多路温度采集系统

合集下载

一种多路温度无线采集系统的设计

一种多路温度无线采集系统的设计

一种多路温度无线采集系统的设计作者:杨杰来源:《数字技术与应用》2010年第05期摘要:设计了一个基于DF无线传输模块和温度传感器DS18B20的多路温度无线采集系统。

整个系统是以AT89S51单片机为核心来进行终端节点温度数据采集,并对无线通信模块与上位机之间的数据通信进行控制,实现了无线多路温度数据采集的功能。

关键词:无线单片机温度采集通信协议中图分类号: 文献标识码:A文章编号:1007-9416(2010)05-0000-001引言随着现代电子技术的发展,数字式温度传感器出现了,这使温度测量技术发生了根本性的变化,从模拟测量方法发展到了数字式测量方法。

数字式温度测量方法无论在测温精度还是实时性方面都有了很大的提高。

随着网络及通信技术的飞速发展,短距离无线通信以其特有的抗干扰能力强、可靠性高、安全性好、受地理条件限制少、安装施工简便灵活等特点,在许多领域都有着广泛的应用前景。

传统的多路温度采集系统通信方式,主要是采用固定的点对点之间的有线通信,采用RS一485总线或CAN总线需要把各设备利用网线连接起来,施工麻烦而且费用高。

如果能在每个采集数据的终端使用无线的方式进行数据传送,可以完全去掉通信设备之间的物理线路连接,不仅简化了施工难度和系统复杂度,还可以大大地降低成本。

本系统正是基于短距离无线通信技术而开发的,适合低成本的短距离无线温度采集场合,具有广阔的应用前景。

2系统方案总体方案本系统包括一个上位机和N个下位机。

上位机主要负责温度N路温度数据的汇总处理,下位机也就是温度采集端,主要负责温度的采集,上位机与下位机之间通过无线的方式进行数据传输,下位机之间不能直接通信。

因为N路下位机完全一样,所以只制作了2个下位机来做测试。

系统总体方案如图1所示。

本系统采用单片机作为主控制器,温度传感器采用数字式温度传感器DS18B20,显示采用低功耗的LCD液晶1602。

本系统的无线模块没有采用现成的无线收发芯片,而采用了低成本的DF无线收发模块。

远程多路温度采集系统设计精选全文

远程多路温度采集系统设计精选全文
可编辑修改精选全文完整版
毕业设计任务书
题 目
远程多路温度采集系统设计
学生姓名
学号
班级
专业
电子信息工程
承担指导任务单位
导师
姓名
导师
职称
一、主要内容
系统以STC89C53单片机作为主控芯片,主要包括:温度采集模块、中央处理模块、温度显示模块和无线传输模块。系统将当前多路温度值通过无线发送到接收端显示,实时远程监测工作环境温度。
5. 论文正文不少于1.5万字,查阅文献资料不少于15篇,其中外文文献2篇以上,翻译与课题有关的外文资料不少于3000汉字。
四、应收集的资料及参考文献
C语言开发
关于STC89系列相关单片机开发文档。
相关传感和显示器件使用手册和接口电路
电机驱动模块。
五、进度计划
第1周——第2周 调研、收集材料,完成开题报告;
二、基本要求
1.系统硬件电路的设计,能实现温度巡回检测,并将温度通过无线传送到接收端;
2.单片机的程序设计,画出程序流程图,源代码编写;
3.提出系统设计框图,提出相应的解决方案。
三、主要技术指标(或研究方法)
1. 电压直流5V,工作电流小于500mA。
2、完成主要功能
3. 电路原理图
4. 使用说明书撰写
第3周----第4周 分析、确定周---第15周 撰写论文;
第16周完善论文,答辩。
教研室主任签字
时 间
年 月 日

基于DSP控制的多路温度采集系统设计

基于DSP控制的多路温度采集系统设计

配置寄存器 其中配置寄存器的格式如下:
出场设置默认R0、R1为11。也就是12位分辨 率,也就是1位代表0.0625摄氏度
(Ⅱ)数字式温度传感器DSl8B20测温原理
初态时,计数器1和温度寄存器被顶置 在与一55℃相对应的一个基值上。计数器 1对低温度系数晶振产生的脉冲信号进行 减法计数,在计数器2控制的闸门时间到 达之前,如果计数器1的预置值减到0,则 温度寄存器的值将作加1运算,与此同时, 用于补偿和修正测温过程中非线性的斜率 累加器将输出一个与温度变化相对应的计 数值,作为计数器1的新预置值,计数器1 重新开始对低温度系数晶振产生的脉冲信 号进行计数,如此循环,直到计数器2控 制的闸门时间到达,即计数到0时,停止 温度寄存器值的累加,此时温度寄存中的 数值即为所测温度。原理图如图4所示 图4.DS18B20测温原理图
DS18B20的外形和内部结构
图2.DS18B20外形
图3.DS18B20内部结构

DS18B20 内部结构 DS18B20 内部结构主要由四部分组成: 64 位光刻 ROM 、温度 传感器、非挥发的温度报警触发器 TH 和 TL 、配置寄存器。 光刻 ROM 中的 64 位序列号是出厂前被光刻好的,它可以看作 是该 DS18B20 的地址序列码。 64 位光刻 ROM 的排列是:开始 8 位(地址 : 28H ) 是 产 品 类 型 标 号 , 接 着 的 48 位 是 该 DS18B20 自身的序列号,并且每个 DS18B20 的序列号都不相同, 因此它可以看作是该 DS18B20 的地址序列码;最后 8 位则是前 面 56 位的循环冗余校验码( CRC=X8+X5+X4+1 )。由于每一个 DS18B20 的 ROM 数据都各不相同,因此微控制器就可以通过单 总线对多个 DS18B20 进行寻址,从而实现一根总线上挂接多个 DS18B20 的目的。

多路温度检测系统的设计与研究

多路温度检测系统的设计与研究

1 绪论温度是一个很重要的物理参数,自然界中任何物理、化学过程都紧密地与温度相联系。

在工业生产过程中,温度检测和控制都直接和安全生产、产品质最、生产效率、节约能源等重大技术经济指标相联系,因此在国民经济的各个领域中都受到普遍重视。

温度检测类仪表作为温度计量工具,也因此得到广泛应用。

随着科学技术的发展,这类仪表的发展也日新月异。

特别是随着计算机技术的迅猛发展,以单片机为主的嵌入式系统已广泛应用于工业控制领域,形成了智能化的测量控制仪器,从而引起了仪器仪表结构的根本性变革。

1.1 温度检测类仪表的现状传统的机械式温度检测仪表在工矿企业中己经有上百年的历史了。

一般均具有指示温度的功能,由于测温原理的不同,不同的仪表在报警、记录、控制变送、远传等方面的性能差别很大。

例如热电阻温度计,它的测温范围是-200℃~650℃,测量准确,可用于低温或温差测量,能够指示报警、远传、控制变送,但维护工作量大并且不能记录;光学温度计测温范围是300℃~3200℃,携带使用方便,价格便宜,但是它只能目测,也就是说必须熟练才能测准,而且不能报警、远传、控制变送。

近年来由于微电子学的进步以及计算机应用的日益广泛,智能化测量控制仪表己经取得了巨大的进展。

我国的单片机开发应用始于80 年代。

在这20 年中单片机应用向纵深发展,技术日趋成熟。

智能仪表在测量过程自动化,测量结果的数据处理以及功能的多样化方面。

都取得了巨大的进展。

目前在研制高精度、高性能、多功能的测量控制仪表时,几乎没有不考虑采用单片机使之成为智能仪表的。

从技术背景来说,硬件集成电路的不断发展和创新也是一个重要因素。

各种集成电路芯片都在朝超大规模、全CMOS 化的方向发展,从而使用户具有了更大选择范围。

这类仪器能够解决许多传统仪器不能或不易解决的问题,同时还能简化仪表电路,提高仪表的可靠性,降低仪表的成本以及加快新产品的开发速度。

智能化控制仪表的整个工作过程都是在软件程序的控制下自动完成的。

关于基于MAX6675多路温度采集系统的设计与实现

关于基于MAX6675多路温度采集系统的设计与实现

关于基于MAX6675多路温度采集系统的设计与实现K型热电偶是当前工业生产、科学实验较为常用的一种温度传感器,它可以直接测量各种生产中0~1 300℃范围内的液体蒸汽,气体介质和固体表面温度。

由于它的测量范围及其较高的性价比,使得K型热电偶应用广泛。

然而K型热电偶存在非线性、冷补偿等问题,特别是在处理补偿问题时,需要付出较高的代价且难以有较好的成效。

所以本文介绍的MAX6675温度采集芯片,弥补了K型热电偶上述缺陷。

将MAX6675和K 型热电偶结合并用于工业生产和实验,能为工程带来诸多便利且减少繁琐的附加电路。

本文给出了基于CPLD的多路温度采集系统电路、内部逻辑设计模块、误差分析和实验统计报告,以及MAX6675多路温度采集系统的应用过程和性能报告。

1 MAX6675介绍MAX6675是美国Maxim公司生产的带有冷端补偿、线性校正、热电偶断线检测的串行K型热电偶模数转换器,它的温度分辨能力为0.25 ℃;冷端补偿范围为-20~+80℃;工作电压为3.0~5.5 V。

根据热电偶测温原理,热电偶的输出热电势不仅与测量端的温度有关,而且与冷端的温度有关。

在以往的应用中,有多种冷端补偿方法,如冷端冰点法或电桥补偿法等,但调试较复杂。

另外,由于热电偶的非线性,以往是采用微处理器表格法或线性电路等方法,来减小热电偶本身非线性带来的测量误差,但这些增加了程序编制及调试电路的难度。

而MAX6675对其内部元器件的参数进行了激光修正,从而对热电偶的非线性进行了内部修正。

同时,MAX6675内部集成的冷端补偿电路、非线性校正电路、断线检测电路都给K 型热电偶的使用带来了便利。

MAX6675的特点有:(1)内部集成有冷端补偿电路;(2)带有简单的3位串行接口;(3)可将温度信号转换成12位数字量,温度分辨率达0.25℃;(4)内含热电偶断线检测电路。

其内部原理图如图1所示。

2 系统构架系统框架如图2所示,该系统以CPLD为核心,由多路K型热电偶和MAX6675将外界温度模拟信号采集并转换成数字信号,并将数据传入CPLD进行相应的处理,然后通过通信模块将数据传送给计算机,最后用计算机做数据统计及处理。

基于单片机的多路温度采集系统(pdf最终版)

基于单片机的多路温度采集系统(pdf最终版)

I
Abstract
This paper introduces the basic process of multi-channel temperature acquisition and control system based on 51 single chip microcomputer. This design uses microcontroller and Keil programming software programming and PROTEUS microcontroller simulation software and electronic electrical engineering and other aspects of knowledge, with Keil programming software programming, with PROTEUS microcontroller simulation software simulation. Finally, the physical production, will be downloaded to the MCU, using keil software programming and Proteus Software to simulate, analysis, debugging, design provides a convenient and fast way, greatly reduce the design time. The main function is using I / O port acquisition data from multi-channel temperature and according to the set temperature of the upper and lower limits through drive buzzer alarm, can use the buttons to switch the temperature display and time display, also can in the use process through the button to set the temperature and degree of upper and lower limit of the time, so as to achieve multi-point temperature acquisition and alarm purposes, and time display function. With the rapid development of modern information technology, temperature measurement and control system plays a more and more important role in industry, agriculture and people's daily life, it has a great influence on people's life, has very important significance to research and design so the temperature of the control system. SCM small size, light weight, strong anti-interference ability, environmental requirements is not high, low price, high reliability, flexibility, development is relatively easy. Because of the above advantages, in our country, SCM has been widely used in automatic control, automatic detection, intelligent instruments and meters, household appliances and other aspects. Key words: Single chip microcomputer; multi point temperature measurement; time display; proteus simulation

160路PT100采集温度系统

160路PT100采集温度系统

远程无线多路温度系统使用说明一、概述该系统利用中国移动GPRS无线网络,远程采集各种信号,将测量值采集到中央控制室。

由160路隔离温度采集仪、现场显示记录仪、GPRS模块组成。

二、主要技术指标:基本误差:0.2%FS,14位A/D转换器(最大18位A/D转换器,订货时注明)。

输入信号:RS485显示:双排四位LED数码管显示。

记录数据:共2400条。

记录天数=2400×记录间隔/(24×60),间隔30分钟记录30天。

报警输出:继电器触点输出,控制测量仪的电源供电。

通讯输出:GPRS电源:DC12V/4A功耗:160路温度仪功耗6W(12V/0.5A) 记录仪功耗2.5W环境温度:0~50℃相对湿度:≤85% 无凝露避免在带有腐蚀性和易燃易爆气体中使用尺寸:三、现场显示记录仪操作说明(一)面板说明:指示灯:J1-电源指示灯。

仪表工作是J1灯亮。

J2~J4备用。

OUT-温度采集指示灯,OUT灯亮时,馈电DC12V输出给采集仪使采集仪工作,采集仪工作约10秒后才开始读取采集仪的各路温度。

COM-通讯指示灯,收到命令后COM灯闪亮一下。

上排数码管-测量值下排数码管-通道号。

格式01.01,03.08分别表示第一组第1路,第三组第8号的温度。

(二)按键功能●—手动启动温度采集仪工作。

■—设定状态时,按一下该键返回上一次参数设置,长按则退出设置状态。

工作显示状态下作定检/巡检切换键,巡检状态下,按下此键后,则停在某一通道上定检, 按▲或▼键可改变定检通道,再按此键又进入自动巡检。

巡检时下排显示-X.XX。

En—参数设定键,在设定状态时,用于存贮参数的新设定值并进入下一个设定参数。

▲—设定值增加键,在设定状态时,用于增加数值。

▼—设定值增加键,在设定状态时,用于减少数值。

(三)上电自检按仪表的端子接线图连接好仪表的接线,正确无误后方可打开电源。

仪表自检后,如果显示―HH―表示没有采集到接信号或输入信号超量程或设置输入信号类型错误。

毕业设计(论文)基于51单片机的多路温度采集控制系统设计

毕业设计(论文)基于51单片机的多路温度采集控制系统设计

基于51单片机的多路温度采集控制系统设计言:随着现代信息技术的飞速发展,温度测量控制系统在工业、农业及人们的日常生活中扮演着一个越来越重要的角色,它对人们的生活具有很大的影响,所以温度采集控制系统的设计与研究有十分重要的意义。

本次设计的目的在于学习基于51单片机的多路温度采集控制系统设计的基本流程。

本设计采用单片机作为数据处理与控制单元,为了进行数据处理,单片机控制数字温度传感器,把温度信号通过单总线从数字温度传感器传递到单片机上。

单片机数据处理之后,发出控制信息改变报警和控制执行模块的状态,同时将当前温度信息发送到LED进行显示。

本系统可以实现多路温度信号采集与显示,可以使用按键来设置温度限定值,通过进行温度数据的运算处理,发出控制信号达到控制蜂鸣器和继电器的目的。

我所采用的控制芯片为AT89c51,此芯片功能较为强大,能够满足设计要求。

通过对电路的设计,对芯片的外围扩展,来达到对某一车间温度的控制和调节功能。

关键词:温度多路温度采集驱动电路正文:1、温度控制器电路设计本电路由89C51单片机温度传感器、模数转换器ADC0809、窜入并出移位寄存器74LS164、数码管、和LED显示电路等组成。

由热敏电阻温度传感器测量环境温度,将其电压值送入ADC0809的IN0通道进行模数转换,转换所得的数字量由数据端D7-D0输出到89C51的P0口,经软件处理后将测量的温度值经单片机的RXD端窜行输出到74LS164,经74LS164 窜并转换后,输出到数码管的7个显示段,用数字形式显示出当前的温度值。

89C51的P2.0、P2.1、P2.2分别接入ADC0809通道地址选择端A、B、C,因此ADC0809的IN0通道的地址为F0FFH。

输出驱动控制信号由p1.0输出,4个LED为状态指示,其中,LED1为输出驱动指示,LED2为温度正常指示,LED3为高于上限温度指示,LED4为低于下限温度指示。

当温度高于上限温度值时,有p1.0输出驱动信号,驱动外设电路工作,同时LED1亮、LED2灭、LED3亮、LED4灭。

基于单片机的多路温度采集控制系统的设计

基于单片机的多路温度采集控制系统的设计

基于单片机的多路温度采集控制系统的设计一、系统设计思路1、系统架构:本系统的所有模块分为两个主要的部分:单片机部分和PC部分。

单片机部分是整个温度控制系统的中心模组,它负责多路温度传感器的信号采集、温度计算和显示,还有一些辅助操作,如温度上下限报警等;PC部分主要实现数据采集、分析、处理、显示等功能,与单片机的交互可通过RS485、USB等接口进行。

2、硬件设计:本系统设计确定采用AT89C52单片机作为系统的处理核心,在系统中应用TLC1543数据采集芯片,采用ADC转换器将多个温度传感器的数据采集,使系统实现多路温度检测同时显示.另外,为了实现数据采集记录,系统可以选用32K字节外部存储封装。

二、系统总控程序设计系统总计程序采用C语言进行编写,根据实际情况,主要分为以下几个主要的模块:(1)初始化模块:初始化包括外设初始化、中断处理程序初始化、定时器初始化、变量初始化等功能。

(2)温度采集模块:主要对多路温度传感器的采集、计算并存储等操作,还可以实现温度的报警功能。

(3)录波模块:提供数据的实时采集、数据的存取、数据的滤波处理等功能。

(4)通信模块:主要是用于实现数据透传,采用RS485接口与PC端的上位机联网,可实现远程调试、远程控制等功能。

(5)用户界面模块:实现数据显示功能,可以根据用户的要求显示多路温度传感器检测到的数据。

三、实验检验(1)检查系统硬件的安装是否良好;(2)采用实测温度值与系统运行的实测温度值进行比对;(3)做出多路温度信号的对比,以确定系统读取的数据是否准确;(4)检查温度报警功能是否可以正常使用,也可以调整报警范围,试验报警功能是否可靠;(5)进行通信数据采集的联网检测,确保上位机和系统可以进行实时、准确的通信。

多路温度采集系统编程设计课程设计报告

多路温度采集系统编程设计课程设计报告

中南大学微机应用系统设计与综合实验设计报告设计题目多路温度采集系统编程设计指导老师设计者学号专业班级设计日期目录第一章微机应用系统课程设计的目的意义1.1 设计目的1.2 课程在教学计划中的地位和作用第二章温度采集系统软硬件设计任务2.1 设计内容及要求2.2 实验设备2.3 课程设计的内容及要求第三章总体设计方案3.1 设计思想3.2 总体设计流程图第四章硬件设计4.1 硬件设计概要4.2硬件设计接线图4.3 所用到的芯片及其各自功能说明4.3.1 芯片列表4.3.2 8086的功能简介4.3.3 8254的功能简介4.3.4 AD0809的功能简介第五章实验结果5.1 汇编程序结果5.2 C语言程序结果第六章源程序代码6.1 汇编程序代码6.2 C语言程序代码第七章系统的调试与使用第八章收获、体会参考文献第一章微机应用系统课程设计的目的意义1.1设计目的《微机原理与接口技术》是一门实践性和实用性都很强的课程,学习的目的在于应用。

本课程设计是配合课堂教学的一个重要的实践教学环节,它能起到巩固课堂和书本上的知识,加强综合能力,提高系统设计水平,启发创新思想的效果。

通过本课程设计希望达到以下目地:培养资料搜集和汇总的能力。

培养总体设计和方案论证的意识。

提高硬件,软件设计与开发的综合能力。

提高软件和硬件联合调试的能力。

熟练掌握相关测量仪器的使用方法。

掌握相关开发软件,仿真软件的使用方法。

1.2课程在教学计划中的地位和作用现在计算机科学在应用上得到飞速发展,因此,学习这方面的知识必须紧跟实际连接。

掌握这方面的知识更重要强调解决实际问题的能力。

该课程设计给我们提供了一个很好的机会,它要求我们结合课堂上和书本中学到的知识去独立设计一个硬件系统,它是我们迈向实践和应用的桥梁,我们学习书本上的知识是一个不断积累的过程,而该课程设计却使得我们能够尽情发挥他们,让我们更了解计算机的结构,工作原理以及软硬件的结合使用,虽然课程设计的时间比较短,但它却在整个教学计划中占据了及其重要的位置。

多路温度采集系统设计

多路温度采集系统设计

目录1综述 (1)2数字式多路温度采集系统硬件电路设计 (2)2.1温度采集电路设计 (2)2.1.1 DS18B20简介 (2)2.1.2温度采集电路结构 (5)2.2单片机控制电路设计 (6)2.2.1单片机芯片选择 (6)2.2.2 AT89C51单片机工作基本电路设计 (6)2.3输入控制电路设计 (7)2.4显示电路设计 (8)2.4.1 LED数码显示管静态显示工作原理 (8)2.4.2显示电路结构 (9)2.4.3显示电路工作过程 (9)2.5报警控制电路设计 (9)2.5.1报警控制电路结构 (10)2.5.2报警控制电路工作过程 (10)2.6电源电路设计 (10)2.7数字式多路温度采集系统元件清单 (11)2.8数字式多路温度采集系统电路图 (11)3数字式多路温度采集系统程序设计 (12)3.1主程序设计 (12)3.2子程序设计 (12)3.2.1 DS18B20的通信协议 (12)3.2.2子程序 (13)3.3数字式多路温度采集系统控制源程序 (16)4系统调试及性能分析 (17)4.1系统调试 (17)4.2系统性能分析 (17)5结束语 (18)参考文献 (19)致谢 (20)附录 (21)附录(1)数字式多路温度采集系统元件清单 (21)附录(2)数字式多路温度采集系统原理图 (22)附录(3)数字式多路温度采集系统印刷电路板图 (23)附录(4)数字式多路温度采集系统控制源程序 (24)摘要数字式多路温度采集系统由主控制器、温度采集电路、温度显示电路、报警控制电路及键盘输入控制电路组成。

它利用单片机AT89C51做控制及数据处理器、智能温度传感器DS18B20做温度检测器、LED数码显示管做温度显示输出设备。

硬件电路比较简单,成本较低,测温范围大,测量精度高,读数显示直观,使用方便。

关键词:数字;温度;传感器;单片机;控制Abstractthe digital multi-channel temperature gathering system by the master control regulator, the temperature gathering electric circuit, the temperature display circuit, reports to the police the control circuit and the keyboard entry control circuit is composed .It makes the control and the data processor, intelligent temperature sensor DS18B20 using monolithic integrated circuitAT89C51 makes the temperature detector, the LED numerical code display tube makes the temperature demonstration output unit. The hardware electric circuit quite is simple, the cost is low, the temperature measurement scope is big, and the measuring accuracy is high, reading demonstration is direct-viewing, easy to operate.Key words: numeral; temperature; sensor; monolithic integrated circuit; control1综述温度是一种最基本的环境参数,人们的生活与环境温度息息相关,因此研究温度的测量方法和装置具有重要的意义。

基于CPLD的多路温度数据采集系统的设计

基于CPLD的多路温度数据采集系统的设计
图 2 信 号 调 理 模 块 电 路 图
收 稿 日期 :0 1 4 8 2 1 ~0 —2 作者简 介 : 肖俊 明 (9 9 ) 男 , 南 卫 辉 人 , 教 授 15~ , 河 副
中原 工 学 院学 报
21 0 1年
第 2 卷 2
集 成 温度传 感 器实 质上 是 一 种 半 导 体集 成 电路 , 它是
化为 数 字信 号再 进行 相 应 的处 理 , 仅 可 以提 高 系 统 不 性 能 , 可 以充分 利用 现代 信 号 的各种 处理 算法 , 高 还 提
系统 的灵 活性 和 可靠 性_ . 1 ] CL P D不 仅在 速度 上能 满足 高 速数 字 信 号处 理 的 要 求 , 且可 编程 资 源也 大大 增加 , 有在 线可 编程 功 而 具 能 , 而 提高 了系统 的灵 活性 和适 应性 . 从 在开 发周 期较 短或 对 系统灵 活 性 要 求 较 高 的 场 所 , P D 能 够 提 供 C L 比专 用 高速数 字 信号 处理 器件 更 高 的系统 速度 和更好 的解 决方 案 . 文提 出 了一 种 基 于 C L 的多 路 温 ]本 PD 度 数 据采 集 系统 的设 计方 案 .
第 2 2卷 第 3 期 21 0 1年 6月
中原 工 学 院 学 报
J OURNAL OF Z ONGYUAN H UNI RSTY VE I OF TECHNOL OGY
V0 . 2 No 3 12 .
J n ,0 1 u . 2 1
文 章 编 号 : 6 1 6 0 ( 0 1 0 —0 5 ~0 17 — 9 6 2 1 )3 0 9 4
气 温转 换 为 模 拟 电压 量 , 后 经 过 L 2 然 M3 4将 信 号 放

RS232多路数据采集系统资源简介

RS232多路数据采集系统资源简介

RS232多路数据采集系统资源简介
一、硬件资源示意图。

清海电子制作
清海电子制作
二、硬件系统资源简介。

1、两路AD采集,串行ADC0832器件,8位精度,步进电压约等于0。

02V,采集的电压通
过RS232上传到上位机显示,其中一路电压显示为电流格式(采样电阻为1欧姆,U=IR)。

2、温度采集,18B20采集温度数据上传到上位机显示。

3、24C02铁电数据存储器,可通过上位机向X地址写入Y数据,可读取X地址的数据进行
显示。

4、三只LED灯,可通过上位机直接控制LED的亮与灭,并可以通过定时输出功能设置定时
输出控制LED闪烁,最小设定时间为1秒。

5、两路继电器控制,可通过上位机直接控制每路继电器的通与断,并可以通过定时输出功能
使继电器在设定时间间隔内不停开关切换。

6、MC34063升压备用电源,电路实现将系统供电的5V电源升压至12V,以供电给扩展的其
它电路使用,但负载的电流限制在100MA以下,超载将损坏升压L线圈。

7、MAX232串口,此部分电路负责本系统的数据传输。

三、 软件系统资源简介。

1、IO控制界面,可通过上位机按钮直接控制单片机IO所连接的设备,如下图所示:
按钮“Time“可进入以下界面,可通过设定使LED或继电器以设定的时间间隔进行高低电平交替控制。

2、24C02数据读写界面,可通过软件对24C02的某地址进行数据的写入和读出显示,如下图:
3、电压和温度数据采集,可以显示单片机采集的电压和温度数据,如下图所示:。

多路温度监控系统方案

多路温度监控系统方案

多路温度监控系统方案一、总体设计多路温度监控系统以ATmega16单片机为核心,4个DS18B20作为温度传感器,LCD1602作为液晶显示单元。

温度传感器DS18B20在单片机的控制下不间断地采集温度信息,LCD1602在单片机的控制下将温度信息显示出来。

二、方案认证1.单片机论证51单片机是应用最广泛的八位单片机,由于产品硬件结构合理,指令系统规范,加之生产历史“悠久”,有先入为主的优势。

51系列优点之一是它从内部的硬件到软件有一套完整的按位操作系统。

51系列的另一个优点是乘法和除法指令,这给编程也带来了便利。

51系列的I/O脚的设置和使用非常简单。

不过,原51系列也有许多值得改进之处,如运行速度过慢等。

A VR单片机是Atmel公司推出的较为新颖的单片机,其显著的特点为高性能、高速度、低功耗。

它取消机器周期,以时钟周期为指令周期,实行流水作业。

A VR单片机指令以字为单位,且大部分指令都为单周期指令。

而单周期既可执行本指令功能,同时完成下一条指令的读取。

通常时钟频率用4~8MHz,故最短指令执行时间为250~125ns。

该系列的型号较多,但可用下面三种为代表:AT90S2313(简装型)、AT90S8515、AT90S8535(带A/D转换)。

由于A VR单片机在速度、功耗、性价比上的优势,所以选择A VR 单片机。

2.电源模块论证方案一:线性直流稳压电源线性电源虽然简单,但在整个系统中有非常重要的作用。

电源的稳定性决定着整个系统的稳定性,所以要求电源输出稳定,纹波小。

本电源采用桥式全波整流,大电容滤波,三端稳压器件稳压的方法,产生各种直流电压。

方案二:开关电源。

开关电源结构比线性电源复杂,而且输出电压不如线性电源稳定,纹波大,但是开关电源输出功率大,一般在大功率场合下应用开关电源。

考虑系统稳定性,以及系统功耗较小,所以选用线性直流稳压电源。

3.温度传感器模块论证方案一:模拟温度传感器,模拟式温度传感器精度高,工作稳定,转换速度快,但是容易受到外界干扰,电路复杂,调试困难。

基于无线传输技术的多路温度数据采集系统设计

基于无线传输技术的多路温度数据采集系统设计

东北电力学院学报第25卷第1期 Journal Of Northeast China Vol.25,No.12005年2月Institute Of Electric Pow er EngineeringFeb.,2005收稿日期:200421025作者简介:杨占军(1979-),男,东北电力学院信息工程系在读硕士研究生.文章编号:1005-2992(2005)01-0072-04基于无线传输技术的多路温度数据采集系统设计杨占军,杨英杰(东北电力学院信息工程系,吉林吉林132012)摘 要:针对多点大范围变化温度数据采集的远距离传输误差问题,提出一种基于一线式多通道温度数据采集和温度数据无线传输的设计方案,重点阐述大测量范围变化的温度测量实现方法和无线数据传输模块化设计方法。

关 键 词:温度;数据采集;单片机;无线发送与接收中图分类号:TP 27 文献标识码:A在自动化控制系统中,用于监控的数据采集参数很多,温度数据采集是其中最常见的一种。

传统温度测量方法只适合于采集变化范围较小的情况,对于多点大范围变化的温度数据采集来说,采用传统温度采集方法,远距离传输会引起较大的误差。

为解决这个问题,本文提出一种基于无线传输技术的多路温度数据采集系统,通过无线发送接收模块将采集到的温度数据传输到指定位置进行存储、显示和打印。

同时,为适应工业温度检测系统对大范围变化温度数据采集的需要,通过对前端温度检测组件进行模块化设计,使采集的温度数据精确可达到0.0625℃,采值变化范围为-55℃~+125℃,完全可以满足一般温度测量的需要[1]。

1 系统构成本系统构成原理如图1所示。

系统主要由温度数据采集、存储及显示和无线发送与接收三部分构图1 无线温度采集系统原理框图成(图1)。

前端温度检测部分主要采用了DALLAS 公司生产的数字温度传感器DS18B20,数据发送与接收由无线发送接收模块PTR2000完成。

前端检测部分完成各路温度数据采集,经单片机多路控制,然后由测温装置对所采集的数据进行转换处理后,通过PTR2000将数据发送出去。

基于8086的多路温度测控系统---微机原理课程设计

基于8086的多路温度测控系统---微机原理课程设计

基于8086微处理器的温度测控系统设计摘要本文介绍了一种基于8086微处理器的温度测控系统,采用温度传感器AD590采集温度数据,用CPU控制温度值稳定在预设温度。

当温度低于预设温度值时系统启动电加热器,当这个温度高于预设温度值时断开电加热器。

第一章设计主要工作思路方案一:设计一种可控制的温度加热系统,实现温度的上升或下降。

其中,温度的传感和放大部分通过AD590温度传感器集成芯片和运算放大器来实现温度的上升或下降,通过给加热系统通断电来实现。

当需要加热时,8255的PC6输出高电平;当需要降温时,8255的PC6输出低电平,关闭加热系统,让加热器自然冷却而起到降温效果。

加热或降温的控制信号通过8255的PA0读取拨动开关的状态来实现。

系统流程图如图1-1所示:图 1-1分析和讨论:该方案达到了温度的上升或下降控制,但温度上升到多少或下降到多少都得由人来控制,为了让微机来自动控制,引入了方案二。

方案二:设计一种温度控制方法将温度控制在某一设定值。

其硬件与方案一差不多,只是它的加热控制信号是直接通过软件来控制,而不是通过PA0拨动开关来实现。

在该实验利用PC机键盘输入设定温度值。

当系统采集的温度值低于设定值时,开通加热系统,反之,当温度高于设定值时,关闭加热系统。

仍然利用8255的PC6口控制加热系统。

其流程图如图1-2所示:图 1-2分析和讨论:该系统实现了将温度控制到一设定值,并保持稳定,但温度值只能设定一次。

当在控制过程中,如果有时想将温度再调高点就办不到了,为此引入了第三方案。

方案三:设计一种温度控制方法将温度控制到某一设定值,并保持稳定。

同时还可以根据实际需要重新设置温度并进行重新控制调节,使温度达到一新的设定值,并保持稳定。

这里的重新设置和控制可以进行无限多次,当然这个设置值得在某一最大值范围之内,这里把最大值设为76℃。

当设置温度大于76℃时,系统就会报错并退出系统。

其流程图见第五章图 5-1。

基于单片机的无线多路数据(温度)采集系统的设计与实现(毕业论文) 2

基于单片机的无线多路数据(温度)采集系统的设计与实现(毕业论文) 2

摘要由于数据采集系统的应用越来越广、其所涉及到的对信号的测量方式和涉及到的信号源的类型也将越来越多、因为对测量的要求也就越来越高,现在国内已有不少用于数据的测量与采集的系统,可很多系统存在着功能单一、采集速率比较低、操作非常复杂,并且对测试的环境要求较很高等问题。

人们急切需要一种应用范围广、价格低廉的数据采集系统。

在分析了各种类型单片机的特点及其与PC机的各类通信技术的基础后,本人设计了由单片机控制的温度采集系统,并且通过串口通信的方式实现了单片机与PC机间的通信,实现了数据传送并将数据在PC机上进行显示或存储,完成了此次设计。

基于单片机的多通道的温度数据采集系统是由将来自温度传感器的信号进行放大、滤波、采样保持等分步处理之后,输入到A/D转换器转换为数字信号后由单片机进行采集的,然后再利用单片机与PC机之间的通信将数据传送至PC 机进行数据的存储处理及显示等,实现了数据的采集与处理等,此设计可广泛应用于工控、仪器仪表、机电智能化及智能家居等诸多的应用领域。

联系扣扣:2825772782关键词:单片机;温度数据采集;多通道AbstractS ince the wide range of data acquisition system, which involves the measurement signal and the type of signal source more and more, Surveyors are increasingly high requirements of the domestic now have a lot of data acquisition and measurement system But there are many single function systems, collecting less access, low collection rate, complicated operations, and the demands of the test environment and other issues.It requires abroad scope of application, high reliability and low-cost data acquisition system.Based on the analysis of the characteristics of different types of SCM and SCM and PC communication technology, SCM control of the collection system designed and adopted MCU serial communication between PC and communications, Data transmission and display of data stored on the PC.Single completed the multi-channel data acquisition system design and implementation.Based on SCM′s multi-channel data acquisition system is adopted will come from the sensor signal amplification, linear filtering, After processing maintain synchronous sampling, which converted to digital signal input A/D conversion by SCM Acquisition, Then, SCM and PC to PC communications data to the data storage, post-processing and display. a powerful data processing, visual shows, friendly interface and high performance-price ratio, a wide range of features. can be widely used in industrial control equipment, instruments, and electrical engineering integration, intelligent home and many other fields.Key words Multi-channel Data Acquisition Microcontroller联系扣扣:2825772782目录摘要 (I)Abstract (II)第一章绪论 (IV)1.1 引言 (IV)1.2 方案论证 (V)1.2.1 传感器 (V)第二章硬件电路的设计...................................................................................................... V III2.1 电源电路 (VIII)2.2 温度采集电路 (IX)2.2.1 DS18B20简介 (IX)2.2.2 电路设计 (XI)2.2.3 无线传输电路模块 (XII)2.3 无线发送与接收电路 (XIII)2.3.1 无线发送电路 (XIII)2.3.2 无线接收模块 (XIV)2.4 显示电路 (XIV)2.4.1 字符型液晶显示模块 (XIV)2.4.2 字符型液晶显示模块引脚 (XV)2.4.3 字符型液晶显示模块内部结构 (XVI)2.5 单片机AT89S52 (XVI)2.5.1 AT89S52简介 (XVI)2.5.2 AT89S52引脚说明 (XVII)第三章软件设计................................................................................................................... X X3.1 系统概述 (XX)3.2 程序设计流程图 (XX)3.3 温度传感器多点数据采集 (XXI)第四章调试及结果........................................................................................................... X XIII4.1 测试环境及工具 (XXIII)4.2 测试方法 (XXIII)4.3 测试结果分析 (XXIII)结论..................................................................................................................................... X XIV 参考文献 (XXV)附录..................................................................................................................................... X XVI 附录1:电路原理总图.. (XXVI)附录2:发射部分主程序 (XXVII)附录3:接收部分主程序 (XXXIX)第一章绪论1.1 引言在21世纪的今天,科学技术的发展可谓日新月异,科学技术的进步不断带动着测量技术的飞速发展,现代控制设备早已不同于从前,它们在性能以及结构上都发生了翻天覆地的变化。

基于51单片机的多路温度采集控制系统设计

基于51单片机的多路温度采集控制系统设计

1 系 统 设 计
在温度采集 系统 中我们常常用到集成 型温度 传感器 ,集成型温度传感器 可以 达到较高 的精 度 ,在集成型温度传感器 的使用过程 中,由于采用 的单 总线传输方 式进行对远距 离的多点温度进行检测 ,所以在程序的控制上 比较 复杂。所以 ,在 温度测量系统 中,采 用抗干扰能力强 的新 型数 字温度传感器 ,新型数字 温度 传感 器D S 1 8 B 2 0 具有体积更 小、精度更 高 、适用 电压更宽、采用 一线总线、可组网等 优点 , 在 实际应用中取 得了 良好的测温效果。系统通过温度传感器获取温度信息 , 通过运算得到温度显示在 L E D显示屏上 , 并 与设 定值进行 比较 ,选择是否进行报 警响应 。系统 的设计框 图如下 图 1 所示 。
3 软件 设计
软件设 计是整个温度采集 系统 的关键 ,即简洁的硬件结构是靠 复杂的软件来 支持的。多个器件挂在一条 总线上为了识别不同的器件 ,在程序设 计过程中一般 有四个步骤 :初始化命令 ;传送 R O M命令 ;传送 R A M命令 ;数据交换命令 。由 于 已经在 上面获取 了多个 D S 1 8 B 2 0的 R O M 代码并 在 A T 8 9 S 5 2单片机 内部 的 E 2 P R O M 中建立 了测量位置点和传感器 6 4位 R O M 代码之间的关系表 。软件系统 框图如下图 2 所示。设计方法如下: ( 1 )采用模块程序设计 。 ( 2 )采用 自 顶 向下的程序设计 。 ( 3 )外部设备和外部事件尽量采用中断方式 与 C P U联络 , 这样既便于系统模块 化, 也可提高程序效率 。 ( 4 )近几年推出的单片机开发系统, 有些是支持高级语言的, 如C 5 1与 P L / M 9 6 的编程和在线跟踪调试。 ( 5 )系统的软件设 计应充分 考虑到软件抗干扰措施 。 系统经过初始化 ,进人 多通道显示 ,然后扫描键盘 ,判断是否有按键按下 , 然后进行按键所 控制的通道的温度采集 。所采集 的温 度与设定的温度相 比较 ,越 限可 以报警 。 由于 D S 1 8 B 2 0 需要初始化才能使用 ,因此 ,首先必须对系统进行初始化并 且 要关闭所有 中断 ,D S I 8 B 2 0 把转换到 的温度读 出,然后放到 累加器 A中,把之前 设置 的温度报警的上限值转换成 D S 1 8 B 2 0的输 出值 ,这样然后再与报警上 限的温 度值进行 比较 ,如果检测的结果是温度没有超限 ,那么系统继续进行检测 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小型多路温控采集系统设计一.系统说明本系统采用51单片机作为控制器,控制温度采集及显示。

温度传感器选用DS18B20,其单总线的通信方式可以减少系统的线路连接。

DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。

DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路。

内温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。

同时本系统选用LCD1602作为显示器件,能够同时显示16x02即32个字符(16列2行)。

其显示清晰,并可以显示阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,满足了系统要求。

二.系统电路图三、程序流程图四、程序解读注:程序分两部分。

可以先用程序二读出各个器件的序列号,再将序列号填入程序一的SN[4][8]数组中,若要加入更多的器件可以扩大数组,并在程序中增加读显的循环次数。

1.程序一:已知各个器件序列号读取温度#include<reg51.h>#define uchar unsigned char#define uint unsigned intuchar TMP[4]; //读取后的4个温度值uchar SN[4][8]={{0x28,0x44,0x30,0xc5,0xb8,0x00,0x00,0x12},{0x28,0x15,0x30,0xc5,0xb8,0x00,0x00,0x0b},{0x28,0x30,0xc5,0xb8,0x00,0x00,0x00,0x8e},{0x28,0x05,0x30,0xc5,0xb8,0x00,0x00,0x50}};//4个器件的序列号,先读出单个序列号后填上才可以读取温度uint f[4]; //结果是否为负温,“0”为正温,“1”为负温。

sbit DQ=P3^7;//ds18b20与单片机连接口sbit RS=P3^0;sbit RW=P3^1;sbit EN=P3^2;unsigned char code str0[]={"temperature:U "};unsigned char code str5[]={" "};uchar data disdata[5];uint tvalue;//温度值uchar tflag[4];//温度正负标志/*************************LCD1602程序*****************************************************************/void delay1ms(unsigned int ms)//延时1毫秒(不够精确的){unsigned int i,j;for(i=0;i<ms;i++)for(j=0;j<100;j++);}void wr_com(unsigned char com)//写指令//{ delay1ms(1);RS=0;RW=0;EN=0;delay1ms(1);EN=1;delay1ms(1);EN=0;}void wr_dat(unsigned char dat)//写数据// { delay1ms(1);;RS=1;RW=0;EN=0;P2=dat;delay1ms(1);EN=1;delay1ms(1);EN=0;}void lcd_init()//初始化设置//{delay1ms(15);wr_com(0x38);delay1ms(5);wr_com(0x08);delay1ms(5);wr_com(0x01);delay1ms(5);wr_com(0x06);delay1ms(5);wr_com(0x0c);delay1ms(5);}void display(unsigned char *p)//显示// {while(*p!='\0'){wr_dat(*p);p++;delay1ms(1);}}init_play()//初始化显示{ lcd_init();wr_com(0x80);display(str0);wr_com(0xc0);}/***********************************************************************************************************DS18B20程序***************************************/void delay_18B20(unsigned int i)//延时1微秒{while(i--);}void ds1820rst()/*ds1820复位*/{ unsigned char x=0;DQ = 1; //DQ复位delay_18B20(4); //延时DQ = 0; //DQ拉低delay_18B20(100); //精确延时大于480usDQ = 1; //拉高delay_18B20(40);}uchar ds1820rd()/*读数据*/{ unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){ DQ = 0; //给脉冲信号dat>>=1;DQ = 1; //给脉冲信号if(DQ)dat|=0x80;delay_18B20(10);}return(dat);}void ds1820wr(uchar wdata)/*写数据*/{unsigned char i=0;for (i=8; i>0; i--){ DQ = 0;DQ = wdata&0x01;delay_18B20(10);DQ = 1;wdata>>=1;}}/*******************发送ds1820 开始转换/**************************************************************************************/tmstart (void) //{ //ds1820rst(); //复位//delay1ms(1); //延时//ds1820wr (0xcc); //跳过序列号命令,对所有器件有效//ds1820wr (0x44); //发转换命令44H, //}/*****************************************************************************/ read_temp()/*读取温度值并转换*/{ //uchar i,j; //uchar a,b; //for(j=0;j<4;j++) //{ //ds1820rst(); //复位//delay1ms(1); //延时//ds1820wr(0x55); //发送ROM匹配命令//for(i=0;i<8;i++) //{ //ds1820wr(SN[j][i]); //发送64位序列号//} //ds1820wr(0xbe);//*读取温度*/a = ds1820rd (); //连续读取两位温度//b = ds1820rd (); //tvalue=b;tvalue<<=8;tvalue=tvalue|a;if(tvalue<0xf800)tflag[j]=0;else{tvalue=~tvalue+1;tflag[j]=1;}f[j]=tvalue*(0.625);//温度值扩大10倍,精确到1位小数}//return(f[4]);}/*******************************************************************/void ds1820disp()//温度值显示{ uchar flagdat,i;for(i=0;i<4;i++){ tvalue=f[i] ;disdata[0]=tvalue/1000+0x30;//百位数disdata[1]=tvalue%1000/100+0x30;//十位数disdata[2]=tvalue%100/10+0x30;//个位数disdata[3]=tvalue%10/1+0x30;//小数位if(tflag[i]==0)flagdat=0x20;//正温度不显示符号elseflagdat=0x2d;//负温度显示负号:-if(disdata[0]==0x30){disdata[0]=0x20;//如果百位为0,不显示if(disdata[1]==0x30){disdata[1]=0x20;//如果百位为0,十位为0也不显示}}if(i==0){wr_com(0x8d); //第一个传感器在LCD第一行第14字符显示“1”wr_dat('1');}if(i==1){wr_com(0x8d); //第二个传感器在LCD第一行第14字符显示“2”wr_dat('2');}if(i==2){wr_com(0x8d); //第三个传感器在LCD第一行第14字符显示“3”wr_dat('3');}if(i==3){wr_com(0x8d); //第四个传感器在LCD第一行第14字符显示“4”wr_dat('4');}wr_com(0xc0); //在LCD第二行第1个字符显示温度正负号wr_dat(flagdat); //显示符号位wr_com(0xc1); //在LCD第二行第2个字符显示百位温度值wr_dat(disdata[0]);//显示百位wr_com(0xc2); //在LCD第二行第3个字符显示十位温度值wr_dat(disdata[1]);//显示十位wr_com(0xc3); //在LCD第二行第4个字符显示个位温度值wr_dat(disdata[2]);//显示个位wr_com(0xc4); //在LCD第二行第5个字符显示小数点wr_dat(0x2e); //显示小数点wr_com(0xc5); //在LCD第二行第6个字符显示小数位温度值wr_dat(disdata[3]);//显示小数位delay1ms(1500);}}/********************主程序***********************************/void main(){ init_play();//初始化显示while(1){tmstart();//开始转换read_temp();//读取温度ds1820disp();//显示}}/2.程序二:读取DS18B20序列号程序注:读ROM时,只能有一个器件与单片机通信。

相关文档
最新文档