高电压技术(详细版)

合集下载

高电压技术——精选推荐

高电压技术——精选推荐

⾼电压技术第⼀章⽓体的绝缘特性1.电介质在电⽓设备中作为绝缘材料使⽤,按其物质形态,可分为三类:⽓体电介质液体电介质固体电介质在电⽓设备中⼜分为:外绝缘:⼀般由⽓体介质(空⽓)和固体介质(绝缘⼦)联合构成。

内绝缘:⼀般由固体介质和液体介质联合构成。

2、⼀些基本概念:①⽓体介质的击穿——当加在⽓体间隙上的电场强度达到某⼀临界值后,间隙中的电流会突然剧增,⽓体介质会失去绝缘性能⽽导致击穿的现象,也称为⽓体放电。

②放电电压UF——在间隙距离及其它相关条件⼀定的条件下,加在间隙两端刚好能使其击穿的电压。

由于相关条件的变化,这个值有⼀定的分散性。

③击穿场强——指均匀电场中击穿电压与间隙距离之⽐。

这个参数反映了某种⽓体介质耐受电场作⽤的能⼒,也即该⽓体的电⽓强度,或称⽓体的绝缘强度。

④平均击穿场强——指不均匀电场中击穿电压与间隙距离之⽐。

3.⼤⽓击穿的基本特点固体介质中的击穿将使介质强度永久丧失;⽽⽓体和液体击穿发⽣击穿时,⼀般只引起介质强度的暂时降低,当外加电压去掉后,绝缘性能⼜可以恢复,故称为⾃恢复绝缘。

§1.1 ⽓体介质中带电质点的产⽣和消失⼀、⽓体原⼦的激发与游离产⽣带电质点的物理过程称为游离,是⽓体放电的⾸要前提。

1、⼏个基本概念①激发—-原⼦在外界因素(如电场、温度等)的作⽤下,吸收外界能量使其内部能量增加,从⽽使核外电⼦从离原⼦核较近的轨道跃迁到离原⼦核较远的轨道上去的过程(也称为激励)。

②游离—-中性原⼦由外界获得⾜够的能量,以致使原⼦中的⼀个或⼏个电⼦完全脱离原⼦核的束缚⽽成为⾃由电⼦和正离⼦(即带正电的质点)的过程(也称为电离)。

2、游离的基本形式①碰撞游离a 、当带电质点具有的动能积累到⼀定数值后,在与⽓体原⼦(或分⼦)发⽣碰撞时,可以使后者产⽣游离,这种由碰撞⽽引起的游离称为碰撞游离。

b 、发⽣条件:——⽓体分⼦(或原⼦)的游离能c 、碰撞游离的特点碰撞游离是⽓体放电过程中产⽣带电质点的极重要的来源。

高电压技术第一章

高电压技术第一章
必要条件是电子崩发展到足够的程度,电子崩中的 空间电荷足以使原电场明显畸变,加强电子崩崩头和崩 尾处的电场;另一方面电子崩中电荷密度很大,所以复 合频繁,放射出的光子在这部分很强,电场区很容易成 为引发新的空间光电离的辐射源,二次电子主要来源于 空间光电离;气隙中一旦形成流注,放电就可由空间光 电离自行维持。
❖ 复合的质点相对速度越大,复合概率越小。 ❖ 复合过程要阻碍放电的发展,但在一定条件下又可
因复合时的光辐射加剧放电的发展。 ❖ 放电过程中绝大多数是正、负离子之间复合,参加
复合的电子绝大多数先形成负离子再与正离子复合。
3 汤逊理论和流注理论
非自持放电和自持放电
低气压下均匀电场自持放电的汤逊理论 3.1 汤逊理论和
碰撞电离 电子碰撞电离-α 正离子碰撞电离-β
光电离 热电离
正离子碰撞阴极-γ 光电效应 强场发射 热电子发射
2.2 带电质 电场作用下气体中带电质点的定向运动 点消失 带电质点的扩散 带电质点的复合
2.1 气体中带电质点的产生
气体原子的激发和游离
施加能量 W > Wi 自由电子
电离
施加能量 施加能量
1.2 气体放电的主要形式
常见放电形式 辉光放电 电晕放电 刷状放电 电弧放电
❖ 注意:电晕放电时气隙未击穿,而辉光放电、火花放 电、电弧放电均指击穿后的放电现象,且随条件不同, 这些放电现象可相互转换。
2 气体中带电质点的产生和消失
空间电离
气体放电 发展过程
2.1 带电质 点产生
表面电离
高气压下均匀电场自持放电的 流注理论
流注的形成和发展示意图
高气压下均匀电场自持放电的 流注理论(续1)
a) 起始电子发生碰撞电离形成初始电子崩;初崩发展到阳极, 正离子作为空间电荷畸变原电场,加强正离子与阴极间电 场,放射出大量光子;

高电压技术

高电压技术
例5-1 P125
5.1.2 不对称短路引起的工频电压升高
系统发生单相或两相接地故障时,非故障相〔健全相〕上工频电压将 升高 。
单相接地时,故障点各相的电压、电流不对称,使用对称向量法分析 单相接地时工频电压升高:
假设A相接地,健全相B、C相的电压可求出:
对于电源容量较大的系统,上式可改写成公式5-6,并求出
相电压升高,使避雷器的灭弧电压升高〕。 工频电压升高持续时间长,将严峻考验设备的绝缘。如油纸绝缘内部游离
、绝缘子闪络或沿面放电、铁芯过热、电晕等
空载长线路电容效应引起的电压升高
一般输电线路XC>>XL,线路末端电压高于首端电压,线路越长,末 端电压越高,这种现象是由于电容性电流造成的,称为电容效应。
K(1) --单相接地系数,表征单相接地故障时,健全相的对地最高工频电压有效 值与无故障时对地电压有效值之比。
5.1.3 甩负荷引起的工频电压升高
当输电线路传输较大容量功率,断路器因为某种原因此突然跳 闸甩掉负荷时,会在发电机内引起一系列机电暂态过程,是造成工频 电压升高的又一原因。
5.1.3 甩负荷引起的工频电压升高
当发电机突然甩负荷时,将造成线路工频电压升高。 1、电磁暂态过程:励磁绕组的磁通来不及变化,发电机负荷电感电流
对发电机主磁通的去磁作用消失,而空载线路的电容电流起助磁作用,导 致电压升高。
2、机械暂态过程:突然甩有功负荷,发电机的调速器有一定惯性,短 时间内输入原动机的功率不会减少,主轴有多余功率,转速增加,电压增 加,并且伴随着频率的增加加剧了线路的电容效应,即:
高电压技术
内部过电压: 在电力系统内部,由于断路器的操作或发生故障, 使系统参数了发生变化,引起电磁能量的转化或传 递,在系统中出现的过电压。

高电压技术概要.pptx

高电压技术概要.pptx
第6页/共84页
➢额定电压高而容量不大
试验变压器高压侧电流 I 和额定容量 P 都主要取决于被试
品的电容。
I 2fCU 10 3 (5-1) P 2fCU 2 10 3 (5-2)
第7页/共84页
➢ 外观上的特点:油箱本体不大而其高压套管又长又大。 单套管式试验变压器:额定电压一般不超过 250~300kV 双套管式试验变压器:最高额定电压达750kV
第29页/共84页
串级装置的充电 过程可利用图5-9 所示的直流电源E和+E经切换开关 S给各台电容器充 电的过程来加以 说明。
第30页/共84页
二、直流高电压试验的特点和应用范围 特点:
➢ 只有微安级泄漏电流,试验设备的容量较小。 ➢ 试验时可同时测量泄漏电流,由所得得“电压-电
流”曲线能有效地显示绝缘内部的集中性缺陷或受潮。
第55页/共84页
(二) 衰减振荡波
采用图5-25中IEC所推荐的一种操作波发生装置。
第56页/共84页
三、绝缘的冲击高压试验方法
电气设备内绝缘的雷电冲击耐压试验采用三次冲击法, 即对被试品施加三次正极性和三次负极性雷电冲击试验电 压。(1.2/50 μS全波)。 对变压器和电抗器类设备的内绝缘,还要进行雷电冲 击截波(1.2/2~5 μS )耐压试验。 ➢ 内绝缘冲击全波耐压试验应在被试品上并联球隙,并将 它的放电电压整定得比试验电压高15%~20%。
第54页/共84页
(一)非周期性双指数冲击长波
➢ 国家标准规定的标准波形为250/2500μs。应注意一下两 个问题:
(1) 为大大拉长波前,又使发生器的利用系数降低不是 很多,需采用高效率回路。 (2) 计算操作波回路参数时,不能用前面介绍的雷电波 时的近似计算法来计算操作波回路参数;要考虑充电电阻 R对波形和发生器效率的影响。

高电压技术课件ppt

高电压技术课件ppt

总结词
高电压技术经历了多个阶段,从最初的直流输 电到现代的特高压交流输电,其技术水平和应用范围 不断得到提升和拓展。未来,随着新能源、智能电网 等领域的快速发展,高电压技术将继续向更高电压等 级、更远距离输电、更高效节能等方向发展。同时, 随着科技的不断进步,高电压技术还将与其他领域的 技术进行交叉融合,产生更多的创新应用。
应急预案制定
制定详细的高电压安全事故应急预案,明确应急组织、救援程序 和救援措施。
应急演练和培训
定期进行应急演练和培训,提高工作人员应对高电压安全事故的能 力和意识。
及时救援和处理
一旦发生高电压安全事故,应迅速启动应急预案,采取有效措施进 行救援和处理,以减少人员伤亡和财产损失。
06 实践案例分析
高电压设备的绝缘测试与维护
绝缘测试
为了确保高电压设备的安全运行,必 须定期进行绝缘测试。常见的绝缘测 试方法包括耐压测试、介质损耗测试 、局部放电测试等。
维护与检修
高电压设备的运行过程中,应定期进 行维护和检修,及时发现和处理设备 存在的隐患和缺陷,保证设备的正常 运行。
高电压的电磁场与电磁屏蔽
高电压技术在电力系统中的作用
总结词
高电压技术在电力系统中的作用
详细描述
高电压技术在电力系统中扮演着至关重要的角色。通过高压输电,可以大幅度提高输电效率,降低线损,减少能 源浪费。同时,高电压也是电力系统稳定运行的重要保障,能够有效地解决电力供需矛盾,保障电力系统的安全 稳定运行。
高电压技术的发展历程与趋势
某地区高电压输电线路的设计与优化
总结词
考虑地理环境、气象条件、线路长度等 因素,采用先进的输电技术,优化设计 高电压输电线路。
VS
详细描述

高电压技术

高电压技术

高电压技术高电压技术是电力工程领域的重要分支之一,主要研究和应用高电压场下的电气现象、高电压设备的设计与制造以及高电压绝缘技术等内容。

本文将详细介绍高电压技术的相关背景、应用范围和发展趋势。

一、高电压技术背景介绍在现代社会中,电力已成为人们日常生活和工业生产中不可或缺的能源。

为了满足不断增长的用电需求,电力系统必须经历长距离输电、高能效传输和安全可靠供电等一系列挑战。

高电压技术的发展为解决这些问题提供了有效的解决方案。

高电压技术是研究电气工程中电压大于1000V的电路、设备和系统的学科,涉及电力输电、变电站、电力设备制造、电气绝缘等领域。

应用高电压技术可以提高电力系统的输电距离、提高输电效率和减少能量损耗,同时确保电力系统的安全运行。

因此,高电压技术在电力工程领域具有重要的实际应用价值。

二、高电压技术的应用范围高电压技术广泛应用于以下几个领域:1. 电力输电和配电系统:在电力系统中,高电压技术用于长距离输电、高压变电站的设计和运行,以及高电压设备的制造和维护。

高电压技术的应用可以降低输电损耗,提高电能传输效率,确保电力系统的可靠运行。

2. 电力设备制造:高电压技术在电力设备制造中起着重要作用。

例如,高电压绝缘技术用于电力变压器、断路器、绝缘子等设备的制造,以确保设备在高电压环境下的安全运行和绝缘性能。

3. 工业领域:在工业生产中,一些特殊行业,如化工、冶金等,需要高电压技术进行电力供应和设备控制。

高电压技术可用于高压电源的设计和建设,并提供稳定可靠的电力供应。

4. 实验室科研:高电压技术被广泛应用于科学研究和实验室环境中。

例如,在物理、化学等实验中,需要高电压来实现材料测试、粒子加速、电场模拟等功能。

5. 新能源领域:随着可再生能源的快速发展,如风能和太阳能等,高电压技术也受到了更多的关注。

高电压技术可以在可再生能源发电系统中提供电能转换和传输方面的支持。

三、高电压技术的发展趋势随着科学技术的进步和社会需求的改变,高电压技术也在不断发展和创新。

高电压技术(全套课件)

高电压技术(全套课件)
高电压技术
信息工程学院电气教研室
绪论
一.内容与范畴
高电压技术是电工学科的一个重要分支,它涉及到 数学、物理、化学、材料等基础学科,主要研究高电压 (强电场)下的各种电气物理问题。20世纪60年代以来, 高电压技术一直不断吸收其他学科尤其是新科技领域的 成果,促进自身发展;也促进了电力传输、大功率脉冲 技术、激光技术、核物理等科技领域的发展,显示出强 大的活力。
四.重点和难点
课程的重点包括: 汤逊理论和流注理论等气体放电的基本理论、电场
型式及其与击穿特性的关系、液体和固体电介质的 绝缘特性; 绝缘特性的测量方法、电气设备的高电压试验设备及 原理; 线路和绕组中的波过程、电力系统中的过电压及其防 护、绝缘配合。
课程的难点是:
汤逊、流注气体放电理论的理解; 电介质的极化、电导和损耗的物理概念及其工
当不存在外电场时,电子云的 中心与原子核重合,此时电矩为 零.当外加一电场,在电场力的 作用下发生电子位移极化.当外 电场消失时,原子核对电子云的 引力又使二者重合,感应电矩也 随之消失。
电场中的所有电介质内都存在 电子位移极化。
二、离子位移极化

在由离子结合成的电介质内,外电场的作用除促使
各个离子内部产生电子位移极化外还产生正、负离子相对位移而
二 .课程内容
第一篇 各类电介质在高电场下的特性 教学内容:气体放电的基本物理过程;气体介质的 气强度;液体和固体介质的电气特性。
第二篇 电气设备绝缘试验技术 教学内容:电气设备绝缘预防性试验;绝缘的高电压 试验。
第三篇 电力系统过电压与绝缘配合 教学内容:输电线路和绕组中的波过程;雷电放电与 防雷保护装置;电力系统的防雷保护;内部过电压; 电力系统绝缘配合。

(完整版)高电压技术答案

(完整版)高电压技术答案

(完整版)⾼电压技术答案1 ⽓体的绝缘特性与介质的电⽓强度1-1⽓体放电过程中产⽣带电质点最重要的⽅式是什么,为什么?1-2简要论述汤逊放电理论。

1-3为什么棒-板间隙中棒为正极性时电晕起始电压⽐负极性时略⾼?1-4雷电冲击电压的标准波形的波前和波长时间是如何确定的?1-5操作冲击放电电压的特点是什么?1-6影响套管沿⾯闪络电压的主要因素有哪些?1-7具有强垂直分量时的沿⾯放电和具有弱垂直分量时的沿⾯放电,哪个对于绝缘的危害⽐较⼤,为什么?1-8某距离4m的棒-极间隙。

在夏季某⽇⼲球温度=30℃,湿球温度=25℃,⽓压=99.8kPa的⼤⽓条件下,问其正极性50%操作冲击击穿电压为多少kV?(空⽓相对密度=0.95)1-9某母线⽀柱绝缘⼦拟⽤于海拔4500m的⾼原地区的35kV变电站,问平原地区的制造⼚在标准参考⼤⽓条件下进⾏1min ⼯频耐受电压试验时,其试验电压应为多少kV?1-1⽓体放电过程中产⽣带电质点最重要的⽅式是什么,为什么?答: 碰撞电离是⽓体放电过程中产⽣带电质点最重要的⽅式。

这是因为电⼦体积⼩,其⾃由⾏程(两次碰撞间质点经过的距离)⽐离⼦⼤得多,所以在电场中获得的动能⽐离⼦⼤得多。

其次.由于电⼦的质量远⼩于原⼦或分⼦,因此当电⼦的动能不⾜以使中性质点电离时,电⼦会遭到弹射⽽⼏乎不损失其动能;⽽离⼦因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减⼩,影响其动能的积累。

1-2简要论述汤逊放电理论。

答: 设外界光电离因素在阴极表⾯产⽣了⼀个⾃由电⼦,此电⼦到达阳极表⾯时由于过程,电⼦总数增⾄个。

假设每次电离撞出⼀个正离⼦,故电极空间共有(-1)个正离⼦。

这些正离⼦在电场作⽤下向阴极运动,并撞击阴极.按照系数的定义,此(-1)个正离⼦在到达阴极表⾯时可撞出(-1)个新电⼦,则( -1)个正离⼦撞击阴极表⾯时,⾄少能从阴极表⾯释放出⼀个有效电⼦,以弥补原来那个产⽣电⼦崩并进⼊阳极的电⼦,则放电达到⾃持放电。

高电压技术

高电压技术

高电压技术1、高电压技术研究的核心内容,包括过电压和绝缘两个方面。

2、过电压:雷电过电压(大气过电压)、内部过电压。

内部过电压:操作过电压、暂时过电压。

操作过电压:空载线路分闸过电压、空载线路合闸过电压、切除空载变压器过电压、电弧接地电压。

暂时过电压:工频过电压、谐振过电压工频过电压:空载长线路的电效应、不对称短路、发电机突然甩负荷谐振过电压:线性过电压、非线性过电压(铁芯饱和)、参数过电压。

3、过电压:由于雷击或电力系统中操作事故等原因,使某些电气设备和线路上承受的电压大大超过正常运行电压危及设备和线路的绝缘.电力系统中这种危及绝缘的电压升高,称为过电压。

4、国际交流高压:35—220KV 超高压:330KV—1000KV特高压:1000KV及以上直流高压:+/-600KV及以下特高压:+/-600KV以下我国:高压电网:110及220KV、10、35、(66)KV超高压电网:300、500、750KV +/-500KV特高压电网:1000KV交流及+/-800KV直流5、电介质极化:电子式极化(时间短,无能量损耗,弹性极化)离子式极化(时间短,无能量损耗,弹性极化)偶极式极化(时间较长,有能量损耗,非弹性极化)空间电荷极化(夹层极化)时间很长,可以达到数小时,有能量损耗,非弹性极化)6、如果左电容器的绝缘介质,希望介电常数εr大些,用作其他电气设备的绝缘介质,则希望εr小些。

7、电介质的电导是离子电导,金属的电导是电子性电导。

8、容易吸收水分的电介质称为亲水性介质,如:玻璃、陶瓷。

不容易吸收水分的介质成为憎水性介质,如:石蜡、硅有机物。

9、原子从外界获得的能量足够大,以致使原子的一个或几个电子摆脱原子核的束缚而形成自由电子和正离子,这一过程称为原子的游离。

游离过程所需的能量称为游离能。

原子游离时通常只失去一个电子。

10、汤逊理论。

条件:均匀电场、低气压、短间隙。

相对密度δ与极间距离d比较小适合汤逊理论。

高电压技术课件最终版

高电压技术课件最终版

4.表面游离 4.表面游离
金属表面的电子受外界能量的作用后逸 出金属表面而成为自由电子的现象称为 表面游离。 表面游离的条件:外界能量大于金属的 逸出功。
二.带电质点的消失
去游离:带电质点从游离区消失或 游离的作用被削弱的现象称为带电 去游离。 带电质点的消失是由于游离作用小 于去游离的作用。
带电质点的消失的形式:
负流注的形成
阴极 阳极
电压较低时,电子崩需经过整个间隙才形成流注, 电压较高时,电子崩不需经过整个间隙,其头部电 离程度已足以形成流注 。 主电子崩头部的电离很强烈,光子射到主崩前方, 在前方产生新的电子崩,主崩头部的电子和二次崩 尾的正离子形成混合通道,形成向阳极推进的流注, 称为负流注 间隙中的正、负流注可以同时向两极发展。
二.气隙击穿电压的理论计算
均匀电场小气隙击穿电压的计算公式为:
——气体的相对密度; ——电子所在点的气体的电场强度。 S ——极板之间的距离(cm)。 ——汤申德第三游离系数 A、B——均为与气体性质有关的常数,对空气: A=109.61/kPa,B=2738.40kV/kPa;
由此看出,气隙的击穿电压不仅与气 隙的大小有关,还与气隙的中性质点的 密度有关,且是二者乘积的函数,这个 规律称为巴申定律。 因为它的曲线与在此公式推导出 (1890年)的前一年(1889年)由巴申 通过实验得出,所以此规律被命名为巴 申定律。同时气隙的击穿电压还与阴极 材料有关。
气体压力提高后, 气体的密度加大, 减少了电子的平均 自由行程,从而削 弱了碰撞游离的过 程。 如高压空气 断路器和高压标准 电容器等。
三、高真空的采用
气体间隙中压力很低时,电子的平均 自由行程已增大到极间空间很难产生 碰撞游离的程度。如真空电容器、真 空断路器等。

高电压技术(全套课件)

高电压技术(全套课件)

◆电子崩的形成(BC段电流剧增原因)
图1-5 均匀电场中的电子崩计算
电子碰撞电离系数α:代表一个电子沿电场方 向运动1cm的行程中所完成的碰撞电离次数 平均值。
dn ndx
dn dx
n
x
n n0e0 dx
n n0e x
n n0ed
n n n0 n0 (ed 1)
◆影响碰撞电离的因素
● 除了电力工业、电工制造业外,高电压技术 目前还广泛应用于大功率脉冲技术、激光 技术、核物理、等离子体物理、生态与环 境保护、生物学、医学、高压静电工业应 用等领域。
第一篇 电介质的电气强度
第一章 气体放电的基本物理过程
第一节 带电粒子的产生和消失 第二节电子崩 第三节 自持放电条件 第四节 起始电压与气压的关系 第五节 气体放电的流注理论 第六节 不均匀电场中的放电过程 第七节 放电时间和冲击电压下的气隙击穿 第八节 沿面放电和污闪事故
《高电压技术》
绪论
● 高电压技术主要研讨高电压(强电场)下的各种电气物理问题。 ● 高电压技术的发展始终与大功率远距离输电的需求密切相关。 ● 对于电力类专业的学生来说,学习本课程的主要目的是学会正确处理电力系统中过电压与绝 缘这一对矛盾。 ● 为了说明电力系统与高电压技术的密切关系, 以高压架空输电线路的设计为例,在图 0-1中 列出了种种与高电压技术直接相关的工程问题。
在大气压和常温下,电子在空气中的平均自由行程长度的数 量级为10-5cm 。
◆ 带电粒子的运动
● 带电粒子的迁移率:该粒子在单位场强(1V/m) 下沿电场方向的漂移速度。
k v E
电子的迁移率远大于离子的迁移率
● 扩散:在热运动的过程中,粒子会从浓度较大的 区域向浓度较小的区域运动,从而使其浓度分布均 匀化的物理过程。

高电压技术优秀课件.ppt

高电压技术优秀课件.ppt

温度很敏感;金属中主要由外加电压决定,杂质、温度不是
主要因素
3.液体和固体电介质的γ与温度的关系:
B/ kT
Ae
温度↑ a.热运动加剧→离子迁移率↑→γ↑ b.介质分子或杂质热离解↑→γ↑
高电压技术优秀课件
4. 固体电介质的体积电阻和表面电阻 体积电阻-电介质内部绝缘状态的真实反映 表面电阻-受介质表面吸附的水分和污秽影响 水分起着特别重要作用。 亲水性介质(玻璃、陶瓷)表面电导大 憎水性介质(石蜡、四氟乙烯、聚苯乙烯)
目前常用的主要有变压器油、电容器油、电缆油 等矿物油
二. 液体电介质的击穿理论
电击穿:认为在电场作用下,阴极上由于强场发射或热发 射出来的电子产生碰撞电离形成电子崩,最后导致液体击 穿
高电压技术优秀课件
气泡击穿:认为液体分子由电子碰撞而产生气泡,或在电 场作用下因其它原因产生气泡,由气泡内的气体放 电, 产生电和热而引起液体击穿。
液体中气泡产生的原因: • 油中易挥发的成分; • 阴极的强场发射或热发射的电子电流加热液体介质,分解
出气体; • 溶解于油中的外来气体; • 由电场加速的电子碰撞液体分子,使液体分子解离产生气
体; 1. 电极上尖的或不规则的凸起物上的电晕放电引起液体气化
高电压技术优秀课件
表面电导小
高电压技术优秀课件
三.电介质的损耗(dielectric loss) 1. 介质损耗的含义
任何电介质在电场作用下都有能量损耗,包 括由电导引起的损耗和由某些极化过程引起的损 耗。电介质的能量损耗简称介质损耗。
高电压技术优秀课件
2. 电介质的三支路等值电路
i i1i2 i3
i1
i2
u C1
无 几乎没有

高电压技术全套课件[专业知识]

高电压技术全套课件[专业知识]
最明显的空间电荷极化是 夹层极化。在实际的电气设备 中,如电缆、电容器、旋转电 机、变压器、互感器、电抗器 等的绝缘体,都是由多层电介
质组成的。
如图l-4所示,各层介质的电容分别为C1和C2;各层介质的电导分别为G1 和G2;直流电源电压为U。
为了说明的简便,全部参数均只标数值,略去单位。
设C1=1,C2=2,G1=2,G2=1, U=3。
专业培训
5
五.课程相关信息
➢ 参考书: 《高电压绝缘技术》,中国电力,严璋,朱德恒 《电网过电压教程》,中国电力,陈维贤 《高电压试验技术》,清华,张仁豫 《高电压技术》,中国电力,赵智大 ➢ 考试:
20%(作业10% +实验10% )+80%(闭卷笔试) ➢ 答疑安排: 时间:周四下午3:00-5:00 地点:教三楼一楼110室(办公电话:752-2357)
在极性电介质中,即使没有外加电场,由于分子中正、
负电荷的作用中心不重合。就单个分子而言,就已具有偶极矩,称为固
有偶极矩。但由于分子不规则的热运动,使各分子偶极矩方向的排列没
有秩序,因此,从宏观而言,对外并不呈现合成电矩。
当有外电场时,由于电场力的作用,每个分子的固有偶极
矩就有转向与外电场平行的趋势,其排列呈现一定的秩序。但是受分子
专业培训
15
当U作用在AB两端极板上时,其瞬时电容上的电荷和电位
分布,如图1-5(a)所示.整个介质的等值电容为
C
' eq
Q' U
2 3

到达稳态时,电容上的电荷和电位分布如图l-5(b)所示。整
个介质的等值电容为
C '' eq
Q' U
4 3

高电压技术讲义

高电压技术讲义

高电压技术发展趋势
智能化 智能电网和数字化转型
数据分析 大数据应用和分析
可再生能源 与可再生能源的集成
环保节能 环保与节能技术创新
高电压技术未来展望
随着电力系统的不断发展和社会需求的增加,高电压技术将继续担当重要 角色。未来的高压电网将更加智能化和可靠,支持更多可再生能源的接入, 同时也会注重环保和节能。
THANKS
感谢观看
高电压技术的重要性
能源传输和转换 发挥重要作用
推动科技进步 重要推动作用
提高电力系统效率 关键意义
提高系统稳定性 不可或缺
高电压技术的应用领域
电力输配电系统
01 主要应用领域
电力电子设备
02 广泛应用范围
高压设备
03 技术要求高
高电压技术的基本原理
电场概念
电场强度 电势差 电场线
配电系统结构
开关设备 变压器 电容器
定期维护和保养措施
定期巡检线路 清理杆塔及绝缘子
高电压输电线路技术的未来趋势
智能电网中的应用前景
01 高压输电线路智能化发展方向
城市化发展中的挑战与机遇
02 如何在城市中布设高压输电线路
可再生能源接入的创新方向
03 高压输电线路在可再生能源传输中的角色
总结
高电压输电线路技术的发展不仅涉及传统设备的优化,还需要结合新技术 的应用,以适应未来能源发展的需求。监测与维护工作的重要性不容忽视, 只有及时发现并处理问题,才能保障高压输电线路的稳定运行。
新能源领域应用前景
01 太阳能、风能、核能
智能电网发展机遇
02 智能化、信息化、互联互通
电气设备创新方向
03 节能环保、智能化设计、高效耐用

《高电压技术》word版

《高电压技术》word版

绪论 (1)第一章电介质的极化、电导和损耗 (3)§ 1 — 1 电介质的极化 (3)§1-2电介质中的电流和电导 (6)§1-3电介质中的损耗 (7)第二章电介质在强电场下的特性 (8)§2-1气体中带电质点的产生和消失 (8)§2-2气体放电过程的一般描述 (9)§2-3均匀电场气隙的击穿 (10)§2-4不均匀电场气隙的击穿 (13)第三章气隙的击穿特性 (15)§3-1气隙的击穿时间 (15)§3-2气隙的伏秒特性 (16)§3-3 气隙的击穿电压 (19)§3-4提高气隙击穿电压的方法 (21)§3-6气体电解质中的沿面放电 (22)第四章固体电介质和液体电介质的击穿特性 (22)§4-1固体电介质的击穿机理 (22)§4-2影响固体电介质击穿电压的因素 (23)§4-3提高固体介质击穿电压的方法 (23)§4-4固体电介质的老化 (24)§4-5液体电解质的击穿机理 (25)§4-6影响击穿电压的因素 (26)§4-7提高液体电解质击穿电压的方法 (27)§4-8液体电介质的老化 (27)第五章电气设备绝缘试验 (28)§5-1测定绝缘电阻 (28)§5-2测定泄漏电流 (29)§5-3测定介质损失角正切tgδ (30)§5-4局部放电的测试 (32)第六章耐压试验 (33)绪论高电压技术:电力系统中涉及过电压、耐压、绝缘等问题的技术。

如:▲雷击变电所、发电厂的过电压及防护措施▲绝缘材料的研制▲合闸分闸空载运行以及短路引起的过电压▲电气设备的耐压试验一、研究意义目前,随着科技的发展、经济的需要,输电电压等级越来越高,输电距离越来越长,电网结构也越来越复杂。

高电压技术(详细版)

高电压技术(详细版)

, , ( )( 。

1. 气体中带点质点的产生,激发与游离。

2. 游离的方式有:碰撞游离、光游离、热游离和表 面游离。

3. 由碰撞银翼的游离称为碰撞游离。

气体在热状态 下引起的游离过程称为热游离。

电子从金属电极表 面逸出来的过程称为表面游离。

4. 导致带点质点从游离区域消失或者削弱的过程称 为去游离。

去游离的方式:带点质点的扩散,带点 质点的复合以及电子的附着效应。

5. 汤逊放电理论认为放电起始于有效电子通过碰撞 形成电子崩,通过正离子撞击阴极,不断从阴极金 属表面溢出自由电子来弥补引起电子碰撞游离所需 的有效电子。

适用于低气压、短间隙均匀电场中的 气体放电过程和现象。

6. 气体间隙的击穿电压UF 是气体压力P 和间隙距离 S 乘积的函数,这一规律称为巴申定律7. 流注理论认为放电起始于有效电子通过碰撞形成 电子崩,形成电子崩后,由于正负空间电荷对电场 的畸变作用导致正负空间电荷的复合,复合过程中 所释放的光能又引起光游离,光游离结果所得到的 自由电子又引起新的碰撞游离,形成新的电子崩且 汇合到最初电子崩中构成流注通道。

适用于大气压 下,非短间隙均匀电场中的气体放电过程和现象 8. 电子崩一个电子在电场作用下由阴极向阳极运动 时,将与气体原子(或分子)碰撞,如果电场很强、 电子的能量足够大时 会发生碰撞电离,使原子分解 为正离子和电子,此时空间出现两个电子。

这两个电 子又分别与两个原子发生碰撞电离,出现4 个自由 电子。

如此进行下去 空间中的自由电子将迅速增加, 类似于电子雪崩,故名电子崩。

9. 非自持放电:当外加电压较低时,只有由外界电 离因素所造成的带电粒子在电场中运动而形成气体 放电电流,一旦外界电离作用停止,气体放电现象 即随之中断,这种放电称为非自持放电10. U50%就是在该冲击电压作用下,放电的概率为 50%。

其可用来反应绝缘耐受冲击电压的能力。

11. 同一波形。

不同幅值的冲击电压作用下,间隙 上出现的电压最大值和放电时间的关系曲线称为间 隙的伏秒特性曲线。

高电压技术讲义(超全讲解)

高电压技术讲义(超全讲解)

高电压技术总目录第1讲绪论第2讲气体放电理论(一)第3讲气体放电理论(二)第4讲气隙的击穿特性第5讲电介质电气性能(一)第6讲电介质电气性能(二)第7讲固体电介质的击穿特性第8讲液体电介质的击穿特性第9讲绝缘诊断与绝缘试验第10讲高电压试验设备第11讲波沿线路传导第12讲输电线路防雷技术第13讲防雷装置第14讲输电线路防雷技术第15讲内部过电压概论一、世界电压等级的发展与提高高压电网向特高压电网发展的历程z1875年,法国巴黎建成世界上第一座发电厂,标志着世界电力时代的到来z1891年,在德国劳芬电厂安装了世界第一台三相交流发电机:它发出的三相交流电通过第一条13.8kV输电线将电力输送到远方用电地区,使电力既用于照明,又用于动力,从而开始了高压输电的时代z1879年,中国上海公共租界点亮了第一盏电灯。

1882年,第一家电业公司—上海电气公司成立。

100多年来,输电电压由最初的13.8kV逐步发展到20,35,66,110,134,220,330,345,400,500,735,750,765,1000kV高压电网向特高压电网发展的历程z输电电压一般分高压、超高压和特高压。

高压(HV):35~220kV;超高压(EHV):330 ~750kV;特高压(UHV):1000kV及以上高压直流(HVDC):±600kV及以下特高压直流(UHVDC):±600kV以上,包括±750kV和±800kVz1908年,美国建成了世界第一条110kV输电线路;经过15年,于1923年,第一条230kV线路投入运行;1954年建成第一条345kV线路。

从230kV电压等级到345kV电压等级经历了31年。

在345kV投运15年后,1969年建成了765kV线路高压电网向特高压电网发展的历程z1952年,瑞典建成世界上第一条380kV超高压线路z1965年,加拿大建成世界第一条735kV超高压线路z1952年,前苏联建成第一条330kV线路;1956年建成400kV 线路;1967年建成750kV线路。

《高电压技术绪论》课件

《高电压技术绪论》课件

高电压技术面临的挑战
高电压传输的物理限制
环境影响
随着电压等级的提高,传输过程中的电场 强度和电流密度受到物理极限的限制,如 绝缘材料的性能、设备的尺寸和重量等。
高电压传输过程中产生的电场和磁场对周 围环境和生态的影响,如电磁辐射、对通 信线路的干扰等。
安全问题
经济成本
高电压设备在运行和维护过程中存在一定 的安全风险,如设备故障、操作失误等, 可能导致人员伤亡和财产损失。
绝缘电阻和介电常数的测量
绝缘电阻的测量
01
绝缘电阻是衡量电气设备绝缘性能的重要参数,通过测量绝缘
电阻可以评估设备的绝缘状况。
介电常数的测量
02
介电常数是表征电介质材料性能的参数,通过测量介电常数可
以了解材料的电学性能。
测量方法
03
采用专门的绝缘电阻测试仪和介电常数测量仪进行测量,测试
结果需根据相关标准进行评估。
高电压技术的发展历程与趋势
总结词
高电压技术的发展历程与趋势
详细描述
高电压技术的发展历程可以追溯到19世纪末期,当时 人们开始探索和研究高压电现象和应用。随着科技的不 断进步和电力工业的快速发展,高电压技术在多个领域 得到了广泛应用。未来,随着新能源、智能电网等领域 的快速发展,高电压技术将面临更多的机遇和挑战。发 展趋势包括高压直流输电技术的进一步成熟和应用,气 体放电和等离子体技术的深入研究,以及高电压技术在 新能源和智能电网等领域的应用拓展等。
电介质中的电流和电压测量
电流测量
电流测量是高电压技术中重要的实验环节,常用的测量方法 有直接测量和间接测量。直接测量是将电流表串联在电路中 ,间接测量则是通过测量电压和电阻来计算电流。
电压测量

高电压技术讲稿课件

高电压技术讲稿课件

PART 02
高电压产生与传输
高电压产生原理
高电压产生
高电压产生通常依赖静电感应原 理,通过电场中积累大量电荷, 产生较高电位差,从而形成高电
压。
高电压产生设备
高电压产生设备通常包括静电发生 器、高压电源等,些设备能够产生 高达数万伏甚至更高电压。
高电压产生方式
高电压产生方式多种,如电容器放 电、感应起电、摩擦起电等,同产 生方式适同应场景。
研究雷电形成机制、雷电防护技术、接技 术等,保障电力系统安全运行。
高电压技术未发展趋势
更高电压等级
随着电力需求增长,未高电 压技术将向更高电压等级发 展,如1000kV级交流 ±800kV级直流输电等。
智能化与自动化
高电压技术未将更加注重智 能化自动化应如智能传感器 、智能监测与诊断、自动化 控制等技术。
2023-2026
ONE
KEEP VIEW
高电压技术讲稿课件
REPORTING
CATALOGUE
目 录
• 高电压技术概述 • 高电压产生与传输 • 高电压设备与系统 • 高电压技术工程应 • 高电压技术挑战与解决方案 • 高电压技术前沿研究与展望
PART 01
高电压技术概述
高电压技术定与特点
总结词
PART 05
高电压技术挑战与解决方 案
高电压设备安全性挑战与解决方案
ቤተ መጻሕፍቲ ባይዱ
安全性挑战
高电压设备可能引发电击、火 灾等安全事故,员设备造成威
胁。
安全防护措施
设置安全防护装置,如防护罩 、隔离栏等,防止员接近高电 压设备。
绝缘设计
采高质量绝缘材料先进绝缘结 构设计,提高设备安全性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.气体中带点质点的产生,激发与游离。

2.游离的方式有:碰撞游离、光游离、热游离和表面游离。

3.由碰撞银翼的游离称为碰撞游离。

气体在热状态下引起的游离过程称为热游离。

电子从金属电极表面逸出来的过程称为表面游离。

4.导致带点质点从游离区域消失或者削弱的过程称为去游离。

去游离的方式:带点质点的扩散,带点质点的复合以及电子的附着效应。

5.汤逊放电理论认为放电起始于有效电子通过碰撞形成电子崩,通过正离子撞击阴极,不断从阴极金属表面溢出自由电子来弥补引起电子碰撞游离所需的有效电子。

适用于低气压、短间隙均匀电场中的气体放电过程和现象。

6.气体间隙的击穿电压UF是气体压力P和间隙距离S乘积的函数,这一规律称为巴申定律7.流注理论认为放电起始于有效电子通过碰撞形成电子崩,形成电子崩后,由于正负空间电荷对电场的畸变作用导致正负空间电荷的复合,复合过程中所释放的光能又引起光游离,光游离结果所得到的自由电子又引起新的碰撞游离,形成新的电子崩且汇合到最初电子崩中构成流注通道。

适用于大气压下,非短间隙均匀电场中的气体放电过程和现象8.电子崩一个电子在电场作用下由阴极向阳极运动时,将与气体原子(或分子)碰撞,如果电场很强、电子的能量足够大时,会发生碰撞电离,使原子分解为正离子和电子,此时空间出现两个电子。

这两个电子又分别与两个原子发生碰撞电离,出现4个自由电子。

如此进行下去,空间中的自由电子将迅速增加,类似于电子雪崩,故名电子崩。

9.非自持放电:当外加电压较低时,只有由外界电离因素所造成的带电粒子在电场中运动而形成气体放电电流,一旦外界电离作用停止,气体放电现象即随之中断,这种放电称为非自持放电10.U50%就是在该冲击电压作用下,放电的概率为50%。

其可用来反应绝缘耐受冲击电压的能力。

11.同一波形。

不同幅值的冲击电压作用下,间隙上出现的电压最大值和放电时间的关系曲线称为间隙的伏秒特性曲线。

伏秒特性有什么实用意义(如何利用保护设备和被保护设备间的绝缘配合)伏秒特性对设备的绝缘设计,各类绝缘间的相互配合,以及防雷保护及过电压保护与设备绝缘间的配合进行研究的基础.12.不均匀电场可分为稍不均匀电场和极不均匀电场。

稍不均匀电场中放电的特点与均匀电场中相似在间隙击穿前看不到有什么放电的迹象。

极不均匀电场:若电场不均匀程度比较严重,当极间电压达到足以使气体介质发生自持放电时,气体间隙并不被击穿,只是电场强度较高处的气体发生电晕放电;进一步提高电压后,气体间隙才被击穿,这样的电场称为极不均匀电场。

高压电力设备中经常遇到的是极不均匀电场,例如高压架空输电线路周围的电场,高压交流电机线棒出槽处的电场,电力变压器引线附近的电场等。

属于稍不均匀电场的电场有高压静电电压表(见静电系电表两电极间的电场,阀型避雷器放电间隙中的电场等。

13.电晕放电:伴随着游离而存在的复合和反激发,发出大量的光辐射,在黑暗里可以看到在该电极周围有薄薄的淡紫色发光层,有些像日月的晕光,故称为电晕放电。

14.大气条件对气体间隙击穿电压的影响:①相对密度不同时击穿电压的影响②湿度不同时击穿电压的影响③海拔高度的影响。

15.提高气体间隙绝缘强度的方法:一是改善电场分布,使之尽量均匀。

二是利用其他方法来削弱气体间隙中的游离过程。

16.改善电场分布的措施:①改变电极形状②利用空间电荷对电场的畸变作用③极不均匀电场中屏障的作用。

17.削弱游离过程的措施:①采用高气压②应用强电负性气体③采用高真空。

18.当加在绝缘子的极间电压超过一定值时常常在固体介质和空气的交界面上出现放电现象,这种沿着固体介质表面气体发生的放电称为沿面放电。

当沿面放电发展成贯穿性放电时称为沿面闪络,简称闪络。

19.当大气湿度较高,或在毛毛雨、雾、露、雪等不利的天气条件下,绝缘子表面的污秽尘埃被润湿,表面电导剧增,使绝缘子的泄漏电流剧增,其结果使绝缘子在工频和操作冲击电压下的闪络电压(污闪电压)显著降低,甚至有可能使绝缘子在工作电压下发生闪络(通常称为污闪)20.极化是电介质在电场作用下发生物理过程的一种。

极化的基本形式:①电子式极化②偶子式计划③离子式极化④空间电荷极化21.电介质基功能:将不同电位的导体分隔开。

22.电导电流对带均压电阻的有串联间隙的避雷器施加规定的直流电压时,流过避雷器的电流。

泄漏电流对不带均压电阻的有串联间隙的避雷器施加规定的电压时,流过避雷器的电流。

23.电介质出现功率损耗的过程称为介质损耗。

影响介质损耗角正切指数的因素主要有温度、频率和电压。

24.何谓小桥理论:杂质、气泡在电场作用下在电极之间逐渐排列成小桥,从而导致击穿25.固体电介质的击穿形式有电击穿、热击穿和电化学击穿。

26.提高固体电介质击穿电压措施①改进制造工艺②改进绝缘设计③改善运行条件。

27.电介质的老化可分为三类:电老化、热老化和环境老化。

电老化是指在电场作用下的老化,并且主要是来自于介质中的局部放电,有时也称为局部放电老化。

热老化是指电介质在受热作用下所发生的劣化。

28.绝缘的缺陷通常可分为两类:一是局部性或集中性的缺陷,二是整体性或分布性的缺陷。

29.电气设备的绝缘预防性试验可分为两大类:一是非破坏性实验,二是耐压试验(破坏性试验)。

30.吸收比就是加压后60s时的绝缘电阻R60’’对加压后15s的绝缘电阻R15’’的比值。

31.什么是测量介质损耗角的正接线和反接线,①正接法。

正接时,桥体处于低压,操作安全方便,不受被试品对地寄生电容的影响,测量准确;但这种方法要求被试品两极均能对地绝缘②反接法的高、低压端与正接线相反,故称反接线。

适用于被试品一端接地的情况,反接线时桥体处于高电位,被试品高压极连同引线的对地寄生电容与被试品并联引起测量误差32.分布参数的过渡过程实质上就是电磁波的传播过程,简称波过程。

33.波阻抗:等同于所给定线路参数的一条无限长线路上的行波的电压与电流比值。

,波阻抗的主要指标:34.分布参数的波阻抗的主要特点①波阻抗表示具有同一方向的电压波和电流波大小的比值。

电磁波通过波阻抗为Z的导线时,能量以电磁能的形式储存在周围介质中,而不是被消耗掉②如果导线上既有前行波,又有反行波时,导线上总的电压和电流的比值不再等于波阻抗③波阻抗Z的数值x只和导线单位长度的电感和电容L0、C0有关,与线路长度无关。

④为了区别向不同方向运行的行波,Z的前面应有正负号。

35.彼德逊法则①把线路波阻抗Z用数值相等的集中参数电阻替代②把线路上的入射电压波的两倍作为等值电压源这就是计算折射波的的等值电路法则,称之为彼得逊法则36.几种特殊条件下的折反射波:①线路末端开路:当波达到开路末端时,将发生全反射。

全反射的结果是使线路末端电压上升到入射波电压的两倍。

同时,电流波则发生负的全反射,电流波负反射的结果是线路末端的电流为零,也就是末端开路时,入射波的全部磁场能量将转变为电场能量②线路末端短路:当波达到短路路末端时后将发生负的全反射,负反射的结果是使线路末端电压下降为零。

同时,电流波则发生正的全反射,电流波正的全反射的结果是线路末端的电流上升为入射波电流的两倍。

也就是末端短路时,入射波的全部电场能量转变为磁场能量。

③线路末端接负载电阻:入射波到线路末端时不反射,和均匀导线的情况完全相同。

入射波的电磁能量全部消耗在电阻上。

37.分析变压器绕组在冲击电压作用下产生震荡的根本原因,引起绕组起始电压分布和稳态分布不一致的原因震荡的主要原因就是线圈的铁磁电感饱和引起的。

其实说震荡不全面,震荡是针对系统的,感觉说成谐振比较好。

一般都是要一定是激发条件,就是电流电压的副值从正常工作状态到了谐振状态,在有就是铁芯电感是非线性的,电感量增大到一定程度铁芯饱和了。

38.行波通过串联电感和并联电容时会产生哪些变化?行波通过串联电感和并联电容时,可以使波前(波头)拉平,波前陡度降低。

通过串联电感或并联电容后,将由直角波变成陡度较小的指数波,使波头的陡度减小。

电感、电容越大,波头陡度越小。

39.电晕对导线上波过程的影响:①使导线上耦合系数增大②使导线上的波阻抗和波速减小③使波在传播过程中幅值衰减,波形畸变。

40.冲击电压在变压器绕组间的传递途径有两个:一是通过静电感应的途径,二是通过电磁感应的途径。

41.雷击放电的等值电路42.我们把流经被击物体的波阻抗为零时的电流定义为雷电流。

43.常用的等值波形有三种:①标准冲击波②斜角平顶波③等值余弦波44.雷暴日是每年种有雷电的日数,雷暴小时每年中有雷电的小时数。

45.地面落雷密度是每一雷暴日每平方公里地面遭受雷击的次数。

46.避雷器类型:①保护间隙②排气式避雷器③阀式避雷器④金属氧化物避雷器47.阀式避雷器的工作原理:在正常电压下,非线性电阻阻值很大,而在过电压时,其阻值又很小,避雷器正是利用非线性电阻这一特性而防雷的:在雷电波侵入时,由于电压很高(即发生过电压),间隙被击穿,而非线性电阻阻值很小,雷电流便迅速进入大地,从而防止雷电波的侵入。

当过电压消失之后,非线性电阻阻值很大,间隙又恢复为断路状态。

随时准备阻止雷电波的入侵。

对于工频续流,阀门关闭,迅速切断之。

48.阀片电阻的作用主要是利用它的阀式来限制雷电流的残压。

阀片电阻具有使雷电流顺利的通过而又阻止工频续流,如阀门般的特性起自动节流的作用。

阀片电阻一重要参数:通流容量,表示阀片通过电流的能力49.避雷针(线)的保护作用原理:能使雷云电场发生突变,使雷电先导的发展沿着避雷针(线)的方向发展,直击于其上,雷电流通过避雷针(线)及接地装置泄入大地而防止避雷针(线)周围的设备遭受雷击50.避雷针与避雷线的适用场所:避雷针一般用于保护发电厂和变电所,可根据不同情况装设在配电构架上或独立架设。

避雷线主要用于保护线路,也可用于保护发、变电所。

避雷针需有足够截面的接地引下线和良好的接地装置,以便将雷电流安全的引入大地。

51.残压指雷电流通过避雷器时在阀片电阻上产生的压降。

52.输电线路防雷性能的优劣,主要有两个指标来衡量:一耐雷水平,二雷击跳闸率。

53.雷击跳闸率即每100km线路每年由雷击引起的跳闸次数。

54.输电线路上出现的大气过电压一般有两种:直击雷过电压和感应雷过电压。

55.过电压产生机理,可能出现过电压的情况,雷击过电压危害雷击引起暂态高电压或过电压常常可以通过网络线路耦合或转移到网络设备上,造成设备的损坏。

对于中性点不接地的分级绝缘变压器,当雷电波从线路侵入变压站到达变压器中性点以及系统单相接地、非全相运行,特别是伴随产生变压器励磁电感与线路对地电容谐振时,会产生较高的雷电过电压或工频稳态过电压。

56.输电线路遭受直击雷一般有三种情况:①雷击杆塔塔顶②雷击避雷线豁档距中央③雷击导线或绕过避雷针击于导线。

相关文档
最新文档