis=1, numeric_only=True)
# 创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
d_2 = pd.DataFrame(list(map(sf, column)), index=[ms.join(i) for i in column]).T
# 导入数据集,根据自己的目录来插入
inputfile = 'D:\数据挖掘\menu_orders.xls'
#导出结果
outputfile = 'D:\数据挖掘\apriori_rules.xls'
# 读取数据

数据挖掘实验报告二

数据挖掘实验报告二

实验二
一、基本原理
分类算法是解决分类问题的方法,是数据挖掘、机器学习和模式识别中一个重要的研究领域。

分类算法通过对已知类别训练集的分析,从中发现分类规则,以此预测新数据的类别。

分类算法的应用非常广泛,银行中风险评估、客户类别分类、文本检索和搜索引擎分类、安全领域中的入侵检测以及软件项目中的应用等。

二、实验目的:
掌握CART决策树构建分类模型。

三、实验内容
对所有窃漏电用户及真诚用户的电量、告警及线损数据和该用户在当天是否窃漏电的标识,按窃漏电评价指标进行处理并选取其中291个样本数据,得到专家样本,使用CART 决策树实现分类预测模型。

注意:数据的80%作为训练样本,剩下的20%作为测试样本。

四、实验步骤
1、对数据进行预处理
2、把数据随机分为两部分,一部分用于训练,一部分用于测试。

分成testData和trainData文件即测试数据和训练数据数据的80%作为训练样本,剩下的20%作为测试样本。

和构建的CART决策树模型分别对训练数据和测试数据进行分类。

构建的神经网络模型分别对训练数据和测试数据进行分类。

5、对比分析CART决策树和神经网络模型对数据处理的结果。

五、实验结果
六、思考与分析
尝试采用神经网络对数据进行分类,并与CART决策树的结果进行比较。

答:与神经网络相比,决策树可以很好地处理非数值型的数据,但是决策树对连续的数据(比如连续的数值型数据)不太擅长。

数据挖掘实验报告结论(3篇)

数据挖掘实验报告结论(3篇)

第1篇一、实验概述本次数据挖掘实验以Apriori算法为核心,通过对GutenBerg和DBLP两个数据集进行关联规则挖掘,旨在探讨数据挖掘技术在知识发现中的应用。

实验过程中,我们遵循数据挖掘的一般流程,包括数据预处理、关联规则挖掘、结果分析和可视化等步骤。

二、实验结果分析1. 数据预处理在实验开始之前,我们对GutenBerg和DBLP数据集进行了预处理,包括数据清洗、数据集成和数据变换等。

通过对数据集的分析,我们发现了以下问题:(1)数据缺失:部分数据集存在缺失值,需要通过插补或删除缺失数据的方法进行处理。

(2)数据不一致:数据集中存在不同格式的数据,需要进行统一处理。

(3)数据噪声:数据集中存在一些异常值,需要通过滤波或聚类等方法进行处理。

2. 关联规则挖掘在数据预处理完成后,我们使用Apriori算法对数据集进行关联规则挖掘。

实验中,我们设置了不同的最小支持度和最小置信度阈值,以挖掘出不同粒度的关联规则。

以下是实验结果分析:(1)GutenBerg数据集在GutenBerg数据集中,我们以句子为篮子粒度,挖掘了林肯演讲集的关联规则。

通过分析挖掘结果,我们发现:- 单词“the”和“of”在句子中频繁出现,表明这两个词在林肯演讲中具有较高的出现频率。

- “and”和“to”等连接词也具有较高的出现频率,说明林肯演讲中句子结构较为复杂。

- 部分单词组合具有较高的置信度,如“war”和“soldier”,表明在林肯演讲中提到“war”时,很可能同时提到“soldier”。

(2)DBLP数据集在DBLP数据集中,我们以作者为单位,挖掘了作者之间的合作关系。

实验结果表明:- 部分作者之间存在较强的合作关系,如同一研究领域内的作者。

- 部分作者在多个研究领域均有合作关系,表明他们在不同领域具有一定的学术影响力。

3. 结果分析和可视化为了更好地展示实验结果,我们对挖掘出的关联规则进行了可视化处理。

通过可视化,我们可以直观地看出以下信息:(1)频繁项集的分布情况:通过柱状图展示频繁项集的分布情况,便于分析不同项集的出现频率。

(完整word版)数据挖掘实验报告-关联规则挖掘(word文档良心出品)

(完整word版)数据挖掘实验报告-关联规则挖掘(word文档良心出品)

数据挖掘实验报告(二)关联规则挖掘**: ***班级: 计算机1304学号: **********一、实验目的1. 1.掌握关联规则挖掘的Apriori算法;2.将Apriori算法用具体的编程语言实现。

二、实验设备PC一台, dev-c++5.11三、实验内容根据下列的Apriori算法进行编程:四、实验步骤1.编制程序。

2.调试程序。

可采用下面的数据库D作为原始数据调试程序, 得到的候选1项集、2项集、3项集分别为C1.C2.C3, 得到的频繁1项集、2项集、3项集分别为L1.L2.L3。

代码#include <stdio.h>#include<string.h>#define D 4 //事务的个数#define MinSupCount 2 //最小事务支持度数void main(){char a[4][5]={{'A','C','D'},{'B','C','E'},{'A','B','C','E'},{'B','E'}};charb[20],d[100],t,b2[100][10],b21[100 ][10];inti,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1;int count[100],temp;for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++) {//用来判断之前保存的是否和a[i][j]一样, 不一样就保存, 一样就不保存for(k=0;k<x;k++){if(b[k]!=a[i][j]) ; else{flag=0;break;}}//用来判断是否相等 if(flag==1){b[x]=a[i][j];x++;}else flag=1;}}//计算筛选出的元素的支持度计数for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++) {for(k=0;k<x;k++){if(a[i][j]==b[k]) {c[k]++;break; }}}}//对选出的项集进行筛选, 选出支持度计数大于等于2的, 并且保存到d[x1]数组中for(k=0;k<x;k++){if(c[k]>=MinSupCount){d[x1]=b[k];count[x1]=c[k];x1++;}}//对选出的项集中的元素进行排序for(i=0;i<x1-1;i++){for(j=0;j<x1-i-1;j++){if(d[j]>d[j+1]){t=d[j];d[j]=d[j+1];d[j+1]=t;temp=count[j];count[j]=count[j+1];count[j+1]=temp;}}}//打印出L1printf("L1 elements are:\n");for(i=0;i<x1;i++){printf("{%c} = %d \n",d[i],count[i]);}//计算每一行的元素个数, 并且保存到n[]数组中for(i=0;i<D;i++){for(j=0;a[i][j]!='\0';j++);n[i]=j;}//对a[][]数组的每一行进行排序for(i=0;i<D;i++){for(j=0;j<n[i]-1;j++){for(k=0;k<n[i]-j-1;k++) {if(a[i][k]>a[i][k+1]){t=a[i][k];a[i][k]=a[i][k+1]; a[i][k+1]=t;}}}}//把L1中的每一个元素都放在b2[i][0]中j1=x1;for(i=0;i<j1;i++){b2[i][0]=d[i];}//把L1中的元素进行组合, K=2开始, 表示x1个元素选K个元素的组合for(k=2;b2[0][0]!='\0';k++){ //u是用来计数组合总数的u=0;v=1;//v 是用来在进行输出各种组合的标识数 v=1 说明正在进行输出 for(i=0;i<100;i++){c2[i]=0;}for(i=0;i<j1;i++){for(i1=i+1;i1<j1;i1++) {for(j=0;j<k-2;j++) {if(b2[i][j]!=b2[i1][j]){flag1=0;break;}}//进行组合的部分if(flag1==1&&b2[i][k-2]!=b2[i1][k-2]){for(j2=0;j2<k-1;j2++){b21[u][j2]=b2[i][j2];}b21[u][k-1]=b2[i1][k-2];u++;}flag1=1;}}counter=0;for(i=0;i<D;i++) //a数组有5行元素{for(i1=0;i1<u;i1++) // 代表x1个元素选K个元素的所有组合总数 {for(j1=0;j1<k;j1++) //K 代表一个组合中的元素个数{for(j=0;a[i][j]!='\0';j++) //逐个比较每一行的元素{if(a[i][j]==b21[i1][j1])counter++;}}if(counter==k)c2[i1]++; //把每种组合数记录在c2数组中counter=0;} }j1=0;temp=0;//这里的temp 是用来分行//对u种情况进行选择, 选出支持度计数大于2的*/for(i=0;i<u;i++){if(c2[i]>=MinSupCount) {if(v==1){printf("L%d elements are:\n",k);v=0;}printf("{");for(j=0;j<k;j++)//输出每种组合k 个元素{b2[j1][j]=b21[i][j];printf("%c,",b2[j1][j]);}j1++;printf("\b}");printf(" = %d \n",c2[i]);temp++;}}b2[j1][0]='\0';}}五、结果截图。

数据挖掘技术与应用实验报告

数据挖掘技术与应用实验报告

数据挖掘技术与应用 实 验 报 告专业:_______________________班级:_______________________学号:_______________________姓名:_______________________2012-2013学年 第二学期经济与管理学院实验名称:SPSS Clementine 软件安装、功能演练指导教师: 实验日期: 成绩:实验目的1、熟悉SPSS Clementine 软件安装、功能和操作特点。

2、了解SPSS Clementine 软件的各选项面板和操作方法。

3、熟练掌握SPSS Clementine 工作流程。

实验内容1、打开SPSS Clementine 软件,逐一操作各选项,熟悉软件功能。

2、打开一有数据库、或新建数据文件,读入SPSS Clementine,并使用各种输出节点,熟悉数据输入输出。

(要求:至少做access数据库文件、excel文件、txt文件、可变文件的导入、导出)实验步骤一 实验前准备:1.下载SPSS Clementine 软件安装包和一个虚拟光驱。

2.选择任意盘区安装虚拟光驱,并把下载的安装包的文件(后缀名bin)添加到虚拟光驱上,然后双击运行。

3.运行安装完成后,把虚拟光驱中CYGiSO文件中的lservrc文件和PlatformSPSSLic7.dll文件复制替换到安装完成后的bin文件中,完成破解,获得永久免费使用权。

4.运行中文破解程序,对SPSS Clementine 软件进行汉化。

二 实验操作:从 Windows 的“开始”菜单中选择:所有程序/SPSS 1、启动 Clementine:Clementine 12.0/SPSS Clementine client 12.02、Clementine窗口当第一次启动 Clementine 时,工作区将以默认视图打开。

中中,这将是用来工作的主要区域。

间的区域称作流工作区。

数据挖掘实验报告-数据预处理

数据挖掘实验报告-数据预处理

数据挖掘实验报告-数据预处理数据挖掘实验报告数据预处理一、实验目的本次实验的主要目的是深入了解和掌握数据预处理在数据挖掘过程中的重要性及相关技术,通过对实际数据集的处理,提高数据质量,为后续的数据挖掘和分析工作奠定良好的基础。

二、实验背景在当今数字化时代,数据的规模和复杂性不断增加,而原始数据往往存在着各种问题,如缺失值、噪声、异常值、不一致性等。

这些问题如果不加以处理,将会严重影响数据挖掘算法的性能和结果的准确性。

因此,数据预处理成为了数据挖掘过程中不可或缺的重要环节。

三、实验数据集本次实验使用了一个名为“销售数据”的数据集,该数据集包含了某公司在过去一年中不同产品的销售记录,包括产品名称、销售日期、销售数量、销售价格、客户信息等字段。

四、数据预处理技术(一)数据清洗1、处理缺失值首先,对数据集中的缺失值进行了识别和分析。

通过观察发现,“客户信息”字段存在部分缺失。

对于这些缺失值,采用了两种处理方法:一是如果缺失比例较小(小于5%),直接删除含有缺失值的记录;二是如果缺失比例较大,采用均值填充的方法进行补充。

2、处理噪声数据数据中的噪声通常表现为数据中的错误或异常值。

通过对销售数量和销售价格的观察,发现了一些明显不合理的数值,如销售数量为负数或销售价格过高或过低的情况。

对于这些噪声数据,采用了基于统计的方法进行识别和处理,将超出合理范围的数据视为噪声并进行删除。

(二)数据集成由于原始数据集可能来自多个数据源,存在着重复和不一致的问题。

在本次实验中,对“销售数据”进行了集成处理,通过对关键字段(如产品名称、销售日期)的比较和合并,消除了重复的记录,并确保了数据的一致性。

(三)数据变换1、数据标准化为了消除不同字段之间量纲的影响,对销售数量和销售价格进行了标准化处理,使其具有可比性。

2、数据离散化对于连续型的数据字段,如销售价格,采用了等宽离散化的方法将其转换为离散型数据,以便于后续的数据挖掘算法处理。

数据挖掘实习报告

数据挖掘实习报告

数据挖掘实习报告篇一:数据挖掘实习报告通过半年的实习,我在这里得到了一次较全面的、系统的锻炼,也学到了许多书本上所学不到的知识和技能。

以下是我这次的实习鉴定。

经历了实习,对社会也有了基本的实践,让我学到了书本以外的知识,实习期间,我努力尽量做到理论与实践相结合,在实习期间能够遵守工作纪律,不迟到、早退,认真完成领导交办的工作。

在实习鉴定中,我参与了整个数据分析工作,从数据获取到数据清洗、数据报表的制定到模型的建立以及模型监控等等,让我充分学习了数据分析岗位的实际操作。

在实习初期,项目经理安排了我参与数据获取的相关工作,主要是编写SQL代码在linux上用Perl语言调用获取数据。

起初觉得自己对SQL语言了解较多,以为这份工作非常简单。

但实际操作起来才知道,在数据量达到几百兆甚至上GB级别的时候,所学的SQL根本解决不了问题。

经向项目经理学习,这才知道了如何使用分层次操作等速度较快的SQL技巧。

通过这两个月的实习充分认识到所学知识远远不够。

完成数据获取阶段之后,项目经理开始安排数据清洗以及数据报表制定的相关工作。

接到这份工作之初,对数据清洗并没有太多的认识,以为很多都是按照《数据挖掘》教材中步骤进行就可以的。

但经过项目经理指导之后才知道数据清洗之前首先要对项目业务进行一定的了解,只有清晰了业务数据的来源、数据的实际意义才知道哪些数据可以称为极端值,哪些数据又是不正常的,制定报告或者交给模型分析师时需要去除的等等。

同时,在制定数据报表的同时学习了很多excel函数的使用,透视表的使用,PPT报告的书写等等。

在实习的后三个月,开始接触了模型的分析与监控。

在学习《机器学习》以及《数据挖掘》书本时,总会想到各种各样的分类模型,也总会认为模型准确率高的模型才会是好模型。

在运用统计模型之前,项目经理首先向实习生介绍了目前挖掘部门常用的分类模型以及具体的一些使用方法。

其中逻辑回归模型、决策树模型是常用的分类模型,回归分析和时间序列模型是常用的预测模型,这与平日所学基本一致。

数据挖掘实验报告(参考)

数据挖掘实验报告(参考)

时间序列的模型法和数据挖掘两种方法比较分析研究实验目的:通过实验能对时间序列的模型法和数据挖掘两种方法的原理和优缺点有更清楚的认识和比较.实验内容:选用1952-2006年的中国GDP,分别对之用自回归移动平均模型(ARIMA) 和时序模型的数据挖掘方法进行分析和预测,并对两种方法的趋势和预测结果进行比较并给出解释.实验数据:本文研究选用1952-2006年的中国GDP,其资料如下日期国内生产总值(亿元)日期国内生产总值(亿元) 2006-12-312094071997-12-3174772 2005-12-311830851996-12-312004-12-311365151995-12-312003-12-311994-12-312002-12-311993-12-312001-12-311992-12-312000-12-31894041991-12-311999-12-31820541990-12-311998-12-31795531989-12-311988-12-311969-12-311987-12-311968-12-311986-12-311967-12-311985-12-311966-12-311868 1984-12-3171711965-12-311983-12-311964-12-311454 1982-12-311963-12-311981-12-311962-12-311980-12-311961-12-311220 1979-12-311960-12-311457 1978-12-311959-12-311439 1977-12-311958-12-311307 1976-12-311957-12-311068 1975-12-311956-12-311028 1974-12-311955-12-31910 1973-12-311954-12-31859 1972-12-311953-12-31824 1971-12-311952-12-31679 1970-12-31表一国内生产总值(GDP)是指一个国家或地区所有常住单位在一定时期内生产活动的最终成果。

数据挖掘实验报告

数据挖掘实验报告

机器学习与数据挖掘实验报告一、第一部分: 实验综述二、实验工具介绍三、WEKA是新西兰怀卡托大学开发的开源项目, 全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis)。

WEKA是由JAVA编写的, 它的源代码可通过/ml/weka/得到, 是一款免费的, 非商业化的机器学习以及数据挖掘软件。

WEKA作为一个公开的数据挖掘工作平台, 集合了大量能承担数据挖掘任务的学习算法, 包括对数据进行预处理, 分类, 回归, 聚类, 关联规则以及在新的交互式界面上的可视化。

数据挖掘就是通过分析存在于数据库里的数据来解决问题, WEKA的出现使得数据挖掘无需编程即可轻松搞定。

四、实验环境搭建在PC机上面安装java运行环境即JDK环境, 然后安装WEKA。

三、实验目的(1)探索数据集大小与C4.5模型的精度之间的关系。

(2)探索属性的个数对数据集大小与C4.5模型精度之间关系的影响。

四、实验理论依据测试分类模型精度的方法依据如下表所示。

Accuracy=(a+d)/(a+b+c+d)五、实验思路(1)为探索数据集大小与C4.5模型精度之间的关系, 采用实例数据集的训练集进行测试。

对数据集进行多次筛选采样, 通过移除不同百分比的数据实例形成大小的训练集(wake设置为Filter.filters.unsupervised.instance.RemovePercentage), 在分类测试中采用use training set 方法进行测试, 并记录测试模型的精度, 在实验过程中不改变属性值得个数。

换用不同的数据集, 重复该实验过程, 并记录实验结果, 最后进行实验分析总结得出实验结论。

(2)为探索属性的个数对数据集大小与C4.5模型精度之间关系的影响, 使用一个数据集, 采用一个带筛选器的分类器。

对该数据集的属性进行随机抽样筛选, 并对处理后的训练集进行测试, 采用Cross-validation方法, 并记录测试结果。

数据挖掘实验报告总结

数据挖掘实验报告总结

数据挖掘实验报告总结引言数据挖掘是一种从大规模数据集中提取有用信息和模式的过程。

本实验是基于Python的数据挖掘实验,旨在使用已掌握的数据挖掘算法对给定的数据集进行分析和预测。

本报告将对实验过程进行总结,并对结果进行评估和分析。

实验步骤实验过程主要包括以下步骤:1.数据集的加载与探索:首先,我们需要加载数据集并对其进行初步的探索。

这包括查看数据的前几行,了解数据的结构和特征等。

2.数据预处理:在进行数据挖掘之前,需要对数据进行预处理,包括数据清洗、缺失值处理、数据变换等。

这有助于提高数据质量和模型的准确性。

3.特征选择与降维:选择合适的特征对于数据挖掘的准确性和效率至关重要。

本实验中,我们将使用特征选择算法和降维技术来减少特征的数量并保留最具代表性的特征。

4.模型选择与训练:在经过特征选择和降维之后,我们需要选择合适的数据挖掘算法来进行模型训练。

本实验将使用常见的分类算法和聚类算法进行模型选择和训练。

5.模型评估与优化:最后,我们将评估模型的性能并进行优化。

通过对模型结果进行评估,我们可以了解模型在不同指标下的表现,并针对具体问题优化模型的参数和算法选择。

实验结果经过以上步骤,我们得到了以下实验结果:1.数据集加载与探索结果:通过查看数据集,我们了解到数据集包含X个特征和Y个样本。

数据的结构和特征分布情况也得到了初步的了解。

2.数据预处理结果:在数据预处理过程中,我们对数据进行了清洗,处理了缺失值,并进行了特征变换。

这些处理操作使数据集更加干净和整洁,为后续的数据挖掘建模做了准备。

3.特征选择与降维结果:通过特征选择算法和降维技术,我们成功减少了数据集的维度,并保留了最具代表性的特征。

这有助于提高模型的训练效率和准确性。

4.模型选择与训练结果:在模型选择和训练阶段,我们尝试了多个经典的分类算法和聚类算法。

经过比较和实验,我们选择了X算法进行模型训练。

模型的训练结果显示,模型在训练集上的准确率为X%。

数据挖掘实例实验报告(3篇)

数据挖掘实例实验报告(3篇)

第1篇一、实验背景随着大数据时代的到来,数据挖掘技术逐渐成为各个行业的重要工具。

数据挖掘是指从大量数据中提取有价值的信息和知识的过程。

本实验旨在通过数据挖掘技术,对某个具体领域的数据进行挖掘,分析数据中的规律和趋势,为相关决策提供支持。

二、实验目标1. 熟悉数据挖掘的基本流程,包括数据预处理、特征选择、模型选择、模型训练和模型评估等步骤。

2. 掌握常用的数据挖掘算法,如决策树、支持向量机、聚类、关联规则等。

3. 应用数据挖掘技术解决实际问题,提高数据分析和处理能力。

4. 实验结束后,提交一份完整的实验报告,包括实验过程、结果分析及总结。

三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据挖掘库:pandas、numpy、scikit-learn、matplotlib四、实验数据本实验选取了某电商平台用户购买行为数据作为实验数据。

数据包括用户ID、商品ID、购买时间、价格、商品类别、用户年龄、性别、职业等。

五、实验步骤1. 数据预处理(1)数据清洗:剔除缺失值、异常值等无效数据。

(2)数据转换:将分类变量转换为数值变量,如年龄、性别等。

(3)数据归一化:将不同特征的范围统一到相同的尺度,便于模型训练。

2. 特征选择(1)相关性分析:计算特征之间的相关系数,剔除冗余特征。

(2)信息增益:根据特征的信息增益选择特征。

3. 模型选择(1)决策树:采用CART决策树算法。

(2)支持向量机:采用线性核函数。

(3)聚类:采用K-Means算法。

(4)关联规则:采用Apriori算法。

4. 模型训练使用训练集对各个模型进行训练。

5. 模型评估使用测试集对各个模型进行评估,比较不同模型的性能。

六、实验结果与分析1. 数据预处理经过数据清洗,剔除缺失值和异常值后,剩余数据量为10000条。

2. 特征选择通过相关性分析和信息增益,选取以下特征:用户ID、商品ID、购买时间、价格、商品类别、用户年龄、性别、职业。

数据仓库与数据挖掘实验报告

数据仓库与数据挖掘实验报告

数据仓库与数据挖掘实验报告二、实验内容及步骤本实验基于某电商平台的网购数据,通过数据仓库的建立和数据挖掘的过程,探索和发现隐藏在数据中的有价值信息。

具体步骤如下:1. 数据收集和预处理获取电商网购数据集,对数据进行清洗和预处理,如缺失值处理、异常值处理和数据集整合等,以保证数据的质量和可用性。

2. 数据仓库的建立基于处理后的数据,进行数据仓库的建立。

根据业务需求和分析目标,确定维度表和事实表的建模方法和关联关系,设计和构建星型或雪花模式的数据仓库。

3. 数据挖掘的实践基于已建立的数据仓库,进行数据挖掘的实践,包括关联规则挖掘、分类与预测、聚类分析、异常检测等。

通过使用数据挖掘工具,如R、Python中的Scikit-learn等,进行模型构建和算法实施,得到数据挖掘结果。

4. 结果分析与应用对数据挖掘结果进行分析和解读,发现和总结其中的规律和知识,得到业务价值和应用建议,为业务决策和目标达成提供支持和参考。

三、实验结果与分析本实验得到了以下数据挖掘结果:1. 关联规则挖掘通过关联规则挖掘的过程,发现了一些有趣和有用的关系,如购买商品A的用户有70%的概率也会购买商品B,可以利用这些关联规则进行交叉销售和推荐。

2. 分类与预测通过构建分类和预测模型,成功预测了用户的购买行为,可以预测出用户未来可能会购买的商品,为精准市场营销和库存管理提供决策支持。

3. 聚类分析通过聚类分析,将用户分为不同的群体,可以对不同群体采取不同的营销策略,提高用户满意度和购买转化率。

4. 异常检测通过异常检测,发现了一些异常行为和欺诈行为,可以及时进行监控和防范,保护用户权益和平台安全。

此外,还通过数据可视化的方式,将分析结果展示出来,如通过柱状图、折线图、散点图等方式进行可视化展示,直观地呈现数据的分布和关系。

四、实验总结与展望本实验通过数据仓库与数据挖掘的实践,掌握了数据仓库建设和数据挖掘的基本方法和流程,并成功应用于电商平台的数据分析。

医学数据挖掘实验报告(3篇)

医学数据挖掘实验报告(3篇)

第1篇一、引言随着医疗信息技术的飞速发展,医学数据量呈爆炸式增长。

这些数据中蕴含着丰富的医疗知识,对于疾病诊断、治疗和预防具有重要意义。

数据挖掘作为一种从海量数据中提取有价值信息的技术,在医学领域得到了广泛应用。

本实验旨在通过数据挖掘技术,探索医学数据中的潜在规律,为临床诊断和治疗提供有力支持。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据库:MySQL4. 数据挖掘工具:Scikit-learn、Pandas、NumPy三、实验准备1. 数据收集:从医院信息系统、医学数据库等渠道收集了包括患者基本信息、病史、检查结果、治疗方案等在内的医学数据。

2. 数据预处理:对收集到的数据进行清洗、去重、标准化等预处理操作,确保数据质量。

3. 数据库构建:将预处理后的数据导入MySQL数据库,建立医学数据仓库。

四、实验内容本实验主要围绕以下三个方面展开:1. 疾病预测- 数据描述:选取某医院近三年内的住院病历数据,包括患者基本信息、病史、检查结果、治疗方案等。

- 模型选择:采用支持向量机(SVM)进行疾病预测。

- 实验结果:通过交叉验证,SVM模型的预测准确率达到85%。

2. 药物敏感性分析- 数据描述:选取某医院近三年内的肿瘤患者病历数据,包括患者基本信息、病史、治疗方案、药物使用情况等。

- 模型选择:采用随机森林(Random Forest)进行药物敏感性分析。

- 实验结果:通过交叉验证,随机森林模型的预测准确率达到80%。

3. 疾病关联分析- 数据描述:选取某医院近三年内的住院病历数据,包括患者基本信息、病史、检查结果、治疗方案等。

- 模型选择:采用关联规则挖掘算法(Apriori)进行疾病关联分析。

- 实验结果:挖掘出多种疾病之间的关联关系,如高血压与心脏病、糖尿病与肾病等。

五、实验步骤1. 数据预处理:对收集到的医学数据进行清洗、去重、标准化等预处理操作。

2. 数据导入:将预处理后的数据导入MySQL数据库,建立医学数据仓库。

数据挖掘-数据立方体实验报告

数据挖掘-数据立方体实验报告

实验二、数据立方体与联机分析处理构建一、实验目的:(1)熟悉 VC++编程工具和基本数据立方体构建、联机分析处理算法。

(2)建立一致的高质量的关系型数据库。

(3)在建立的数据库基础上建立基本数据立方体。

(4)写出实验报告。

二、实验原理:1、关系型数据库关系数据库,是创建在关系模型基础上的数据库,借助于集合代数等数学概念和方法来处理数据库中的数据。

关系模型由关系数据结构、关系操作集合、关系完整性约束三部分组成。

2、数据立方体一种多维数据模型,允许以多维对数据建模和观察。

它由维和事实定义。

维是一个单位想要的透视或实体。

每个维可以有一个与人相关联的表,称为维表,它进一步描述维,如item 维的维表包含属性Name、time、type等。

事实:多维数据模型围绕诸如销售这样的主题组织,主题用事实表示,事实是数值度量的。

3、OLAP 操作上卷:沿着一个维的概念分层向上攀升或通过维归约在数据立方体上进行聚集。

下钻:上卷的逆操作,可能过沿维的概念分层向下或引入附加的维来实现。

切片:在给定的数据立方体的一个维上进行选择,导致一个子立方体。

就是数据立方体的某一层数据。

切块:在两个或多个维上选择,定义子立方体。

就是数据立方体某一层数据中的某一块。

4、数据仓库的设计选取待建模的商务处理:都有哪些商务过程,如订单、发票、发货、库存、记账管理、销售或一般分类账。

选取商务处理的粒度:对于商务处理,该粒度是基本的,在事实表中是数据的原子级,如单个事务、一天的快照等。

选取用于每个事实表记录的维:典型的维是时间、商品、顾客、供应商、仓库、事务类型和状态。

选取将安放在每个事实表记录中的度量:典型的度量是可加的数值量,如dollars_sold 和units_sold。

三、实验内容:#include<iostream>#include<fstream>#include<string>#include<list>#include<map>using namespace std;class Sales{public:string serial;int market;string date;int sn;int id;float num;float price;};double sum[3][7][4];int main(){const string filestr[3]={"1019","1020","1021"};const int type[4]={10010,10020,10030,10088};map<string,int> filemap;map<int,int> typemap;for(int k=0;k<3;k++)filemap.insert(pair <string,int> (filestr[k], k));for(k=0;k<4;k++)typemap[type[k]]= k;for(int mm=0;mm<3;mm++){string str="new"+filestr[mm]+".txt";fstream file((filestr[mm]+".txt").c_str(),ios::in);list<Sales> sal;Sales temp;while(!file.eof()){file >> temp.serial >> temp.market >>temp.date>> temp.sn>> temp.id>>temp.num>> temp.price;sal.push_back(temp);}//读入文件list<Sales>::iterator it=sal.end();if((*(--it)).serial.length()<=0)sal.pop_back();file.close();for(int i=0;i<7;i++)for(int j=0;j<4;j++)sum[mm][i][j]=0;//str="new"+filestr[k];for(it=sal.begin();it!=sal.end();it++){for(int j=0;j<4;j++){if((*it).id/100==type[j]){int week=(*it).date[(*it).date.length()-1]-'3';if(week>=0 && week<7){sum[mm][week][j]+=(*it).price*(*it).num;}}}}fstream outfile(str.c_str(),ios::out);for(i=0;i<7;i++){for(int j=0;j<4;j++)outfile<<sum[mm][i][j]<<"\t";outfile<<endl;}outfile.close();}int date="13"[1]-'3';cout<<"1020商店10010油类商品 13日总的销售额:"<<sum[filemap["1020"]][date][typemap[10010]]<<"元"<<endl;double s=0;int m=filemap["1020"];int t=typemap[10030];for(int i=0;i<7;i++)s+=sum[m][i][t];cout<<"1020商店10030油类商品总的销售额:"<<s<<"元"<<endl;cout<<"请输入商店的号码和商品的种类号码"<<endl;string market;int types;cin>>market>>types;map<string,int>::iterator it_m;map<int,int>::iterator it_t;it_m=filemap.find(market);it_t=typemap.find(types);if(it_m==filemap.end())cout<<"找不到你所要的商店"<<endl;else if(it_t==typemap.end())cout<<"找不到你所要的商品种类"<<endl;else{s=0;m=it_m->second;t=it_t->second;for(i=0;i<7;i++)s+=sum[m][i][t];cout<<market<<"商店"<<types<<"油类商品总的销售额:"<<s<<"元"<<endl;}return 0;}四、实验结果:1、读取特定金额:2、数据立方体:(newXXXX.txt文件)。

数据挖掘实验二:实验报告

数据挖掘实验二:实验报告

一、实验说明及目的1、使用真实数据进行数据挖掘实验,实验前进行数据的预处理。

2、训练一些不同类型的模型(具体类型可以讨论),与此同时分析哪些参数将对支持向量机(SVM)模型的性能产生影响。

3、通过实验来分析预测,将其他一些属性作为森林覆盖类型(Cover_Type 属性)的模型输入所产生的效果。

原始数据和数据的描述见网址/databases/covertype/covertype.html4、该实验将使学生理解完成一次真实数据预处理以及在数据挖掘过程中对属性、数据覆盖类型等方面的分析工程。

二、实验具体任务及其说明1、数据预处理工作(1)数据样本的生成:根据原始数据集生成统一的随机样本,样本数据量大约是原始数据量的10%,要求使用不重复抽样。

(任务1)(2)森林覆盖值的映射:变换不同种类的属性,将森林覆盖值2映射到0,将其他值所有森林覆盖值(1,3,4,5,6,7)映射到1。

(任务2)(3)数据预处理技巧:自行决定是否需要其他的数据预处理,注意某些Weka软件的使用技巧,如一些输入输出格式问题。

有时某些方法也做必要的调整,在某些情况下必须对数据有明确的预处理,做数据预处理时可以查看Weka软件针对该技巧或方法的描述。

(4)预处理说明:原始数据集非常大,具有7种类型的森林覆盖,检查整个数据集装载到Weka软件是发生的情况,如果机器内存耗尽,可以尽量增大堆的大小试试。

Weka使用指南对此有描述如何操作。

)2、模型训练工作(1)使用Weka分类器的评价工具进行预测。

使用Naïve Bayes 分类器对抽样样本进行训练以预测变换的森林覆盖类型(即是映射到种类0还是1),使用10层交叉验证来评估变换的模型,Weka软件中自带有对其分类器的表现评价器,使用自带的评价器来确定变换模型的精确度和变动率指标(ROC)。

(任务3)(2)对SVM模型进行训练:使用Weka软件的SMO分类器对支持向量机(SVM)模型进行训练,训练2种形式的SVM模型,一种是带多项式核函数的SVM模型,另一种是带径向基核函数(RBF Kernel)的SVM模型。

实验报告范例

实验报告范例

2
算法背景知识
2.1 贝叶斯理论 18 世纪 Thomas Bayes 提出了贝叶斯公式, 它告诉了我们如何在已经一个事件 A 发生, 预测 B 发生 de 概 率。我们约定 P(A)表示 A 发生的概率,P(A|B)表示 B 发生的前提下,A 发生的概率,也称条件 B 下 A 的后 验概率 (posterior probability) 。与之对应的 P(A)称为 A 的先验概率 (prior probability) 。后验概率 P(A|B)比先验 概率 P(A)基于更多的信息, P(A)独立与 A 的。贝叶斯公司告诉我们如何计算后验概率, P(A|B)=
Abstract: This article discusses a naive Bayesian classifier ’s realization., including feature selection. I try to add some of my own ideas, for the purpose that forecasting more accurate label. This article first describes the background of the application of the problem, and general ideas, then gives process of establishing the classification model, and at last some ideas who may help is given. Key words: data mining; feature selection; naive bayes; classifier 摘 要: 本文基于一个应用背景,讨论了一个基于朴素贝叶斯的分类器的实现。包括属性选择等。在实现贝叶

数据挖掘实验报告(两篇)2024

数据挖掘实验报告(两篇)2024

引言概述:数据挖掘是一项广泛应用于各个行业的技术,通过对大数据的处理和分析,可以发现隐藏在数据中的有价值信息。

本文是数据挖掘实验报告(二),将对具体的数据挖掘实验进行详细的阐述和分析。

本实验主要聚焦于数据预处理、特征选择、模型建立和评估等关键步骤,以增加对实验过程和结果的理解,提高实验的可靠性和准确性。

通过实验结果的分析和总结,可以帮助读者更好地理解数据挖掘的方法和技术,并为实际应用提供参考和指导。

正文内容:1. 数据预处理在进行数据挖掘之前,首先需要对原始数据进行预处理。

数据预处理的目的是清洗数据、处理缺失值和异常值等数据问题,以确保数据的质量和准确性。

在本实验中,我们采用了多种方法对数据进行预处理。

其中包括数据清洗、缺失值处理和异常值检测等。

具体的操作包括了数据去重、数据标准化、缺失值的填补和异常值的处理等。

2. 特征选择特征选择是数据挖掘的关键步骤之一,它的目的是从原始数据中选择出对问题解决有价值的特征。

在本实验中,我们通过使用相关性分析、方差选择和递归特征消除等方法,对原始数据进行特征选择。

通过分析特征与目标变量之间的关系,我们可以得出最有价值的特征,从而减少计算复杂度和提高模型准确性。

3. 模型建立模型建立是数据挖掘实验的核心步骤之一。

在本实验中,我们采用了多种模型进行建立,包括决策树、支持向量机、朴素贝叶斯等。

具体而言,我们使用了ID3决策树算法、支持向量机算法和朴素贝叶斯算法等进行建模,并通过交叉验证和网格搜索等方法选择最佳的模型参数。

4. 模型评估模型评估是对建立的模型进行准确性和可靠性评估的过程。

在本实验中,我们采用了多种评估指标进行模型评估,包括准确率、召回率、F1分数等。

通过对模型的评估,我们可以得出模型的准确性和可靠性,并进一步优化模型以达到更好的效果。

5. 结果分析与总结总结:本文是对数据挖掘实验进行详细阐述和分析的实验报告。

通过对数据预处理、特征选择、模型建立和评估等关键步骤的分析和总结,我们得出了对数据挖掘方法和技术的深入理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基本原理
分类算法是解决分类问题的方法,是数据挖掘、机器学习和模式识别中一个重要的研究领域。

分类算法通过对已知类别训练集的分析,从中发现分类规则,以此预测新数据的类别。

分类算法的应用非常广泛,银行中风险评估、客户类别分类、文本检索和搜索引擎分类、安全领域中的入侵检测以及软件项目中的应用等。

二、实验目的:
掌握CART决策树构建分类模型。

三、实验内容
对所有窃漏电用户及真诚用户的电量、告警及线损数据和该用户在当天是否窃漏电的标识,按窃漏电评价指标进行处理并选取其中291个样本数据,得到专家样本,使用CART决策树实现分类预测模型。

注意:数据的80%作为训练样本,剩下的20%作为测试样本。

四、实验步骤
1、对数据进行预处理
2、把数据随机分为两部分,一部分用于训练,一部分用于测试。

分成testData和trainData文件即测试数据和训练数据数据的80%作为训练样本,剩下的20%作为测试样本。

3、使用tree包里的tree函数以及训练数据构建CART决策树模型,使用predict函
数和构建的CART决策树模型分别对训练数据和测试数据进行分类。

4、使用nnet包里面的nnet函数以及训练数据构建神经网络模型,使用predict函数
和构建的神经网络模型分别对训练数据和测试数据进行分类。

5、对比分析CART决策树和神经网络模型对数据处理的结果。

五、实验结果
六、思考与分析
尝试采用神经网络对数据进行分类,并与CART决策树的结果进行比较。

答:与神经网络相比,决策树可以很好地处理非数值型的数据,但是决策树对连续的数据(比如连续的数值型数据)不太擅长。

相关文档
最新文档