13个简单的单片机程序
51单片机常见程序,附带注释
51 单片机常见程序附带注释三位数分离成 3 个一位数,截取bai=num/100;// 输出百位数shi=num%100/10;// 输出十位数ge=num/10;// 输出个位数//跑马灯程序。
当时间约为20ms形成动态扫描,#include<intrins.h>#define uint unsigned int // 无符号整型,占16 位数,表示围0~65536#define uchar unsigned char // 无符号字符型占八位数,表示围0~255void delayms(uint);uchar aa;// 定义变量void main(){aa=0xfe;while(1){aa=_crol_(aa, 1);P2=aa; // 控制单片机接口p2, 循环亮delayms(500); 灯一直亮灭,原因是视觉延迟// 当500 换成5,看起来全亮,实际上#include<reg52.h> 看上去全亮。
void delayms(uint xms) // 子程序,延时,通过数数uint i, j; for(i=xms;i>0;i--) for(j=110;j>0;j--);#include<reg52.h> // 跑马灯程序。
现在时间较长,多以是亮灭的流动,当时间约为20ms形成动态扫描,看上去全亮。
#include<intrins.h>#define uint unsigned int #define uchar unsigned char void delayms(uint);uchar aa;void main(){aa=0xfe;while(1){P2=aa; delayms(500); 灯一直亮灭,原因是视觉延迟// 无符号整型,占16 位数,表示围0~65536 // 无符号字符型占八位数,表示围0~255// 定义变量// 控制单片机接口p2, 循环亮// 当500 换成5,看起来全亮,实际上aa=_crol_(aa, 1); }}void delayms(uint xms) // 子程序,延时,通过数数 {uint i, j; for(i=xms;i>0;i--) for(j=110;j>0;j--);}#include <reg52.h> //52 系列单片机头文件 (目标:用单片机和两个共阴极数码 管:使用单片机的引脚 1和 2,控制两个数码管静态显示 00到59) #define uchar unsigned char #define uint unsigned int sbit dula1=P1A7;uchar num,num1; // 共阴极数码管 0123456789abcdef0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; void delayms(uint) ; void main (){while(1){for(num1=0;num1<=5;num1++)// 申明 U1 锁存器锁存端 段选 sbit dula2=P0A7;// 申明 U1 锁存器锁存端段选uchar code table[]={{for(num=0;num<=9;num++){dula2=1; // 打开U1 锁存端P1=table[num]; // 送入位选信号器dula2=0; // 关闭U1 锁存500 毫秒约0.3sdelayms(100); // 延时dula1=1; // 打开U1 锁存端P2=table[num1]; // 送入位选信号器dula1=0;// 关闭U1 锁存500 毫秒约0.3s}delayms(100); // 延时}}}void delayms (uint xms){uint x, y ;dula1=0;// 关闭 U1 锁存器for (y=200;y>0;y--);}#include <reg52.h> //52 系列单片机头文件 (目标:用单片机和两个共阴极数码 管)#define uchar unsigned char #define uint unsigned int sbit dula1=P1A7; sbit dula2=P2A7; uchar num,num1; uchar code table[]={ 0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; void delayms(uint) ; void main (){while(1){for(num1=0;num1<=9;num1++){dula1=1; //打开U1锁存端P1=table[num1]; // 送入位选信号for (x=xms;x>0;x--) //x=xms 即延时约为 xms 毫秒// 申明 U1 锁存器锁存端 段选 // 申明 U1 锁存器锁存端段选// 共阴极数码管 0123456789abcdefdelayms(1000);// 延时 500 毫秒约0xc0,0xf9,0xa4, 0xb0,// 共阳极数字: 0123456789abcdefg0.3s for(num=0;num<=9;num++)dula2=1; // 打开 U1 锁存端P1=table[num]; // 送入位选信号 dula2=0;// 关闭 U1 锁存器 500 毫秒约 0.3s }} } void delayms (uint xms) { uint x, y ; for (x=xms;x>0;x--) delayms(1000);// 延时//x=xms 即延时约为 xms 毫秒for (y=200;y>0;y--); 有语法错误 #include <reg52.h> //52 系列单片机头文件 #define uchar unsigned char // 无符号字符型占八位数,表示围 0~255 #define uint unsigned int //无符号整型 占 16 位数,表示围 sbit dula1=P1A 6; //申明U1锁存器锁存端 段选 sbit dula2=P0A7; //申明U1锁存器锁存端段选uchar code table[]={0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e};void delayms(uint) ;void display(uchar,uchar) ;uchar num,num2,shi,ge;void main (){TMOD=Ox11;〃设置定时器0和1为工作方式1 (M1M0为01, 0001 00THO= (65535-50000)/256;// 装初值12.00M 晶振定时50s 数为50000 TL0= (65535-50000)%256;TH1= (65535-50000)/256;// 装初值12.00M 晶振定时50s 数为50000 TL1= (65535-50000)%256;EA=1;// 开总中断ET0=1; // 开定时器0 中断ET1=1; // 开定时器 1 中断TR0=1;// 启动定时器0TR1=1;// 启动定时器 1while(1)// 程序停止在这里不停的对数码管动态扫描同时等待中断的发生display(shi,ge);dula2=1; // 打开U1 锁存端P1=table[shi]; // 送入位选信号dula2=0; // 关闭U1 锁存器delayms(1175); // 延时0.1 毫秒void delayms(uint xms) // 延时子程序{uint i,j;for (i=xms;i>0;i--)//i=xms 即延时约为xms 毫秒for (j=110;j>0;j--); }void T1_time()interrupt 1{TH1= (65536-50000)/256; // 重装初值TL1= (65536-50000)%256;num2++; //num 每加 1 次判断一次是否到20 次if(num2==20){num2=0; // 然后把num2 清0 重新再计数20 次num++;if (num==60) // 这个数用来送数码管显示,到60 后归0num=0;shi=num/10; // 把一个 2 位数分离后分别送数码管显示,十位数ge=num%10; // 个位数#include <reg52.h> //52 系列单片机头文件 (目标:控制时间24 小时一循环) #define uchar unsigned char#define uint unsigned intsbit dula1=P1A7; //申明U1锁存器锁存端段选sbit dula2=P0A7; //申明U1锁存器锁存端段选uchar num,num1,num2,num3,num4;uchar code table[]={0xc0,0xf9,0xa4, 0xb0, // 共阳极数字:0123456789abcdefg0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e};void delayms(uint) ;void main (){while(1){for(num3=0;num3<=23;num3++) // 每天24 小时进位一{for(num2=0;num2<=59;num2++)// 每60 分进位一{for(num1=0;num1<=5;num1++) //每6*10s 进位一{dula2=1; // 打开U1 锁存端P1=table[num1]; // 送入位选信号dula2=0; // 关闭U1 锁存0.1 毫秒// 每1s 进位一打开U1锁存端// 送入位选信号// 关闭U1 锁存器// 延时0.1 毫秒}}}}}void delayms (uint xms){uint x, y ;for (x=xms;x>0;x--)for (y=110;y>0;y--); }delayms(1175); //for(num=0;num<=9;num++){dula2=1;P1=table[num];dula2=0;delayms(1000);}//x=xms 即延时约为xms 毫秒延时//#include <reg52.h> //52 系列单片机头文件 (目标:控制时间 24 小时一循环,蜂鸣器每过一段时间响一次)#define uchar unsigned char #define uint unsigned int sbit dula1=P1A7; sbit dula2=P2A7; sbit f=P0;// 声明单片机 P0 口的第一位 ,也就是三极管基级的位置单片机第 39 接口uchar num,num1,num2,num3,num4; uchar code table[]={ 0xc0,0xf9,0xa4, 0xb0,// 共阳极数字: 0123456789abcdefg0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83,// 申明 U1 锁存器锁存端// 申明 U1 锁存器锁存段选 段选0xcd,0xa1,0x86,0x8e}; void delayms(uint) ; void main (){while(1)f=0; // 控制蜂鸣器的不响 每 1ms 进位一for(num=0;num<=9;num++)//{锁存端dula2=1;// 打开 U1选信号P2=table[num];// 送入位U1锁存器dula2=0;// 关闭// 延时 0.1 毫秒delayms(1074);}// 控制蜂鸣器的响delayms(1000); }}}{进位一for(num2=0;num2<=59;num2++){for(num4=0;num2<=59;num4++)// 每 60 分// 每 60s 进位一{for(num3=0;num3<=23;num3++) // 每天进位一f=1;void delayms (uint xms){uint x, y ;for (x=xms;x>0;x--) //x=xms 即延时约为xms 毫秒for (y=10;y>0;y--);}#include <reg52.h> //52 系列单片机头文件(目标:用单片机和两个共阳极数码管,控制依次显示0到59,然后循环,有合适的时间间隔,程序停止)#define uchar unsigned char#define uint unsigned intsbit dula1=P1A7; // 申明U1 锁存器锁存端段选sbit dula2=P2A7; // 申明U1 锁存器锁存端段选uchar num,num1;uchar code table[]={0xc0,0xf9,0xa4, 0xb0,// 共阳极数字:0123456789abcdefg0x99,0x92,0x82,0xf8,}void delayms (uint xms)uint x, y ;0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e}; void delayms(uint) ; void main (){while(1)for(num1=0;num1<6;num1++){dula1=1; P1=table[num1]; dula1=0;delayms(100);// 打开 U1 锁存端 // 送入位选信号 // 关闭 U1 锁存器// 延时 500 毫秒约0.3s器500 毫秒约 0.3s for(num=0;num<=9;num++){dula2=1; P2=table[num]; dula2=0;delayms(100);// 打开 U1 锁存端 // 送入位选信号 // 关闭 U1 锁存// 延时dula1=0; // 关闭 U1 锁存器uchar num,num1; uchar code table[]={0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e};void delayms(uint) ; void main ()while(1){for(num=0;num1<6;num1++){dula1=1;//打开U1锁存端P1=table[num1]; // 送入位选信号for (x=xms;x>0;x--)//x=xms 即延时约为 xms 毫秒for (y=200;y>0;y--);}#include <reg52.h> //52 管,控制依次显示 0到 59, 系列单片机头文件 (目标:用单片机和两个共阳极数码 时间间隔约 0.5, 程序停止) #define uchar unsigned char #define uint unsigned int sbit dula1=P1A7; // 申明 U1 锁存器锁存端 段选 sbit dula2=P2A7;// 申明 U1 锁存器锁存端段选0xc0,0xf9,0xa4, 0xb0, // 共阳极数字: 0123456789abcdefgdelayms(100); // 延时500 毫秒约0.3sfor(num=0;num<=9;num++){dula2=1; // 打开U1 锁存端P2=table[num]; // 送入位选信号器dula2=0; // 关闭U1 锁存500 毫秒约0.3sdelayms(100);// 延时}}}}void delayms (uint xms)//延时子程序{uint x, y ;for (x=xms;x>0;x--) //x=xms 即延时约为xms毫秒for (y=300;y>0;y--);0.3sfor(num=0;num<=9;num++){dula2=1; //打开U2锁存端 P2=table[num];// 送入位选信号#include <reg52.h> //52 系列单片机头文件 (目标:用单片机和两个共阳极数码 管,控制依次显示 0到 59,时间间隔约 0.5, 程序停止) #define uchar unsigned char #define uint unsigned intsbit dula1=P1A7; sbit dula2=P2A7; // 申明 U1 锁存器锁存端段选 段选uchar num,num1; uchar code table[]={ 0xc0,0xf9,0xa4, 0xb0, // 共阳极数字: 0123456789abcdefg0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e}; voiddelayms(uint) ; void main ()while(1){for(num=0;num1<6;num1++) {dula1=1; P1=table[num1]; dula1=0; delayms(100);// 打开 U1 锁存端 // 送入位选信号 // 关闭 U1 锁存器// 延时 500 毫秒约#include <reg52.h> //52 系列单片机头文件 (目标:用单片机和共阳极数码管, 控制依次显示 0到 9,时间间隔约 0.5s ;)#define uchar unsigned char #define uint unsigned int500 毫秒约 0.3sdelayms(100);// 延时}}}}void delayms (uint xms){uint x, y ;for (x=xms;x>0;x--)〃x=xms 即延时约为xms 毫秒for (y=300;y>0;y--);器// 关闭 U1 锁存}dula2=0;sbit dula1=P1A7;// 申明 U1 锁存器锁存端 段选// 打开 U1 锁存端 // 送入位选信号 // 关闭 U1 锁存器// 延时 500 毫秒约 0.3//打开U2锁存端 // 送入位选信号//关闭U2锁存器// 延时 500 毫秒约 0.3sbit dula2=P2A7; // 申明 U2 锁存器锁存端 段选uchar num; uchar codetable[]={ 0xc0,0xf9,0x a4, 0xb0,0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83, 0xcd,0xa1,0x86,0x8e}; void delayms(uint) ; void main (){while(1)// 共阳极数字: 0123456789abcdefgfor(num=0;num<10;num++){dula1=1; P1=table[num]; dula1=0; delayms(100);dula2=1; P2=table[num]; dula2=0; delayms(100);void delayms (uint xms) {uint x, y ;for (x=xms;x>0;x--)//x=xms 即延时约为xms 毫秒for (y=300;y>0;y--);}#include <reg52.h> //52 系列单片机头文件(目标:用定时器0 的方式 1 实现第一个灯管以200ms闪烁;用定时器1的方式1实现数码管前两位59s循环计时)#define uchar unsigned char // 无符号字符型占八位数,表示围0~255#define uint unsigned int // 无符号整型,占16 位数,表示围sbit dula=P2A6; //申明U1锁存器锁存端段选sbit wela=P2A7; //申明U2锁存器锁存位选sbit led1=P1A0; // 申明灯 1 点0uchar code table[]={ // 共阴极数码管0123456789abcdef0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; void delayms(uint) ; voiddisplay(uchar,uchar) ; uchar num,num1,num2,shi,ge; void main (){TMOD=0x01;〃设置定时器0和1为工作方式1 (M1M0为01, 0001 00THO= (65535-50000)/256;// 装初值12.00M 晶振定时50s 数为50000 TL0= (65535-50000)%256; TH1= (65535-50000)/256;// 装初值12.00M 晶振定时50s 数为50000 TL1= (65535-50000)%256; EA=1;// 开总中断ET0=1; // 开定时器0 中断ET1=1; // 开定时器 1 中断TR0=1;// 启动定时器 0TR1=1;// 启动定时器 1while(1)//程序停止在这里不停的对数码管动态扫描同时等待中断的发生 {display(shi,ge);}}void display (uchar shi,uchar ge) // 控制数码管{ dula=1;// 打开 U1 锁存端 段选 P0=table[shi];//送入段选信号 dula=0;// 关闭 U1 锁存器 P0=0xff;// 送位选数据前关闭所有显示,防止打开位选锁存器时 wela=1;// 原来的段选数据通过位选锁存器造成混乱 P0=0xfe;// 送位选数据 wela=0;delayms(5); // 延时dula=1; // 打开 U1 锁存端 段选P0=table[ge]; // 送入段选信号dula=0;// 关闭 U1 锁存器 P0=0xff;// 送位选数据前关闭所有显示,防止打开位选锁存器时 wela=1; // 原来的段选数据通过位选锁存器造成混乱P0=0xfe; // 送位选数据wela=0;delayms(5); // 延时} void delayms(uint xms) // 延时子程序{uint i,j;for (i=xms;i>0;i--) //i=xms 即延时约为 xms 毫秒for (j=110;j>0;j--);} void T0_time()interrupt 1{TH0= (65536-50000)/256; TL0= (65536-50000)%256;num++;//num1 每加 1次判断一次是否到 4次 ,时间间隔200ms // 重装初值if(num1==4)num1=0; // 然后把num1 清0 重新再计数 4 次led1=~led1; // 让发光管状态取反}} void T1_time()interrupt 3{TH1= (65536-50000)/256; // 重装初值TL1= (65536-50000)%256;num2++; //num 每加 1 次判断一次是否到20 次if(num2==20){num2=0; // 然后把num2 清0 重新再计数20 次num++;if (num==60) // 这个数用来送数码管显示,到60 后归0num=0;shi=num/10; // 把一个 2 位数分离后分别送数码管显示,十位数ge=num%10; // 个位数// 共阴极数码管 0123456789abcdef0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};void delayms(uint) ;void display(uchar,uchar) ;uchar num,num1,num2,shi,ge;void main (){TMOD=0x01;〃 设置定时器0和1为工作方式1 ( M1M (为01, 0001 0001 )TH0= (65535-50000)/256;// 装初值 12.00M 晶振定时 50s 数为 50000TL0= (65535-50000)%256;TH1= (65535-50000)/256;// 装初值 12.00M 晶振定时 50s 数为 50000 TL1=(65535-50000)%256;EA=1;// 开总中断ET0=1; // 开定时器 0 中断ET1=1; // 开定时器 1 中断TR0=1;// 启动定时器 0TR1=1;// 启动定时器 1#include <reg52.h> //52 系列单片机头文件 (目标:用定时器 0 的方式 1 实现第 一个灯管以200ms 闪烁;用定时器1的方式1实现数码管前两位59s 循环计时)#define uchar unsigned char 占八位数,表示围 0~255// 无符号字符型 #define uint unsignedint 数,表示围// 无符号整型, 占 16位 sbit dula=P2A 6;//申明U1锁存器锁存端 段选 sbit wela=P2A7;//申明U2锁存器锁存 位选sbit led1=P1A0;// 申明灯 1 点 0 uchar code table[]={while(1)// 程序停止在这里不停的对数码管动态扫描同时等待中断的发生{display(shi,ge);}}void display (uchar shi,uchar ge) // 控制数码管{dula=1; // 打开U1 锁存端段选P0=table[shi];//送入段选信号dula=0; // 关闭U1 锁存器P0=0xff;// 送位选数据前关闭所有显示,防止打开位选锁存器时wela=1; // 原来的段选数据通过位选锁存器造成混乱P0=0xfe; // 送位选数据wela=0;delayms(5); // 延时dula=1; // 打开U1 锁存端段选P0=table[ge];//送入段选信号dula=0; // 关闭U1 锁存器P0=0xff; // 送位选数据前关闭所有显示,防止打开位选锁存器时wela=1; // 原来的段选数据通过位选锁存器造成混乱P0=0xfe; // 送位选数据wela=0;delayms(5); // 延时{void delayms(uint xms) // 延时子程序uint i,j;for (i=xms;i>O;i--) 〃i=xms 即延时约为xms毫秒for (j=110;j>0;j--);}#include <reg52.h> //52 系列单片机头文件 (目标:中断程序,控制 1 点0 二极管10ms闪烁)#define uchar unsigned char#define uint unsigned intsbit led1=P1A0; II声明单片机P1 口的第一位uchar num;void main (){TMOD=0x01;〃设置定时器0为工作方式1 (M1M(为01)TH0= (65535-50000)/256;// 装初值12.00M 晶振定时50ms数为50000TL0= (65535-50000)%256;EA=1;// 开总中断ET0=1; // 开定时器0 中断TR0=1;// 启动定时器0while(1)// 程序停止在这里等待中断的发生{if(num==200)// 判断一次是否到20{num=0; // 然后把num 清0 重新再计数20 次led1=~led1; // 让发光管状态取反}}}void T0_time()interrupt 1{TH0= (65535-50000)/256; // 重装初值TL0= (65535-50000)%256;num++; //num 加上1#include <reg52.h> //52 系列单片机头文件 (目标:中断程序,控制 1 点0 二极管100ms 闪烁,若num=10则0.05s闪烁,换句话控制5000或者num都可以控制时间。
51单片机外部脉冲计数程序
51单片机外部脉冲计数程序51单片机外部脉冲计数程序是一种常见的嵌入式应用程序,它可以通过计数外部脉冲信号来实现各种功能,如测量速度、记录行程、控制电机等。
在本文中,我们将介绍如何编写一个简单的51单片机外部脉冲计数程序,供初学者参考。
一、程序框架```c#include <reg52.h>sbit PulsePin = P1^0; //定义脉冲信号输入引脚unsigned long cnt = 0; //计数器void ExternalInterrupt0() interrupt 0 //外部中断0的中断服务程序{cnt++; //计数器加一}```程序中定义了一个脉冲信号输入引脚PulsePin,一个计数器cnt,并在主程序中开启了全局中断和外部中断0,并设置外部中断0为下降沿触发。
在外部中断0的中断服务程序中,计数器cnt会加一。
二、程序解析1. 硬件连接将需要计数的脉冲信号输入引脚连接到单片机的P1.0引脚上,并连接好单片机的电源和地线。
2. 宏定义和全局变量首先定义了PulsePin引脚为输入模式,并定义了计数器cnt为无符号长整型变量。
3. 主程序在主程序中,首先开启了全局中断和外部中断0,然后设置外部中断0为下降沿触发。
最后加入一个无限循环,等待外部中断的触发。
4. 外部中断0的中断服务程序在外部中断0的中断服务程序中,计数器cnt会加一。
三、总结本文介绍了如何编写一个简单的51单片机外部脉冲计数程序。
通过外部中断0的中断服务程序,可以实现对外部脉冲信号的计数。
本程序只是一个简单的例子,读者可以根据自己的需求对其进行改进和优化。
单片机按键程序设计
单片机按键程序设计单片机按键的基本原理其实并不复杂。
通常,按键就是一个简单的开关,当按键按下时,电路接通,对应的引脚电平发生变化;当按键松开时,电路断开,引脚电平恢复到初始状态。
在程序设计中,我们需要不断检测引脚的电平变化,从而判断按键是否被按下。
在实际的按键程序设计中,有多种方式可以实现按键检测。
其中一种常见的方法是查询法。
这种方法是通过不断地读取按键对应的引脚状态来判断按键是否被按下。
以下是一个简单的查询法示例代码:```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void main(){while(1) //无限循环{if(key == 0) //如果按键按下,引脚为低电平{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;while(key == 0);//等待按键松开}}}```上述代码中,我们首先定义了按键连接的引脚`key`,然后在主函数的无限循环中不断检测按键引脚的状态。
当检测到按键按下时,执行相应的操作,并通过`while(key == 0)`等待按键松开。
除了查询法,还有中断法可以用于按键检测。
中断法的优点是能够及时响应按键动作,不会因为程序的其他操作而导致按键响应延迟。
```cinclude <reg51h> //包含 51 单片机的头文件sbit key = P1^0; //定义按键连接的引脚void int0_init()//中断初始化函数{IT0 = 1; //下降沿触发中断EX0 = 1; //使能外部中断 0EA = 1; //开总中断}void int0() interrupt 0 //外部中断 0 服务函数{//执行按键按下的操作//比如点亮一个 LED 灯P2 = 0xfe;}void main(){int0_init();//初始化中断while(1);//无限循环,保持程序运行}```在上述代码中,我们首先在`int0_init` 函数中对中断进行了初始化设置,然后在`int0` 函数中编写了按键按下时的处理代码。
stc15w单片机程序例程
stc15w单片机程序例程
以下是一个使用STC15W单片机的简单程序例程:
#include "STC15W4K48S4.H" 包含STC15W单片机头文件#define LED P1_0 定义LED连接的引脚
void main()
{
LED = 0; 设置LED引脚为低电平
while(1) 进入循环
{
LED = 1; 点亮LED
delay(1000); 延时1秒
LED = 0; 熄灭LED
delay(1000); 延时1秒
}
}
void delay(unsigned int ms)
{
unsigned int i, j;
for(i = ms; i > 0; i)
for(j = 110; j > 0; j);
}
以上程序中,LED引脚连接在P1_0引脚上。
程序通过循环语句实现了LED的闪烁效果。
主函数中使用了一个无限循环(while(1)),每次循环都点亮LED引脚并延时1秒,然后熄灭LED引脚并再次延时1秒。
delay函数用来实现延时功能,内部使用了两层嵌套的循环实现粗略的延时。
这只是一个非常简单的例程,演示了如何在STC15W单片机上控制一个LED的闪烁。
实际应用中,可能会涉及更多的功能和外设的使用,例如串口通信、ADC 模数转换等。
具体的应用程序会根据具体需求进行开发。
单片机crc16程序
单片机crc16程序CRC(循环冗余校验)是一种校验方法,用于检测数据传输过程中的错误。
CRC16是一种16位的CRC校验算法,常用于单片机和通信协议中。
下面是一个简单的C语言实现的CRC16计算程序示例:c.#include <stdio.h>。
#include <stdint.h>。
#define POLYNOMIAL 0x1021。
uint16_t crc16(uint8_t data, uint16_t length) {。
uint16_t crc = 0;uint8_t i;uint8_t j;for (j = 0; j < length; ++j) {。
crc ^= (uint16_t)(data[j] << 8);for (i = 0; i < 8; i++) {。
if (crc & 0x8000) {。
crc = (crc << 1) ^ POLYNOMIAL; } else {。
crc <<= 1;}。
}。
}。
return crc;}。
int main() {。
uint8_t test_data[] = {0x01, 0x02, 0x03, 0x04,0x05};uint16_t crc = crc16(test_data, sizeof(test_data));printf("CRC16: 0x%04X\n", crc);return 0;}。
在这个示例中,我们定义了一个CRC16函数,它接受一个指向数据的指针和数据长度作为输入,并返回计算得到的CRC16校验值。
在主函数中,我们传入了一个测试数据并打印出计算得到的CRC16值。
需要注意的是,不同的应用场景可能会使用不同的CRC16多项式,所以在实际使用时需要根据具体的需求来选择合适的多项式。
另外,以上代码只是一个简单的示例,实际应用中可能还需要考虑字节序、初始值等因素。
单片机c语言程序设计实例100例--基于805i+proteus仿真
以下是一个基于8051单片机和Proteus仿真环境的C语言程序设计实例:实例1:点亮LED灯
在这个例子中,我们将使用C语言编写一个简单的程序来控制8051单片机的一个I/O引脚,使其驱动一个LED灯。
c代码:
要使用Proteus进行仿真,你需要按照以下步骤操作:
1. 打开Proteus软件,创建一个新的设计工程。
2. 在元件库中搜索并添加相应的8051单片机型号(如AT89C51)和LED 元件到工作区。
3. 根据实际硬件连接,正确配置单片机的引脚和LED的连接。
4. 右键单击单片机元件,选择“Edit Component”打开编辑窗口。
5. 在“Program File(s)”区域,点击右侧的浏览按钮,选择你的C语言源文件(如上述的main.c)。
6. 点击“OK”关闭编辑窗口,然后点击工具栏上的“Play”按钮开始仿真。
在仿真过程中,你应该能看到LED灯被点亮,这表明你的C语言程序已经在Proteus环境中成功运行。
以上只是一个基础的例子,实际的"单片机C语言程序设计实例100例--基于8051+Proteus仿真"会包含更复杂和多样化的应用场景,包括定时器/计数器
应用、中断处理、串口通信、ADC/DAC转换、液晶显示等等。
每个实例都会详细介绍程序设计思路、代码实现以及如何在Proteus中进行仿真调试。
通过这些实例的学习和实践,你可以逐步掌握8051单片机的C语言编程技巧和Proteus仿真环境的使用方法。
STC单片机51简单的红外遥控发射程序C语言
}
void H(){ //红外1; 以低电平0.565ms,高电平1685表示1
uchar j;
for (j=0;j<43;j++) {s1=~s1;Delay13us();} //低电平0.565ms载波,模拟38KHZ
{
uint j;
while(1){
Delay3000ms();
//以下开始发送
for (j=0;j<692;j++) {s1=~s1;Delay13us();}//载波发送9ms的起始码
for (j=0;j<346;j++) {s1=1;Delay13us();} //无载波发送4.5ms的结果码
for (j=0;j<173;j++) {s1=1;Delay13us();} //2.25ms
for (j=0;j<44;j++) {s1=~s1;Delay13us();}//结束位
for (j=0;j<7400;j++) {s1=1;Delay13us();} //在延时96.2ms到108ms,在发送连发码
for (j=0;j<692;j++) {s1=~s1;Delay13us();}//载波发送9ms的起始码
for (j=0;j<173;j++) {s1=1;Delay13us();} //2.25ms
for (j=0;j<44;j++) {s1=~s1;Delay13us();}//结束位
STC89c52单片机 计算器C语言程序
STC89c52单片机计算器C语言程序STC89C52单片机计算器C语言程序下面是STC89C52单片机计算器的C语言程序,适用于P2位选P0段选时钟12MHZ。
程序代码如下:includedefine uchar unsigned chardefine uint unsigned intuchar Led[17] = {0x3f。
0x06.0x5b。
0x4f。
0x66.0x6d。
0x7d。
0x07.0x7f。
0x6f。
0x77.0x7c。
0x39.0x5e。
0x79.0x71.0x00};long float Number[]={0,0,0,0};uchar A[]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};long int D[] = {0,0,0,0,0,0,0,0};uchar code C[] = {0x0.0xFE。
0xFD。
0xFB。
0xF7.0xEF。
0xDF。
0xBF。
0x7F};uchar k=16;uchar b;long float Out_put;uchar e=0;uchar g=0;uchar L=0;uchar g1=0;uchar g2=0;uchar g3=0;uchar g4=0;char j=-1;uchar m=0;uchar n=0;uchar x=0;程序中包含了头文件和宏定义,以及数码管段选、数码管显示位控制寄存器、数码管显示内容寄存器、数码管位选、按键控制变量等各种变量。
其中,Led数组存储了数码管的段选值,Number数组存储了数字,A数组存储了数码管的位选值,D数组存储了数码管的显示内容,C数组存储了数码管的位选值,k、b、Out_put、e、g、L、g1、g2、g3、g4、j、m、n、x 等变量用于按键控制和运算。
代码中没有明显的格式错误,可以直接使用。
下面是已经修改过的文章:uchar xo = 0./*控制开始计数小数点的变量*/long int result;void Delay(uint o) {uint i。
51单片机秒表程序设计
51单片机秒表程序设计1. 简介秒表是一种用于测量时间间隔的计时器,常见于体育比赛、实验室实验等场合。
本文将介绍如何使用51单片机设计一个简单的秒表程序。
2. 硬件准备•51单片机开发板•LCD液晶显示屏•按键开关•连接线3. 程序流程3.1 初始化设置1.设置LCD液晶显示屏为8位数据总线模式。
2.初始化LCD液晶显示屏。
3.设置按键开关为输入模式。
3.2 主程序循环1.显示初始界面,包括“00:00:00”表示计时器初始值。
2.等待用户按下开始/暂停按钮。
3.如果用户按下开始按钮,则开始计时,进入计时状态。
4.如果用户按下暂停按钮,则暂停计时,进入暂停状态。
5.在计时状态下,每隔1毫秒更新计时器的数值,并在LCD液晶显示屏上显示出来。
6.在暂停状态下,不更新计时器的数值,并保持显示当前数值。
3.3 计时器控制1.定义一个变量time用于存储当前的计时器数值,单位为毫秒。
2.定义一个变量running用于标记计时器的状态,0表示暂停,1表示运行。
3.定义一个变量start_time用于存储计时器开始的时间点。
4.定义一个变量pause_time用于存储计时器暂停的时间点。
5.在计时状态下,每隔1毫秒更新time的值为当前时间与start_time的差值,并将其转换为小时、分钟、秒的表示形式。
6.在暂停状态下,保持time的值不变。
3.4 按键检测1.检测按键开关是否被按下。
2.如果按键被按下,判断是开始/暂停按钮还是复位按钮。
3.如果是开始/暂停按钮,并且当前处于计时状态,则将计时状态设置为暂停状态,并记录暂停时间点为pause_time;如果当前处于暂停状态,则将计时状态设置为运行状态,并记录开始时间点为当前时间减去暂停时间的差值。
4.如果是复位按钮,则将计时器数值重置为0,并将计时状态设置为暂停。
4. 程序代码示例#include <reg51.h>// 定义LCD控制端口和数据端口sbit LCD_RS = P1^0;sbit LCD_RW = P1^1;sbit LCD_EN = P1^2;sbit LCD_D4 = P1^3;sbit LCD_D5 = P1^4;sbit LCD_D6 = P1^5;sbit LCD_D7 = P1^6;// 定义按键开关端口sbit START_PAUSE_BTN = P2^0;sbit RESET_BTN = P2^1;// 定义全局变量unsigned int time = 0; // 计时器数值,单位为毫秒bit running = 0; // 计时器状态,0表示暂停,1表示运行unsigned long start_time = 0; // 开始时间点unsigned long pause_time = 0; // 暂停时间点// 函数声明void delay(unsigned int ms);void lcd_init();void lcd_command(unsigned char cmd);void lcd_data(unsigned char dat);void lcd_string(unsigned char *str);void lcd_clear();void lcd_gotoxy(unsigned char x, unsigned char y);// 主函数void main() {// 初始化设置lcd_init();while (1) {// 显示初始界面lcd_clear();lcd_gotoxy(0, 0);lcd_string("00:00:00");// 等待用户按下开始/暂停按钮while (!START_PAUSE_BTN && !RESET_BTN);// 判断按钮类型并处理计时器状态if (START_PAUSE_BTN) {if (running) { // 当前处于计时状态,按下按钮将进入暂停状态 running = 0;pause_time = time;} else { // 当前处于暂停状态,按下按钮将进入计时状态running = 1;start_time = get_current_time() - pause_time;}} else if (RESET_BTN) { // 复位按钮按下,重置计时器time = 0;running = 0;}}}// 毫秒级延时函数void delay(unsigned int ms) {unsigned int i, j;for (i = ms; i > 0; i--) {for (j = 110; j > 0; j--);}}// LCD初始化函数void lcd_init() {lcd_command(0x38); // 设置8位数据总线模式lcd_command(0x0C); // 显示开,光标关闭lcd_command(0x06); // 光标右移,不移动显示器lcd_command(0x01); // 清屏}// 向LCD发送指令函数void lcd_command(unsigned char cmd) {LCD_RS = 0;LCD_RW = 0;LCD_EN = 1;LCD_D4 = cmd >> 4 & 1;LCD_D5 = cmd >> 5 & 1;LCD_D6 = cmd >> 6 & 1;LCD_D7 = cmd >> 7 & 1;delay(1);LCD_EN = 0;LCD_D4 = cmd >> 0 & 1;LCD_D5 = cmd >> 1 & 1;LCD_D6 = cmd >> 2 & 1;LCD_D7 = cmd >> 3 & 1;delay(1);LCD_EN = 0;}// 向LCD发送数据函数void lcd_data(unsigned char dat) { LCD_RS = 1;LCD_RW = 0;LCD_EN = 1;LCD_D4 = dat >> 4 & 1;LCD_D5 = dat >> 5 & 1;LCD_D6 = dat >> 6 & 1;LCD_D7 = dat >> 7 & 1;delay(1);LCD_EN = 0;LCD_D4 = dat >> 0 & 1;LCD_D5 = dat >> 1 & 1;LCD_D6 = dat >> 2 & 1;LCD_D7 = dat >> 3 & 1;delay(1);LCD_EN = 0;}// 向LCD发送字符串函数void lcd_string(unsigned char *str) {while (*str) {lcd_data(*str++);delay(5);}}// 清屏函数void lcd_clear() {lcd_command(0x01);}// 设置光标位置函数void lcd_gotoxy(unsigned char x, unsigned char y) {unsigned char addr;if (y == 0)addr = x | (0x80 + y);else if (y == 1)addr = x | (0xC0 + y);lcd_command(addr);}5. 总结本文介绍了使用51单片机设计一个简单的秒表程序。
单片机c语言程序设计实训100例——基于arduino+proteus仿真
单片机c语言程序设计实训100例——基于arduino+proteus仿真单片机C语言程序设计是电子信息类专业中的一门重要课程,通过学习这门课程可以掌握基本的嵌入式系统开发技术。
为了提高学生对于单片机编程能力和实践操作能力的培养,通常会进行相关实训。
在这篇文章中,我将介绍一个基于Arduino+Proteus仿真环境下的100个例题来帮助大家更好地理解和掌握单片机C语言程序设计。
每个例题都包含详细说明、代码示例以及相应功能模块在Proteus上面运行效果图等内容。
1. 闪烁LED灯:使用延时函数使得连接到Arduino引脚13上面的LED灯周期性地闪烁。
2. 控制舵机角度:根据输入信号改变舵机转动角度,并且利用串口监视器显示当前角度值。
3. 温湿度传感器读取数据并显示:通过DHT11温湿度传感器获取周围环境温湿度数值,并将其显示出来。
4. 数码管计数器: 使用74HC595芯片驱动四位共阳极数字管,在7段数码管上循环从0-9递增或者递减展示数字5. 蜂鸣器播放音调: 通过PWM信号控制蜂鸣器发出不同频率的声音。
6. 红外遥控LED灯: 使用红外接收模块读取来自红外遥控器发送的指令,并根据指令点亮或者熄灭连接到Arduino引脚上面的LED灯。
这些例题涵盖了单片机C语言程序设计中常见且基础性较强的内容,可以帮助学生逐步提高编程能力和实践操作技巧。
在Proteus仿真环境下进行实验也有以下几个优点:1. 安全可靠:在环境下进行实验,不存在电路元件损坏、线路错误等问题,保证了安全性和稳定性。
2. 节约成本:无需购买昂贵而易损耗品(如传感器、舵机等),只需要使用软件即可完成相关功能测试。
3. 方便快速:Proteus具备图形化界面以及大量现成组建库文件, 只要简单地将所需元素放入画布并连好线就可以开始调试代码4.多样化场景设置: Proteus支持各种设备与芯片之间相互联动关系搭配总结起来说,“100例——基于arduino+proteus仿真”这个实训项目是一个非常有价值的单片机C语言程序设计学习资源。
TEA5767的简单单片机C程序
很简单的TEA5767单片机驱动程序,默认只有一个频率,两按键用于微调频率。
写默认频率时需自己算好PLL。
#include<reg52.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned int#define _Nop() _nop_,_nop_,_nop_,_nop_,_nop_,_nop_sbit I2C_SCK=P3^3;//时钟引脚sbit I2C_SDA=P3^2;//数据引脚sbit k1=P3^1;sbit k2=P3^0;uchar radio_write_data[5];//={0x2f,0x19,0x80,0x37,0x00}; //0x2f,0x19,0x80,0x37,0x00/******************************************************************************************************************************************************************************************************************************************************/void ys(uint a){uint i,j;for(i=a;i>0;i--)for(j=150;j>0;j--);}///////////////////////////////////////////////////////////////////////////////////////////////////*开始I2C总线void I2C_Start(){I2C_SDA=1;/*发送起始条件的数据信号*/_Nop();_Nop();I2C_SCK=1;_Nop();_Nop();_Nop();_Nop();/*起始条件建立时间大于4. 7us,延时*/I2C_SDA=0;/*发送起始信一号*/_Nop();_Nop();_Nop();_Nop();/*起始条件锁定时间大于4 ps*/I2C_SCK=0;/*钳住I2C总线,准备发送或接收数据*/_Nop(); _Nop();_Nop();_Nop();/*起始条件建立时间大于4. 7us,延时*/}//*停止I2C总线void I2C_Stop(){I2C_SCK=0;I2C_SDA=0;/*发送结束条件的数据信号*/_Nop();/*发送结束条件的时钟信号*/I2C_SCK=1;/*结束条件建立时间大于4 u s*/_Nop();_Nop();_Nop();_Nop();I2C_SDA=1; /*发送工2C总线结束信号*/}/////////////////////////////////////////////////////////////////////////////////////////*MCU等待应答位(返回0表示应答)*/bit I2C_WaitAck (){uchar ErrTime=200;//因故障接收方无ACK,超时值。
单片机C语言编程实例
单片机C语言编程实例前言INTEL公司的MCS-51单片机是目前在我国应用得最广泛的单片机之一.随着单片机应用技术的不断发展,许多公司纷纷以51单片机为内核,开发出与其兼容的多种芯片,从而扩充和扩展了其品种和应用领域.C语言已成为当前举世公认的高效简洁而又贴近硬件的编程语言之—。
将C语言向单片机上的移植,始于20世纪80年代的中后期。
经过十几年的努力,C语言终于成为专业化单片机上的实用高级语言。
用C语言编写的8051单片机的软件,可以大大缩短开发周期,且明显地增加软件的可读性,便于改进和扩充,从而研制出规模更大、性能更完善的系统。
因此,不管是对于新进入这一领域的开发者来说,还是对于有多年单片机开发经验的人来说,学习单片机的C语言编程技术都是十分必要的..C语言是具有结构化.模块化编译的通用计算机语言,是国际上应用最广。
最多的计算语言之一。
C51是在通用C语言的基础上开发出的专门用于51系列单片机编程的C语言。
与汇编语言相比,C51在功能上.结构上以及可读性。
可移植性。
可维护性等方面都有非常明显的优势.目前最先进、功能最强大、国内用户最多的C51编译器是Keil Soft ware公司推出的KeilC51.第一章单片机C语言入门1。
1建立您的第一个C项目使用C语言肯定要使用到C编译器,以便把写好的C程序编译为机器码,这样单片机才能执行编写好的程序。
KEIL uVISION2是众多单片机应用开发软件中优秀的软件之一,它支持众多不同公司的MCS51架构的芯片,它集编辑,编译,仿真等于一体,同时还支持PLM、汇编和C语言的程序设计,它的界面和常用的微软VC++的界面相似,界面友好,易学易用,在调试程序,软件仿真方面也有很强大的功能.因此很多开发51应用的工程师或普通的单片机爱好者,都对它十分喜欢。
以上简单介绍了KEIL51软件,要使用KEIL51软件,必需先要安装它。
KEIL51是一个商业的软件,对于我们这些普通爱好者可以到KEIL中国代理周立功公司的网站上下载一份能编译2K的DEMO版软件,基本可以满足一般的个人学习和小型应用的开发。
单片机c语言开关程序
单片机c语言开关程序单片机是一种集成电路,它具有微处理器、存储器和输入输出端口等功能。
在单片机中,C语言是一种常用的编程语言,可以用来开发各种程序。
本文将详细介绍如何使用C语言编写一个简单的开关程序。
开关是我们日常生活中常见的一种电子元件,它可以控制电路的通断。
在单片机中,我们可以通过编写程序来控制开关的状态。
下面是一个使用C语言编写的开关程序示例:```c#include <reg52.h> // 包含单片机的头文件sbit LED = P1^0; // 将P1.0引脚定义为LED输出口sbit SW = P3^2; // 将P3.2引脚定义为开关输入口void main(){LED = 0; // 初始状态下关闭LEDwhile(1){if(SW == 0) // 当开关按下时{LED = 1; // 打开LED}else{LED = 0; // 关闭LED}}}```上述程序使用了51单片机的C语言编程,通过将P1.0引脚定义为LED输出口,P3.2引脚定义为开关输入口,实现了一个简单的开关控制LED的功能。
在主函数中,我们首先将LED置为0,即关闭LED。
然后通过一个无限循环,不断检测开关的状态。
当开关按下时,开关引脚的电平为低电平(0),此时将LED置为1,即打开LED;当开关松开时,开关引脚的电平为高电平(1),此时将LED置为0,即关闭LED。
通过这段简单的代码,我们可以实现一个基本的开关控制LED的功能。
当按下开关时,LED会亮起;当松开开关时,LED会熄灭。
这个程序可以很好地理解开关的工作原理和单片机的输入输出控制。
当然,这只是一个简单的示例程序,实际应用中可能会更加复杂。
在实际开发中,我们可以根据需要添加更多的功能,如控制多个LED灯、设置开关的触发条件等。
通过不断学习和实践,我们可以掌握更多关于单片机C语言开发的技巧和知识,实现更多有趣和实用的功能。
通过C语言编写单片机的开关程序,我们可以实现对开关状态的监测和控制。
《单片机简单程序》PPT课件
精选PPT
4
一. 汇编语言指令类型
3. 宏指令:
宏汇编功能:将需要多次反复执行的程序段定义成一 个宏指令名(宏定义),编程时,可在程序中使用 宏指令名来替代一段程序(宏调用)。 宏定义过程:
宏指令名 MACRO 形式参数
…
;定义程序段
ENDM 宏调用过程:
主 … 程 序 子 程 … 序 S C A … L L S … C A L L S …
… R E T
精选PPT
23
4-6-4 子程序的类型
按子程序与主程序之间传递参数的方式分类。 入口参数:调用子程序之前,需要传给子程序的参数。 出口参数:子程序送回调用程序的结果参数。
设计子程序应满足通用性的要求,不针对具体数据编程。
选用不同的参数传递方式。 1.寄存器传送参数 2.存储器传送参数 3.堆栈传送参数
精选PPT
24
4-7 算术运算程序
如:分支号=0,程序转移到ADDR0处;当分支号=1,
程序转移到ADDR1处;… 。
(1)用地址表法。设分支号已存入A。
A=?
MTJS:MOV DPTR,#TAB ;取表首地址 0 1
n
CLR C RLC A
;分支号×2
处处 理理
处 理
…
一二
MOV R2,A
MOVC A,@A+DPTR;取分支地址低位
R2,A ;循环计数器←n
A
;结果单元清0
R3,A ;进位数据存R3
R0
;修改数据指针
A,@R0 ;累加
NEXT ;无进位转NEXT
片 内 R A M … …
X n … …
单片机代码例子
单片机代码例子1. LED闪烁程序在单片机中,我们可以通过编写简单的代码来实现LED灯的闪烁。
以下是一个简单的LED闪烁程序的例子:```#include <reg51.h>void main(){while(1){P1 = 0xFF; // 将P1口的所有引脚设置为高电平delay(1000); // 延时1秒P1 = 0x00; // 将P1口的所有引脚设置为低电平delay(1000); // 延时1秒}}void delay(int time){int i, j;for(i=0; i<time; i++){for(j=0; j<1275; j++);}}```2. 数码管显示程序单片机中的数码管可以通过编写代码来显示数字和字符。
以下是一个简单的数码管显示程序的例子:```#include <reg51.h>unsigned char code digit[10] = {0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90};void main(){unsigned int i;while(1){for(i=0; i<10; i++){P1 = digit[i]; // 将对应的数码管段码输出到P1口delay(1000); // 延时1秒}}}void delay(int time){int i, j;for(i=0; i<time; i++){for(j=0; j<1275; j++);}}```3. 温度检测程序通过连接温度传感器到单片机的引脚,我们可以编写代码来读取温度数据。
以下是一个简单的温度检测程序的例子:```#include <reg51.h>sbit DQ = P3^2; // 温度传感器引脚void delay(int time){int i, j;for(i=0; i<time; i++){for(j=0; j<1275; j++); }}unsigned char readTemperature() {unsigned char temperature; unsigned char i;DQ = 1; // 发送起始信号DQ = 0;delay(500); // 延时500us DQ = 1; // 接收温度数据delay(50); // 延时50usfor (i=0; i<8; i++){DQ = 0;temperature = temperature >> 1; DQ = 1;if (DQ){temperature |= 0x80;}delay(50); // 延时50us}return temperature;}void main(){unsigned char temperature;while(1){temperature = readTemperature(); // 在LCD上显示温度数据delay(1000); // 延时1秒}}```4. 蜂鸣器控制程序通过编写代码,我们可以控制单片机的引脚来控制蜂鸣器的发声。
单片机经典长短按程序
新型的按键扫描程序不过我在网上游逛了很久,也看过不少源程序了,没有发现这种按键处理办法的踪迹,所以,我将他共享出来,和广大同僚们共勉。
我非常坚信这种按键处理办法的便捷和高效,你可以移植到任何一种嵌入式处理器上面,因为C语言强大的可移植性。
同时,这里面用到了一些分层的思想,在单片机当中也是相当有用的,也是本文的另外一个重点。
对于老鸟,我建议直接看那两个表达式,然后自己想想就会懂的了,也不需要听我后面的自吹自擂了,我可没有班门弄斧的意思,hoho~~但是对于新手,我建议将全文看完。
因为这是实际项目中总结出来的经验,学校里面学不到的东西。
以下假设你懂C语言,因为纯粹的C语言描述,所以和处理器平台无关,你可以在MCS-51,AVR,PIC,甚至是ARM平台上面测试这个程序性能。
当然,我自己也是在多个项目用过,效果非常好的。
好了,工程人员的习惯,废话就应该少说,开始吧。
以下我以AVR的MEGA8作为平台讲解,没有其它原因,因为我手头上只有AVR的板子而已没有51的。
用51也可以,只是芯片初始化部分不同,还有寄存器名字不同而已。
核心算法:unsigned char Trg;unsigned char Cont;void KeyRead( void ){unsigned char ReadData = PINB^0xff; // 1Trg = ReadData & (ReadData ^ Cont); // 2Cont = ReadData; // 3}完了。
有没有一种不可思议的感觉?当然,没有想懂之前会那样,想懂之后就会惊叹于这算法的精妙!!下面是程序解释:Trg(triger)代表的是触发,Cont(continue)代表的是连续按下。
1:读PORTB的端口数据,取反,然后送到ReadData 临时变量里面保存起来。
2:算法1,用来计算触发变量的。
一个位与操作,一个异或操作,我想学过C 语言都应该懂吧?Trg为全局变量,其它程序可以直接引用。
单片机控制摄像头拍照的c程序
单片机控制摄像头拍照的c程序下面是一个简单的C程序,用于通过单片机控制摄像头拍照: c.#include <stdio.h>。
#include <stdlib.h>。
// 定义摄像头控制相关的寄存器地址。
#define CAMERA_ADDRESS 0x00。
#define CONTROL_REGISTER 0x01。
// 定义单片机控制相关的寄存器地址。
#define MCU_ADDRESS 0x10。
#define COMMAND_REGISTER 0x11。
// 摄像头拍照函数。
void takePhoto() {。
// 向摄像头控制寄存器发送拍照命令。
writeToRegister(CAMERA_ADDRESS, CONTROL_REGISTER, 0x01);}。
// 向寄存器写入数据。
void writeToRegister(int deviceAddress, int registerAddress, int data) {。
// 这里需要编写具体的向寄存器写入数据的代码。
// 例如使用I2C通信协议向指定设备的指定寄存器写入数据。
}。
int main() {。
// 初始化摄像头。
// 这里需要编写摄像头初始化的代码。
// 例如设置摄像头的分辨率、帧率等参数。
// 拍照。
takePhoto();// 等待一段时间,确保照片被拍摄并保存。
delay(1000);// 读取照片数据。
// 这里需要编写从摄像头读取照片数据的代码。
// 例如通过I2C或SPI从摄像头读取图像数据。
// 对照片数据进行处理。
// 这里可以对照片数据进行各种处理,例如压缩、存储等。
return 0;}。
以上是一个简单的C程序,用于通过单片机控制摄像头拍照。
在实际的应用中,需要根据具体的单片机和摄像头型号,编写相应的初始化、控制和数据读取代码。
同时,还需要考虑到单片机和摄像头之间的通信接口和协议,例如I2C、SPI等。
51单片机烟雾报警器制作程序
51单片机烟雾报警器制作程序烟雾报警器是一种用于监测烟雾并发出警报的装置,可以在火灾等危险情况发生时提供早期警示。
在这篇文章中,我们将介绍如何使用51单片机制作一个简单的烟雾报警器,并给出相应的制作程序。
材料清单:-1个51单片机开发板-1个烟雾传感器模块-1个蜂鸣器-杜邦线若干-面包板-电池电源制作步骤:第1步:连接硬件元件将51单片机开发板与面包板连接,并依次将烟雾传感器模块和蜂鸣器连接到面包板上。
然后使用杜邦线将各元件连接至相应的接口。
第2步:编写程序```c#include <reg52.h> //包含51单片机寄存器定义的头文件sbit SmokeSensor = P1^0; //定义烟雾传感器接口sbit Buzzer = P1^1; //定义蜂鸣器接口void Delay(int n) //延时函数int i, j;for(i = 0; i < n; i++)for(j = 0; j < 100; j++);void mainSmokeSensor = 1; //设置烟雾传感器接口为输入模式Buzzer = 0; //设置蜂鸣器接口为输出模式while(1) //无限循环if(SmokeSensor == 0) //检测到烟雾Buzzer = 1; //触发蜂鸣器Delay(1000); //延时1秒Buzzer = 0; //关闭蜂鸣器}elseBuzzer = 0; //无烟雾时关闭蜂鸣器}}```第3步:测试与调试将制作好的烟雾报警器接通电源,并观察烟雾传感器的灯是否发亮。
如果传感器灯亮,表示传感器已经开始工作。
接着,将一些烟雾靠近传感器,并观察蜂鸣器是否发出警报声音。
如果蜂鸣器响起,表示烟雾报警器正常运行。
总结:通过以上步骤,我们成功制作了一个简单的51单片机烟雾报警器。
当烟雾传感器检测到烟雾超过预设值时,蜂鸣器会触发警报声音。
这个简易的报警器可以在家庭、办公场所等地方起到烟雾报警的作用,提供了一种相对低成本、高效率的烟雾监测方案。
51单片机简单程序实例
51单片机简单程序实例
51单片机是一种常用的微控制器,下面我将给出一个简单的LED闪烁程序作为示例。
c.
#include <reg51.h>。
void delay() {。
int i, j;
for (i = 0; i < 500; i++)。
for (j = 0; j < 500; j++);
}。
void main() {。
while (1) {。
P1 = 0x00; // 关闭LED.
delay();
P1 = 0xFF; // 打开LED.
delay();
}。
}。
这是一个使用C语言编写的简单的51单片机程序。
程序的功能是让单片机控制开发板上的一个LED灯以一定的频率闪烁。
程序的主要部分是一个无限循环(`while(1)`),在循环中LED先被关闭然后延时一段时间,再被打开然后再延时一段时间,如此循环。
在这个示例中,我们使用了`P1`端口来控制LED的开关,
`0x00`表示关闭LED,`0xFF`表示打开LED。
`delay`函数用来产生时间延迟,以控制LED闪烁的频率。
这只是一个非常简单的示例,51单片机的功能远不止于此。
它可以用来控制各种外围设备,比如数码管、液晶显示屏、电机等,也可以用来实现各种功能,比如定时器、计数器、通信接口等。
希望这个简单的示例能够帮助你初步了解51单片机的编程。
13个简单的单片机程序
/************************************************************************ * LED闪烁的简单试验 * * * 连接方法: JP11(P2)和JP1用8PIN排线连接起 来 * * * ************************************************************************ #include <reg51.h> //此文件中定义了51的一些特殊功能寄存器
TH0=(65536-3000)/256; TL0=(65536-3000)%256; TR0=1; ET0=1; EA=1; cntb=0; while(1) {; } } //开启定时0 //开启中断
/************************************************* * * 定时中断 ********************************************************/ void t0(void) interrupt 1 using 0 { TH0=(65536-3000)/256; //定时器高位装载数据 TL0=(65536-3000)%256; //定时器低位装载数据 if(cntb<18) //红色 { P1=0xFF; P2=tab[cnta]; P0=digittab[cntb][cnta]; }
void delay(unsigned int i); //声明延时函数 main() { P2 = 0x00; //置P0口为低电平 delay(600); // 延时 P2 = 0xff; //置P0口为高电平 delay(600); // 延时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
********* LED闪烁的简单试验*** 连接方法: JP11(P2)和JP1用8PIN排线连接起来********************************************************************************** ********/#include <reg51.h> //此文件中定义了51的一些特殊功能寄存器void delay(unsigned int i); //声明延时函数main(){P2 = 0x00; //置P0口为低电平delay(600); // 延时P2 = 0xff; //置P0口为高电平delay(600); // 延时}/*******延时函数*************/void delay(unsigned int i){unsigned char j;for(i; i > 0; i--)for(j = 255; j > 0; j--);}********* LED闪烁的简单试验** 延时实现p2口LED流水灯效果(用循环移位指令)** 连接方法: JP11(P2)和JP1(LED灯) 用8PIN排线连接起来********************************************************************************** ********/#include <reg51.h> //此文件中定义了51的一些特殊功能寄存器#include <intrins.h>void delayms(unsigned char ms)// 延时子程序{unsigned char i;while(ms--){for(i = 0; i < 120; i++);}}main(){unsigned char LED;LED = 0xfe; //0xfe = 1111 1110while(1){P2 = LED;delayms(250);LED = LED << 1; //循环右移1位,点亮下一个LED "<<"为左移位if(LED == 0x00 ) {LED = 0xfe; } // 0xfe = 1111 1110}}************** LED点阵实验(流动显示1 2 3 4 5 6 7 8 9)** 说明通过P0 和 P2 作为点阵接口**要求学员掌握 LED点阵的工作原理和各点阵脚的定义及接法,具体接线请参考接线说明 **我们采用的LED点阵式是低功耗,在做实验时可以用单片机脚直接驱动******************************************************************************** ***********/#include<reg51.h>unsigned char code tab[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};unsigned char code digittab[18][8]={{0x00,0x00,0x3e,0x41,0x41,0x41,0x3e,0x00}, //0{0x00,0x00,0x00,0x00,0x21,0x7f,0x01,0x00}, //1{0x00,0x00,0x27,0x45,0x45,0x45,0x39,0x00}, //2{0x00,0x00,0x22,0x49,0x49,0x49,0x36,0x00}, //3{0x00,0x00,0x0c,0x14,0x24,0x7f,0x04,0x00}, //4{0x00,0x00,0x72,0x51,0x51,0x51,0x4e,0x00}, //5{0x00,0x00,0x3e,0x49,0x49,0x49,0x26,0x00}, //6{0x00,0x00,0x40,0x40,0x40,0x4f,0x70,0x00}, //7{0x00,0x00,0x36,0x49,0x49,0x49,0x36,0x00}, //8{0x00,0x00,0x32,0x49,0x49,0x49,0x3e,0x00}, //9{0x00,0x00,0x7F,0x48,0x48,0x30,0x00,0x00}, //P{0x00,0x00,0x7F,0x48,0x4C,0x73,0x00,0x00}, //R {0x00,0x00,0x7F,0x49,0x49,0x49,0x00,0x00}, //E {0x00,0x00,0x3E,0x41,0x41,0x62,0x00,0x00}, //C {0x00,0x00,0x7F,0x08,0x08,0x7F,0x00,0x00}, //H {0x00,0x00,0x00,0xFF,0xFF,0x00,0x00,0x00}, //I {0x00,0x7F,0x10,0x08,0x04,0x7F,0x00,0x00}, //N {0x7C,0x48,0x48,0xFF,0x48,0x48,0x7C,0x00} //中};unsigned int timecount;unsigned char cnta;unsigned char cntb;void main(void){TMOD=0x01;TH0=(65536-3000)/256;TL0=(65536-3000)%256;TR0=1; //开启定时0ET0=1;EA=1; //开启中断cntb=0;while(1){ ;}/*************************************************** 定时中断********************************************************/ void t0(void) interrupt 1 using 0{TH0=(65536-3000)/256; //定时器高位装载数据TL0=(65536-3000)%256; //定时器低位装载数据if(cntb<18) //红色{P1=0xFF;P2=tab[cnta];P0=digittab[cntb][cnta];}else //绿色{P2=0xFF;P1=tab[cnta];P0=digittab[cntb-18][cnta];}if(++cnta>=8) cnta=0;if(++timecount>=333){timecount=0;if(++cntb>=36)cntb=0;}}/******************************************************************//* 按键状态显示试验 */* */* 连接方法:连接JP10(P0)与JP5(按钮接口) */* JP11 (P2)与JP1(LED接口) **/*按键则点亮LED灯,8路指示灯接p0口 * /******************************************************************/#include <reg51.h>#include <intrins.h>sbit BEEP = P1^5;sbit RELAY = P1^4;sbit K1 = P0^0; sbit K2 = P0^1;sbit K3 = P0^2; sbit K4 = P0^3;sbit K5 = P0^4; sbit K6 = P0^5;void beep();/*********************************************************/main(){while(1){P2 = 0xff;if(K1==0)P2 = 0xfe;if(K2 == 0)P2 = 0xfd;if(!K3)P2 = 0xfb;if(!K4)P2 = 0xf7;if (!K5 )beep(); //喇叭发声RELAY = 1;if (!K6 )RELAY = 0; //通过了反相器}}/**********************************************************/ void beep(){unsigned char i , j;for (i=0;i<100;i++){BEEP=!BEEP; //BEEP取反for (j = 0 ; j<250 ; j++) //需要产生方波_nop_();}BEEP=1; //关闭蜂鸣器}/****************************************************************************** ** 按键控制程序** 连接方法:JP10(P2)与 JP1 (LED灯)连接,** JP11(P0)与 JP5(按键接口)连接 * * 开始点亮P1LED** 按P01 LED向右移一位** 按P00 LED向左移一位** 连续按动按钮LED会不停的左移或右移******************************************************************************** /#include <reg51.h>#include <intrins.h>unsigned char scan_key();void proc_key(unsigned char key_v);void delayms(unsigned char ms);sbit K1 = P0^0; //对应按钮K1sbit K2 = P0^1; //对应按钮K2main(){unsigned char key_s,key_v;key_v = 0x03;P2 = 0xfe;while(1){key_s = scan_key();if(key_s != key_v){delayms(10);key_s = scan_key();if(key_s != key_v){key_v = key_s;proc_key(key_v);}}}}unsigned char scan_key(){unsigned char key_s;key_s = 0x00;key_s |= K2;key_s <<= 1;key_s |= K1;return key_s;}void proc_key(unsigned char key_v){if((key_v & 0x01) == 0){P2 = _cror_(P2,1);}else if((key_v & 0x02) == 0){P2 = _crol_(P2, 1);}}void delayms(unsigned char ms) // 延时子程序{unsigned char i;while(ms--){for(i = 0; i < 120; i++);}}/********************************************************************************; 二进制加法试验*; p2口八个灯作二进制加法。