数学建模之统计回归模型

合集下载

第7章统计回归模型数学建模知识讲解

第7章统计回归模型数学建模知识讲解

0.55
9.26
模型求解 MATLAB 统计工具箱
y01 x 12 x 23 x 2 2由数据 y,x1,x2估计
[b,bint,r,rint,stats]=regress(y,x,alpha)
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22] ~n4数
据矩阵, 第1列为全1向量
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y 的 影响不太显著
x22项显著
可将x2保留在模型中
销售量预测 y ˆˆ0ˆ1 x 1ˆ2 x 2ˆ3 x 2 2
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1
本公司价 格(元)
3.85
其它厂家 价格(元)
3.80
广告费用 (百万元)
5.50
价格差 (元)
-0.05
销售量 (百万支)
76.75
0.25
8.51
29
3.80
3.85
5.80
0.05
7.93
30
3.70
4.25
6.80
第七章 统计回归模型
7.1 牙膏的销售量 7.2 软件开发人员的薪金 7.3 酶促反应 7.4 投资额与国民生产总值和
物价指数
数学建模的基本方法 机理分析 测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。 通过对数据的统计分析,找出与数据拟合最好的模型

统计建模-回归分析

统计建模-回归分析
多元线性回归模型构建 与解读
多元线性回归模型形式
多元线性回归模型0 + beta_1X_1 + beta_2X_2 + ldots +
beta_pX_p + epsilon$
解释变量与被解释变量
02
$X_1, X_2, ldots, X_p$ 为解释变量,$Y$ 为被解释变量
在所有无偏估计量中,OLS估计量的方差最 小
模型假设检验与诊断
模型的显著性检验
模型的诊断
使用F检验对模型的显著性进行检验, 判断模型中是否至少有一个解释变量 对被解释变量有显著影响
通过残差图、QQ图等方法对模型的 拟合效果进行诊断,检查模型是否满 足线性、同方差等假设
回归系数的显著性检验
使用t检验对每个回归系数的显著性进 行检验,判断每个解释变量是否对被 解释变量有显著影响
5. 预测与结果分析
利用拟合好的模型进行未来一个月的销售额预测,并对 预测结果进行分析和解读。
06
总结回顾与拓展延伸
本次课程重点内容总结
回归模型的基本原理
通过最小二乘法等优化算法,拟合自变 量和因变量之间的线性或非线性关系。
模型的评估与选择
通过比较不同模型的预测精度、解释 性、稳定性等指标,选择最优模型。
医学领域
研究药物剂量与疗效之间的非线性关系,为合理 用药提供依据。
金融领域
分析股票价格与市场指数之间的非线性关系,预 测市场走势及风险。
环境科学
探讨污染物浓度与环境因素之间的非线性关系, 为环境保护和治理提供决策支持。
04
回归模型诊断与优化策 略
残差分析及其意义
残差定义
实际观测值与回归模型预测值之间的差异。

统计回归模型数学建模演示文稿

统计回归模型数学建模演示文稿
销售额在 7.83203.7 29(百万元)以上
第七页,共42页。
模型改进
x1和x2对y 的影响独立 x1和x2对 y的影响 有交互作 用
第八页,共42页。
y 0 1x1 2 x2 3 x22
参数 参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
1
1.3070
[0.6829 1.9311 ]
[11139 11261]
a1
498
[494 503]
a2
7041
[6962 7120]
a3
-1737
[-1818 -1656]
a4
-356
[-431 –281]
a5
-3056
[-3171 –2942]
a6
1997
[1894 2100]
R2= 0.9998 F=36701 p=0.0000
200 100
价格差较小时增加的 速率更大
价格差较小时更需要靠广告 来吸引顾客的眼球
第十一页,共42页。
完全二次多项式模型
y 0 1x1 2 x2 3 x1x2 4 x12 5 x22
MATLAB中有命令rstool直接求解

10 9.5
9 8.5
8 7.5
0
0.2
0.4
5.5
6
6.5
7
x1
x2
价格差 x1=0.3
yˆ x10.3 32.4535 8.0513x2 0.6712x22
x2 7.5357

yˆ yˆ x10.3
10.5
x10.1 10
价格优势会使销售量增加 9.5 9

建模方法论ch10统计回归模型

建模方法论ch10统计回归模型

10.2 软件开发人员的薪金
建立模型研究薪金与资历、管理责任、教育程度的关系. 建立模型研究薪金与资历、管理责任、教育程度的关系. 分析人事策略的合理性,作为新聘用人员薪金的参考. 分析人事策略的合理性,作为新聘用人员薪金的参考. 46名软件开发人员的档案资料 名软件开发人员的档案资料
编 号 01 02 03 04 … 薪金 13876 11608 18701 11283 … 资 历 1 1 1 1 … 管 理 1 0 1 0 … 教 育 1 3 3 2 … 编 号 42 43 44 45 46 薪金 27837 18838 17483 19207 19346 资 历 16 16 16 17 20 管 理 1 0 0 0 0 教 育 2 2 1 2 1
x2=6.5
0 0.2 0.4 0.6
8.5
8
8
7.5 -0.2
x1
7.5 -0.2
0
0.2
0.4
0.6
x1
10 9.5 9 8.5 8 7.5 5
ˆ y
10.5 10
ˆ y
x1=0.2
6 7 8
9.5 9 8.5
x2
8
5
6
7
8
x2
交互作用影响的讨论
价格差 x1=0.1 价格差 x1=0.3
ˆ y
销售 周期 1 2 … 29 30
基本模型
y ~公司牙膏销售量 公司牙膏销售量 x1~其他厂家与本公司价格差 其他厂家与本公司价格差 其他厂家与本公司 x2~公司广告费用 公司广告费用
y 10
9.5 9 8.5 8 7.5 7 -0.2 0 0.2 0.4 0.6
y = β 0 + β 1 x1 + β 2 x 2 + β x + ε

《数学建模》课件:第十章 统计回归模型

《数学建模》课件:第十章  统计回归模型
根据自变量个数和经验函数形式的不同,回归 分析可以分为一元回归、多元回归、线性回归、多 项式(完全二次、交叉二次等)回归等许多类别。
回归和拟合比较相近,但并不一样。对拟合而言, 一个Y变量对应一个X变量,而回归分析的一个Y变 量则有可能对应多个X变量。从这个角度说,拟合 也属于回归的一种。
/view/0aa4c90c844769eae009ed7d.html? re=view (回归分析的基本理论及软件实现)
linear(线性): y 0 1 x1 m xm
purequadratic(纯二次):
y 0 1x1 m xm
n
jj
x
2 j
j1
interaction(交叉): y 0 1x1 m xm jk x j xk
1 jkm
quadratic(完全二次): y 0 1x1 m xm jk x j xk
6.80
0.55
9.26
问题分析
注意到牙膏是生活必需品,顾客在购买同类 产品时常常会更在意不同品牌之间的价格差异, 而不是他们价格本身。
因此,在研究各因素对销售量的影响时,用价 格差代替公司销售价格和其他厂家平均价格更为合 适。 下面建立牙膏销售量与价格差、广告费之间的关系 模型。
基本模型
y 10
(1) beta=nlinfit(X,Y,function,beta0) (2) [beta,r,J]=nlinfit(X,Y,function,beta0)
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型; 题 预测在不同价格和广告费用下的牙膏销售量.
收集了30个销售周期本公司牙膏销售量、价格、
1
xn1
xn2

数学建模作业-统计回归模型

数学建模作业-统计回归模型

统计回归模型摘要本文通过两个关于统计归回问题的解决,理解有关回归问题的解决办法,和对处理统计回归问题是的数学知识加以学习、巩固,学会用MA TLAB处理有关数学模型问题。

通过对数据的统计分析,找出与数据拟合最好的模型;其中,回归模型是用统计分析方法建立的最常用的一类模型,不涉及回归分析的数学原理和方法,通过实例讨论如何选择不同类型的模型,对软件得到的结果进行分析,对模型进行改进。

(当然,这是我初次用MA TLAB做回归问题,里面肯定会有很多不理想之处,就请老师多多指点。

)问题一:是有关牙膏的销售量问题。

问题二:软件开发人员的薪金问题。

一、问题的提出问题一一家技术公司人事部门为研究软件开发人员的薪金与他们的资历、管理责任、教育程度等因素之间的关系,要建立一个数学模型,以便分析公司人事策略的合理性,并作为新聘用人员薪金的参考。

他们认为目前公司人员的薪金总体上是合理的,可以作为建模的依据,于是调查来46名软件开发人员的档案资料,如表4,其中资历一列指从事专业工作的年数,管理一列中1表示管理人员,0表示非管理人员,教育一列中1表示中学程度,2表示大学分析与假设 按照常识,薪金自然随着资历的增长而增加,管理人员的薪金应高于非管理人员,教育程度越高薪金也越高。

薪金记作y ,资历记作x1,为了表示是否管理人员,定义:210,x ⎧=⎨⎩,管理人员非管理人员为了表示3种教育程度,定义:31,0,x ⎧⎨⎩中学其它41,0,x ⎧⎨⎩大学其它这样,中学用x3=1,x4=0表示,大学用x3=0,x4=1表示,研究生则用x3=0,x4=0表示。

为简单起见,我们假定资历对薪金的作用是线性的,即资历每加一年,薪金的增长是常数;管理责任、教育程度、资历诸因素之间没有交互作用,建立线性回归模型。

基本模型 薪金y 与资历x1,管理责任x2,教育程度x3,x4之间的多元线性回归模型为011223344y a a x a x a x a x ε=+++++ (1)其中014,,a a a …,是待估计的回归系数,ε是随机误差。

统计回归模型(1)

统计回归模型(1)

31 20 25 19 39 33 17 37 23 39
141 32 86 21 231 187 22 205 57 265
128.4 34.48 67.34 29.56 255.66 154.89 21.18 218 31 218.31 52.44 255 66 255.66
12.6 -2.48 18.66 -8.56 -24.66 32.11 0.82 -13 31 -13.31 4.56 9 34 9.34
*残差有线性趋势,模型不恰当
V = 0.194 0 194d − 45 45.7 7
2
直径 板英尺 预测值 残差 直径 板英尺 预测值 残差

36 28 28 41 19 32 22 38 25 17
192 113 88 294 28 123 51 252 56 16
205.72 -13.72 106.4 6.6 106.4 280.41 24.33 152.96 48.2 234 44 234.44 75.55 10 37 10.37 -18.4 13.59 3.67 -29.96 29.96 2.8 17 56 17.56 -19.55 5 63 5.63
V = 0.00431 000431d3 V = 0.152d 2 V = 0.194d − 45.7
2
458536 462278 0.9919 0 9919 155986 159698 0.977
V = 0.00426 000426d3 + 2.08 208 3712
3910
12895 449383 462278 0.9721 155788 159698 0.976
• 当人们对研究对象的内在特性和各因素间的 关系有比较充分的认识时,一般用机理分析 方法建立数学模型 • 由于客观事物内部规律的复杂性及人们认识 程度的限制 无法分析实际对象内在的因果 程度的限制,无法分析实际对象内在的因果 关系,建立合乎机理规律的数学模型,通常 的办法是搜集大量的数据 基于对数据的统 的办法是搜集大量的数据,基于对数据的统 计分析方法去建立模型(找出与数据拟合最 好的模型)

数学建模 回归分析模型

数学建模 回归分析模型

非线性回归模型的实际应用
预测人口增长
非线性回归模型可以用来描述人口增长的动态变 化,预测未来人口数量。
医学研究
在医学研究中,非线性回归模型可以用来分析药 物对病人体内生理指标的影响。
经济预测
在经济领域,非线性回归模型可以用来预测经济 增长、通货膨胀等经济指标。
多元回归模型的实际应用
01
社会学研究
模型检验
对模型进行检验,包括残差分析、拟 合优度检验等,以确保模型的有效性 和可靠性。
非线性回归模型的参数估计
最小二乘法
梯度下降法
通过最小化预测值与实际值之间的平方误 差,求解出模型中的未知参数。
通过迭代计算,不断调整参数值,以最小 化预测值与实际值之间的误差。
牛顿法
拟牛顿法
基于泰勒级数展开,通过迭代计算,求解 出模型中的未知参数。
线性回归模型的评估与检验
残差分析
分析残差分布情况,检查是否 存在异常值、离群点等。
拟合优度检验
通过计算判定系数、调整判定 系数等指标,评估模型的拟合 优度。
显著性检验
对模型参数进行显著性检验, 判断每个自变量对因变量的影 响是否显著。
预测能力评估
利用模型进行预测,比较预测 值与实际值的差异,评估模型
基于牛顿法的改进,通过迭代计算,求解 出模型中的未知参数,同时避免计算高阶 导数。
非线性回归模型的评估与检验
残差分析
对模型的残差进行统计分析,包括残差 的分布、自相关性、异方差性等,以评
估模型的可靠性。
预测能力评估
使用模型进行预测,比较预测值与实 际值的误差,评估模型的预测能力。
拟合优度检验
通过比较实际值与预测值的相关系数 、决定系数等指标,评估模型的拟合 优度。

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

数学建模统计回归模型

数学建模统计回归模型

统计回归模型姓名:姚敏俊 班级:08数学(1)班 学号 08070210025摘要随着社会经济的飞速发展,社会人员更关心的是自己的社会福利和工资待遇问题。

在这里我们就中学教师的工资待遇问题建立了模型,并对模型作出了一系列讨论。

如:教师的薪金与他们的工作时间1x 、性别2x 、学历4x 、以及培训情况6x 等因素之间的关系。

我们首先利用MATLAB(程序见附录五)软件作出薪金与老师工作时间的散点图,如图(二),然后假设工作时间与教师薪金为线性关系,其关系式如模型(一);再运用统计回归模型分别从各个方面特别考虑了中学女教师的工资待遇是否受她们的婚姻状况3x 的影响。

经过对模型的各个变量的逐步回归和作残差图,详见图我们从众多变量中挑选出了对教师薪金y 影响最大的变量4x 及1x ,各个变量对教师的薪金的影响的回归系数如图(三),程序见附录(二)。

从影响系数的表图中我们得出了学历对教师的薪金的影响最大。

经过对模型的分析、讨论和进一步的优化,此模型还可以运用到市场调查、教师调研、影响农作物生长的的因素等等相关问题上。

模型(一):ε+*+*+*+*+*+*+*+=776655443322110x a x a x a x a x a x a x a a y 模型(二):44110x a x a a y *+*+=关键词:散点图 线性关系 统计回归模性 回归系数 逐步回归一、问题重述每地人事部门研究中学教师的薪金与他们的资历、性别、教育程度、及培训情况等因素之间的关系,要建立一个数学模型,分析人事策略的合理性,特别是考察女教师是否受到不公正的待遇,以及她们的婚姻状况是否会影响收入。

为此,从当地教师中随机选中3414位进行观察,然后从中保留了90个观察对象,得到关键数据。

二、问题分析与假设分析:本题要求我们分析教师薪金与他们的资历、性别、教育程度及培训情况等因素之间的关系。

按到日常生活中的常识,教师薪金应该与他们的资历、受教育程度有密切关系,资历高、受教育程度高其薪金也应该相应的要高,与其性别、婚姻状况应该没有必然的联系。

数学建模案例分析第十章统计回归模型

数学建模案例分析第十章统计回归模型

岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。

数学建模之统计回归模型

数学建模之统计回归模型

数学建模大作业摘要某公司想用全行业的销售额作为自变量来预测公司的销售额,题目给出了1977—1981此公司的销售额和行业销售额的分季度数据表格。

通过对所给数据的简单分析,我们可以看出:此公司的销售额有随着行业销售额的增加而增加的趋势,为了更加精确的分析题目所给的数据,得出科学的结论,从而达到合理预测的目的。

我们使用时间序列分析法,参照课本统计回归模型例4,做出了如下的统计回归模型。

在问题一中,我们使用MATLB数学软件,画出了数据的散点图,通过观察散点图,发现公司的销售额和行业销售额之间有很强的线性关系,于是我们用线性回归模型去拟合,发现有很好的拟合性。

但是这种情况下,并没有考虑到数据的自相关性,所以我们做了下面几个问题的分析来对这个数学模型进行优化。

在问题二中,通过建立了公司销售额对全行业销售额的回归模型,并使用DW检测诊断随机误差项的自相关性。

通过计算和查DW表比较后发现随即误差存在正自相关,也就是说前面的模型有一定的局限性,预测结果存在一定的偏差,还有需要改进的地方。

在问题三中,因为在问题二中得出随即误差存在正自相关,为了消除随机误差的自相关性,我们建立了一个加入自相关后的回归模型。

并对其作出了分析和验证,我们发现加入自相关后的回归模型更加合理。

通过使用我们建立的模型对公司的销售额进行预测,发现和实际的销售额很接近,也就是说模型效果还不错。

关键词:销售额、回归模型、自相关性一、问题提出某公司想用全行业的销售额作为自变量来预测公司的销售额,下表给出了1977-1981年公司销售额和行业销售额的分季度数据(单位:百万元).(1)画出数据的散点图,观察用线性回归模型拟合是否合适。

(2)监理公司销售额对全行业销售额的回归模型,并用DW检验诊断随机误差项的自相关性。

二、基本假设假设一:模型中ε(对时间t )相互独立。

三、符号说明公司销售额:y (百万)行业销售额:x (百万) 概念介绍:1.自相关:自相关(auto correlation ),又称序列相关(serial correlation )是指总体回归模型的随机误差项之间存在的相关关系。

数学建模实验报告-统计回归模型

数学建模实验报告-统计回归模型

《数学建模与数学实验》实验报告实验2 统计回归模型先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。

诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。

若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。

先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。

侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。

先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。

后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。

受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。

今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。

此臣所以报先帝而忠陛下之职分也。

至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。

若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。

臣不胜受恩感激。

今当远离,临表涕零,不知所言。

数学建模方法之统计回归总结

数学建模方法之统计回归总结

诡计回归总錯由子家观亨•畅内祁规律的复杂及人们认积程盛的限制,无廉分析宾际对隼内衣.的因糸关糸,建立合手机理规律的救学僕宴。

所以我们通过对數据的统计分析,我出与数据拟合录好的模型。

我们通过宾例讨论如何追择不同矣型的換型,对软件得到的姑果进行分析,对模矍进行改进J回归分析步腋如下:•收集一组阖变董和自变萤的数据• 选走因变量和令变量之间的栈型,利用數擁最小二泵准刘计算栈型中的糸救•创用统计分析方法对不同的栈4!进行比较找出与救据拟合得最好的模熨•判靳这俎栈熨是否追合于这俎數据诊斷有无不追合回归棋矍的异常數据•利用模晏对因变董做岀预測与解年卖例分析一、牙育的林a受题a :收集了30个4«@周期本心司牙青锚傅量.价格、Z4#用,A 同期其乞厂彖同典牙青的平的傳价,请根据对數据的处理建立牙育锚©董与价格、户告投入之间的棋熨预测虚不阿价格和/•告费用下的牙根据对题目中數据进行处理,作散点08分析fMATLAB;应用格PIot(x,yJ )Plotfit(x,y,1),其中x 表示y核熨建立与求解級4ty~心甸牙音補©量,冶~其它厂家与本公司价格左y = Q()+ Qz + £(1)X2~^<1广吿费用y = 0o + 0宀 + PiA + £(2)将fb. (2)或子朕立可以得到3)冷木2~解年雯受(回归变交■,角<4)00,九卩2屆~回归余数£~建机镁迸(拔值为奉的正杰分布随机iiJ刊用MATLAB工典求解可以得到。

格式如下[b,bint,r,rint,rtat$]» regress (y,x,alpha)输入:y~n推數据向董x・[1 XiX2X2?]~nX4數据矩阵,第一刃%全1向量alpha (JL 侑水平,0.05)输出:b~p的估计值bint~b的JL传区间r ~戎;M向董y-xbrint~r 的X^rfiL 间Stats~检絵疣计回归模型;检缺统计爻:2,F,p注:其中以越揍近1越好,F运起过F检絵的临界值,p运小于a・0.05 则可行假如R2,F,p满足条件,则我们说模熨从蔓体上看成立结系分析判靳出R2,F,p均成立,刘模熨可用,但因为卩2的置信区间通i±0点,则说明此项对模型的彩响不显著所以要对棋熨进行发遗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广告费用,及同期其它厂家同类牙膏的平均售价
销售 周期
1
本公司价 格(元)
3.85
其它厂家 价格(元)
3.80
广告费用 (百万元)
5.50
价格差 (元)
-0.05
销售量 (百万支)
7.38
2
3.75
4.00
6.75
0.25
8.51
29
3.80
3.85
5.80
0.05
7.93
30
3.70
4.25
6.80
统计回归模型
第十章 统计回归模型
10.1 牙膏的销售量 10.2 软件开发人员的薪金 10.3 酶促反应 10.4 投资额与国民生产总值和
物价指数
数学建模的基本方法 机理分析 测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型。 通过对数据的统计分析,找出与数据拟合最好的模型
yˆ 略有增加
预测区间长度更短
两模型yˆ 与x1,x2关系的比较
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2


9
9
8.5
x2=6.5 8.5
8
8
7.5 -0.2

10 9.5
9 8.5
8 7.5
5
0
0.2
0.4
6
7
0.6 x1
价格差 x1=0.3
yˆ x10.3 32.4535 8.0513x2 0.6712x22
0.55
9.26
基本模型
y 10
9.5
y ~公司牙膏销售量
9
x1~其它厂家与本公司价格差
8.5 8
x2~公司广告费用
y 0 1x1 2 x2 3 x22
7.5
7
-0.2
0
0.2
0.4
0.6
y 0 1x1 x1
y~被解释变量(因变量)
y 10
9.5
x1, x2~解释变量(回归变量, 自变量) 9 8.5
x1=0.2
8 x2
7.5 -0.2

10.5 10 9.5 9 8.5 8 5
0
0.2
0.4
6
7
0.6 x1 8 x2
交互作用影响的讨论 yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
价格差 x1=0.1
yˆ x10.1 30.2267 7.7558x2 0.6712x22
输入 y~n维数据向量
输出 b~的估计值
x= [1 x1 x2 x22 ] ~n4数
据矩阵, 第1列为全1向量
alpha(置信水平,0.05)
bint~b的置信区间 r ~残差向量y-xb rint~r的置信区间
参数
参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
Stats~ 检验统计量
R2,F, p
结果分析 y 0 1x1 2 x2 3 x22
参数
参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
两模型销售量预测比较
控制价格差x1=0.2元,投入广告费x2=6.5百万元
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 yˆ 8.2933 (百万支)
区间 [7.8230,8.7636]
yˆ 8.3272 (百万支)
yˆ 0 ˆ1x1 ˆ2x2 ˆ3x22 ˆ4x1x2
区间 [7.8953,8.7592]
x2对因变量y 的 影响不太显著
x22项显著
可将x2保留在模型中
销售量预测 yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 8.2933 (百万支)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握 知道销售额在 7.83203.7 29(百万元)以上
模型改进
x1和x2对y 的影响独立
x1和x2对y 的影响有 交互作用
y 0 1x1 2 x2 3 x22
0, 1 , 2 , 3 ~回归系数
8
7.5
~随机误差(均值为零的
正态分布随机变量)
7 5
5.5
6
6.5
x 7
7.5
2
y 0 1x2 2 x22
模型求解 MATLAB 统计工具箱
y 0 1x1 2 x2 3 x22 由数据 y,x1,x2估计
[b,bint,r,rint,stats]=regress(y,x,alpha)
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立参数
参数估计值
置信区间
0
29.1133
[13.7013 44.5252]
1
11.1342
[1.9778 20.2906 ]
2
-7.6080
[-12.6932 -2.5228 ]
3
0.6712
[0.2538 1.0887 ]
4
-1.4777
[-2.8518 -0.1037 ]
R2=0.9209 F=72.7771 p=0.0000
参数 参数估计值
置信区间
0
17.3244
[5.7282 28.9206]
1
1.3070
[0.6829 1.9311 ]
2
-3.6956
[-7.4989 0.1077 ]
3
0.3486
[0.0379 0.6594 ]
R2=0.9054 F=82.9409 p=0.0000
y 0 1x1 2 x2 3x22 4 x1x2
回归模型是用统计分析方法建立的最常用的一类模型
• 不涉及回归分析的数学原理和方法 • 通过实例讨论如何选择不同类型的模型 • 对软件得到的结果进行分析,对模型进行改进
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
收集了30个销售周期本公司牙膏销售量、价格、
相关文档
最新文档