自然电位测井(SP)
自然电位测井
![自然电位测井](https://img.taocdn.com/s3/m/29a95a275a8102d276a22fe6.png)
自然电位测井(SP)
学习内容
1、方法特点 2、自然电位产生的原因 3、扩散作用在井内形成的总电动势及电位分析 4、自然电位测井曲线的特征及影响因素 5、自然电位测井曲线的应用
2、自然电位产生的原因
井内自然电位产生的原因是复杂的,对于油气井来说, 主要有以下两个原因: ①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸
面处带负电荷,这时形成的电动势为扩散吸附电动势,这是由于既有扩散
作用又有吸附作用,因此称为扩散吸附电动势,用Eda表示,由下式求
Eda=Kdalg(Cw/Cmf)
若Cw=10Cmf, t=18℃ Kda=58mV。
2、自然电位产生的原因 (3)过滤电位
这种电动势是由于泥浆柱与地层之间存在压力差,泥浆滤液通
之改变,造成自然电场的电动势也随之改变,参见下表:
表 1-3-2 溶 液 Kd,mv NaCl -11.6 NaHCO3 +2.2 18℃时几种盐溶液的 Kd 值 CaCl2 -19.7 MgCl2 -22.5 NaSO4 +5 KCl -0.4
4、自然电位测井曲线的特征及影响因素 (2)影响因素
自然电位测井(SP)
学习内容
1、方法特点 2、自然电位产生的原因 3、扩散作用在井内形成的总电动势及电位分析 4、自然电位测井曲线的特征及影响因素 5、自然电位测井曲线的应用
3、扩散作用在井内形成的总电动势及电位分析
(1)总电动势
结合等效电路进行分 析
3、扩散作用在井内形成的总电动势及电位分析 (1)总电动势
4、自然电位测井曲线的特征及影响因素 (2)影响因素
③地层水和泥浆滤液中含盐性质的影响 地层水和泥浆滤液内所含盐类不同,则溶液中所含离子不同,离子价 也不同。由于不同离子的离子价和迁移率均有差异,直接影响Kd和Ka的大 小,因而也就影响了Es的数值。 在纯砂岩井段,溶液中所含化学成分改变时,扩散电动势系数Kd也随
自然电位测井
![自然电位测井](https://img.taocdn.com/s3/m/13689675f46527d3240ce080.png)
18 °C 时几种盐溶液的 K d 值
CaCl 2
-19.7
MgCl 2
-22.5
NaSO 4
+5
KCl -0.4
K d(mV)
+2.2
五、地层电阻率的影响
ΔU sp = SSP(
1 1+
rsd + rsh rm
)
地层厚,电阻率差异不大时,rsh+rsa远小于rm;当地层电 阻率增高时,rsh、rsa与rm相比不能忽略,此时ΔUSP<SSP。 地层电阻率越高, ΔUSP越低,可定性识别油、水层。 六、地层厚度的影响 地层厚度变薄,rsd增加, ΔUSP降低。 七、井径扩大和泥浆侵入的影响 rm减小, ΔUSP降低
问题: 1、井中自然电位产生的机制有哪些? 2、以砂泥岩剖面为例,当泥浆电阻率大于地层水电阻率 时,绘制井中自然电动势及其等效电路图,并说明自然电 位测井幅值的计算公式。 3、影响自然电位曲线的七种因素有哪些? 4、自然电位曲线有哪方面的应用? 5、简述利用自然电位曲线计算地层水电阻率的4个步骤 6、什么是泥岩基线?
识别出渗透层后,通常可用自然电位测井曲线的半幅点 来确定渗透层界面,进而计算出渗透层厚度。
二、地层对比和研究沉积相 自然电位测井曲线常常作为单层划相、井 间对比、绘制沉积体等值图的手段之一。
S108
0 0 6 SP 100 GR 150 CAL 16 0.2 0.2 0.2 RFOC RILM RILD 20 20 20 45 CNL -15 140 AC 40 2 DEN 3
ΔU sp = SSP(
1 1+
rsd + rsh rm
)
当岩层较厚时,ΔUsp=SSP,对 于纯砂岩,接近自然电动势的 自然电位幅值,称为静自然电 位(SSP).
第03章 自然电位SP解读
![第03章 自然电位SP解读](https://img.taocdn.com/s3/m/0a86afcc19e8b8f67c1cb922.png)
自然电位测井是在裸眼井中测量井轴上自然产生的电位 变化,以研究井剖面地层性质的一种测井方法;
是最早使用的测井方法之一,简便而实用,是砂泥岩剖 面淡水泥浆裸眼井必测的项目之一。对于区分岩石性质, 尤其是在区分泥质和非泥质地层方面,更有其突出的优 点。
(Spontaneous Potential)
地层水溶液离子浓度与泥浆滤液的离子浓度不同,产生 离子扩散; 岩石颗粒表面对离子有吸附作用; 泥浆滤液向地层中渗透作用。
2019/3/1
中国石油大学(华东)张福明
3
1. 扩散电动势 ——纯岩石中地层水与泥浆之间的直接扩散
砂岩孔隙中的地层水与井内 泥浆之间,相当于不同浓度的两 种NaCl溶液直接接触。离子将从 高浓度的岩层一方朝着井内直接 扩散。由于Cl-的迁移率大于Na +,扩散结果:低浓度的泥浆一 方出现过多的Cl-,带负电,高 浓度的岩层一方,相对剩余Na+ 离子,带正电。从而产生了电位 差——地层一方的电位高于泥浆 一方的电位。
厚层可以用“半幅点”确 定地层界面 。
【半幅点即幅度之半,见图示。】
2019/3/1
中国石油大学(华东)张福明
20
3. 地层电阻率的影响
含油气饱和度比较高的储集层,其电阻率比它完全含水时 rsd 明显升高,SP略有下降。一般油气层的SP略小于相邻的水层。 Rt/Rm增大,曲线幅度减小。 围岩电阻率Rs增大,则 rsh 增大,使自然电位异常幅度减小。
中国石油大学(华东)张福明
5
2. 扩散吸附电动势 ——泥质岩石中地层水与泥浆之间的扩散
扩散的另一个渠道是地层水中的 离子通过泥质隔膜或周围的泥岩向低 浓度的泥浆(井眼)一方进行扩散。 (上页图) 粘土颗粒表面带有较多的负电荷, 在盐溶液中吸附阳离子形成吸附层和 扩散层。泥岩中存在很厚的双电层 (内负外正),能够移动的地层水在 压实过程中排出去了,基本不存在双 电层以外的自由水。
自然电位测井
![自然电位测井](https://img.taocdn.com/s3/m/50bad8d8ad51f01dc281f1db.png)
自然电位(SP)曲线是井眼中移动电极的电位与地面 电极固定电位的差的反映。SP曲线上的偏移是电流在井 筒内的钻井液中流动的结果,电流是井壁两侧流体所含 离子浓度差形成的电化学作用所造成。
天津分公司勘探部
1
自然电位测井
天津分公司勘探部
2
用途
· 探测渗透层; · 确定地层界面位置,地层对比; · 确定地层水电阻率(Rw)的值; · 定性判断地层泥质含量
天津分公司勘探部
8
注意事项
1.
天津分公司勘探部
9
泥质含量的影响
天津分公司勘探部
10
油水的影响
天津分公司勘探部
11
注意事项2.ຫໍສະໝຸດ 天津分公司勘探部12
注意事项
3.
天津分公司勘探部
13
天津分公司勘探部
6
6.测速不应超过30m/min; 7.每次测井的横向刻度比例尽可能相同。在响应幅度低的井段或地区 已定好刻度时,也可有例外; 8.泥岩线的位置应与前次测井相同; 9.操作工程师在移动泥岩基线时,应在胶片或蓝图上作出标记,且不 得在目的层进行; 10.将较纯水层(最好为砂岩)的毫伏电压偏移与前次或邻井测得的曲线 进行比较; 11.在油基或不导电钻井液中不应测SP曲线;
天津分公司勘探部
7
如发现曲线有受干扰的迹象,则需查清,常见的干扰源有:
干扰源 磁性影响 双金属作用 大地电流 随机电子干扰(发电机) 电缆噪声 焊接
干扰表现 周期性地出现,与电缆滚筒速度有关 无特别的正负偏差。通常干扰来自阴极 保护装置 表现为数值的偏移 50/60Hz的随机脉冲 表现为与电缆卷绕有关的随机噪声 与焊接周期(热/冷)有关的周期性噪声
天津分公司勘探部
自然电位测井
![自然电位测井](https://img.taocdn.com/s3/m/d696a88aec3a87c24028c4ae.png)
能力。
09:45 10
第一章 自然电位测井
第一节 自然电场的产生
当井壁附近地层水和泥浆滤液矿化度都较低时,且Cw>Cmf时 泥岩剖面上的扩散吸附电动势为:
在矿化度较低的情况下,溶液的电阻率与溶液的矿化度成反比 关系,因此上式可写为:
09:45
第一章 自然电位测井
11
第一节 自然电场的产生
三、氧化还原电位
09:45
20
第二节 自然电位测井及曲线特征
使用自然电位曲线时应注意:自然电位曲线没有绝对零点, 是以泥岩井段的自然电位曲线幅度作基线;砂泥岩剖面中自然电 位曲线幅度ΔUSP的读数是基线到曲线极大值之间的宽度所代表的 毫伏数。在砂泥岩剖面中,以泥岩作为基线, Cw>Cmf 时,砂岩 层段出现自然电位负异常; Cw<Cmf 时,砂岩层段出现自然电位
09:45
第一章 自然电位测井
14
第一节 自然电场的产生
四、过滤电动势
在压力差的作用下,当溶液通过毛细管时,管的两端产生电位 差。这是由于毛细管壁吸附负离子,使溶液中正离子相对增多。正 离子在压力差的作用下,随同溶液向压力低的一端移动,因此在毛 细管两端富集不同极性的离子,形成过滤电动势。 在岩石中,颗粒之间形成很细的毛细管孔道,当泥浆柱的压力 大于地层的压力时,泥浆滤液通过井壁在岩石孔道中流过,形成过 滤电动势。
09:45
第一章 自然电位测井
26
第三节 自然电位测井的影响因素
五、 地层电阻率的影响
地层电阻率Rsd增加和围岩电阻率Rsh增加时,自然电流在地层 内的电位降加大,则ΔUSP降低。泥浆电阻率Rm下降,则rm下降, ΔU SP下降。地层的电阻率越高则 ΔUSP越低。可以根据自然电位 曲线的这一特点区分油水层。
第二章----常规测井方法及地质响应---(1)SP测井
![第二章----常规测井方法及地质响应---(1)SP测井](https://img.taocdn.com/s3/m/16905d35b4daa58da0114ac8.png)
可以看作是静自然电
Usp SSP
因而,在砂泥岩剖面,实际上测量得到的 SP电位实际上都小于静 自然电位,故而SSP应在井段内的测量结果最大值处读取。
静自然电位SSP是测井分析家用来分析地层剖面性质的重要参数之 一。
1、 自然电位测井(SP)
§2 自然电位测井原理及曲线特征
2、SP( Usp )曲线及其特点
图1-4 测量电路图
1、 自然电位测井(SP)
§2 自然电位测井原理及曲线特征 2、总电动势
E总 Ed Eda K lg Rmf def Rw SSP
通常把 E总 称为静自然电位, 记作 SSP ; Ed 的幅度称为砂岩 线;Eda的幅度叫泥岩线。 在 18 oC ,极限情况下,静自然 电位系数 K=Kd-Kda=-11.6-58=69.6 ( mv ),所以,在 18℃时 的纯砂岩层处的SSP为:
第 一节 自然电位测井(SP)
§1 自然电场的产生
三、扩散—吸附电动势
②扩散—吸附电动势的产生
正是由于离子双电层的存在,在扩散过程中,离子扩散包括 两部分:一部分是远水中的离子的扩散,应同砂岩一样;另一部 分则是双电层中的Na+的扩散。两者共同作用相当于参与扩散的阳 离子数增多。 从效应上看,表现为 Na+的迁移速度超过了 Cl-,因此扩散的 结果与砂岩恰好相反,即在浓度小的一方富集了Na+,出现相对过 剩的正电荷,而在高浓度一方,富集了Cl-,出现了过剩的负电荷。 正是由于泥岩吸附的Na+的参与(扩散层),这种扩散作用称为扩 散—吸附作用,而形成的电动势则称为扩散—吸附电动势Eda,或 称为薄膜电位。
1、 自然电位测井(SP)
§1 自然电场的产生
一、井内自然电位产生的原因 ①地层水含盐浓度与泥浆含盐浓度不同,引起离子扩散运 动或岩石颗粒对离子的吸附作用产生的扩散吸附电动势。 ②由于地层压力与泥浆柱压力的差别,盐溶液在孔隙中的 渗滤作用而产生的过滤电动势。 一般情况下,过滤电动势的影响要小于前者,因此测井 解释一般不作考虑,但是在测井精细解释中,仍需要对其 进行必要的校正。
地球物理测井3(自然电位测井)
![地球物理测井3(自然电位测井)](https://img.taocdn.com/s3/m/95252ada541810a6f524ccbff121dd36a32dc40d.png)
3 自然电位测井(SP)
3 自然电位测井(SP)
斯仑贝谢1928年发 现了这样的现象:在未 通电的情况下,井中电 极(M)与位于地面的电 极(N)之间存在着电位 差,而且该电位差随着 地层的不同而变化。另 外,电位差的变化规律 性很强。
3 自然电位测井(SP)
后来、道尔、威利、费多尼、斯卡拉和 安德森等人对这一现象进行了研究,同时, 自然电位测井(SP)也就诞生了。
3.1.2 电化学作用与电化学电位
• 油井中的电化学作用主要包括两种: 一种是扩散作用,另一种是扩散吸附 作用。
3.1.2.1 扩散作用与扩散电位
3.1.2.1 扩散作用与扩散电位
• 当具有不同矿化度的两种流体相接 触时,离子将从浓度高的地方向浓 度低的地方移动,这种现象我们称 为扩散作用。
3.1.2.1 扩散作用与扩散电位
• 第二种为相对刻度 的曲线读值,首先 确定基线然后读取 相对值 。
1.2 自然电位测井曲线
关于相对刻度 的说明: • “-”为电位降低的 方向; • “+”为电位升高 的方向; • |—| 间距是电位的 变化量的大小的刻 度。
1.2.1 自然电位测井曲线的特点
• 在泥岩层处自然电位曲线的 测井值比较稳定。
K值的变化,
⑵ 温度对电阻率的 影响明显。
1.3.1 自然电位测井的影响因素
U SP I rm
U SP
rm
ES ri rt
rsh
rm
K lg C w
U SP
rm
ri
C mf rt
பைடு நூலகம்rsh
rm
• 地层厚度的影响 r=R×L/S S=h×井眼的周长
测井总结
![测井总结](https://img.taocdn.com/s3/m/9dcde0156c85ec3a86c2c510.png)
一、自然电位测井(SP)1、概念1)自然电位测井:在钻井的过程中,钻井液(泥浆)(有不同类型:淡水泥浆和盐水泥浆、水基泥浆和油基泥浆)与钻穿的地层孔隙流体(地层水、石油、天然气)之间通过扩散-吸附作用(电化学作用)自然会产生一种电动势,测量这种电位差的测井方法就是SP测井。
2)自然电位曲线:将测量电极N放在地面,M电极用电缆送至井下,提升M电极沿井轴测量自然电位随井深的变化曲线成为自然电位曲线(即为SP曲线)2、1)自然电位场的产生:由于钻井液(泥浆)和孔隙流体(地层水、油、气)具有不同的矿化度,即含有的离子的浓度不同,井壁附近两种不同矿化度的溶液接触产生电化学作(扩散——扩散吸附作用),产生电动势造成自然电场。
2)机理:扩散-扩散吸附作用(扩散电动势:渗透性隔膜——砂岩;扩散吸附电动势:泥岩隔膜)3)井内自然电位产生的原因:①不同浓度的盐溶液相接触时的扩散和吸附作用;②盐溶液在岩石孔隙中的渗滤作用;③金属矿物的氧化还原作用等。
3、SP测井1)SP曲线的泥岩基线:实测SP曲线没有绝对的零点,而是以井段中较厚的泥岩层的SP幅度为基线,称泥岩基线2)静自然电位:自然电位的总电动势,即自然电流回路断路时的电压SSP。
3)自然电位的幅度:自然电流在井中泥浆柱上产生的电压降。
(大小取决于地层与泥浆的离子交换量,所以水层的幅度大于油层)。
测井上定义自然电位SSP:4)自然电位的幅度异常△Vsp :自然电流在井中泥浆柱上产生的电压降。
以泥岩为基线,渗透层偏移基线的幅度值。
5)渗透层:相对于泥页岩基线,当Cw>Cmf,基线处于正电位,渗透性砂岩呈负异常。
相反异常幅度与粘土含量成反比,Rmf/Rw成正比。
(Cw<Cmf)则基线处于负电位,渗透性砂岩呈正异常。
6)半幅点:幅度变化的中点,a,b,对应厚地层一般对应于地层的界面。
4、影响因素:1)地层水和泥浆中含盐浓度比值;2)岩性:自然电位幅度随泥质的增加而降低;3)温度:T增加,K增加,Es增加,△Vsp增加4)泥浆和地层水的化学成分:当ri、rt增大,则I降低、△Vsp降低。
自然电位测井(SP)
![自然电位测井(SP)](https://img.taocdn.com/s3/m/3f2a295e804d2b160b4ec001.png)
厚层砂岩总电动势(静自然电位 : 厚层砂岩总电动势 静自然电位): 静自然电位
rsh rsd
rm
SSP = I ⋅ rm + I ⋅ rsd + I ⋅ rsh
总电流: 总电流:
I=
SSP rm + rsd + rsh
有限厚砂岩层自然电位幅度: 有限厚砂岩层自然电位幅度:
自然电位测井(SP) 自然电位测井(SP)
本章的主要内容 1、井内自然电场 2、自然电位测井原理及曲线特征 3、自然电位曲线的主要用途 划分岩性(储集层)、确定Rw、计 划分岩性(储集层)、确定Rw、 )、确定Rw Vsh、判断水淹层。 算Vsh、判断水淹层。
§1井内自然电场 井内自然电场
导线 + — + — + — + — Cw + — Nacl溶液 Cm 电极
扩散吸附电动势系数:Kda——与阳离子交换能力有关 若储层中泥值的阳离子交换量较高,则会导致低电阻率油层。
§2自然电位测井原理及曲线特征 自然电位测井原理及曲线特征
2 自然电位测井原理及曲线特征 §第一章 自然电位测井(SP) 自然电位测井( ) 2、总电动势 、
E总 = E d − E da = K lg Rmf def Rw SSP
∆U sp
SSP ⋅ rm = I ⋅ rm = rm + rsd + rsh
与静自然电位关系: 与静自然电位关系:
等效电路图
∆U SP = SSp
1 rsd + rsh 1+ rm
自然电位测井( ) 第一章 自然电位测井(SP)
§2 自然电位测井原理及曲线特征
地球物理测#自然电位测井
![地球物理测#自然电位测井](https://img.taocdn.com/s3/m/1f58d5386f1aff00bfd51e28.png)
E d U (x m ) U (x w ) zz 2 v v u u z z v 2 v u u R F T ln C C m wf
Qv→∞时:
RT Kda 2.3 zF
显然,Ed、Eda都和绝对温度T成正比。
地球物理测井——自然电位测井SP
④泥浆和地层水的化学成分的影响
Cw Cmf
Cw>Cmf砂泥岩剖面离子扩散路径和电荷分 布 如上图所示,浓度大的地层水中的离子有两种路径向浓度小的泥浆中扩散:
①—通过砂岩井壁直接向泥浆中扩散
②—通过砂岩围岩周围的泥岩向泥浆中扩散
地球物理测井——自然电位测井SP
1、纯砂岩的扩散电动势
如果砂岩为纯砂岩,不含泥质, 地层水中的Na+和Cl-在渗透压力作用下, 沿第一条路径扩散,且Na+移动速度较 慢,Cl-较快,因此,低浓度的泥浆中 Cl-富集而带负电,高浓度的地层水中 Na+过剩带正电,在地层水和泥浆滤液 的接触面两侧出现电位差。
地球物理测井——自然电位测井SP
自然电流回路等效电路
Rsh——泥岩等效电阻 Rsd——砂岩等效电阻 Rm——井筒内泥浆等效电阻
地球物理测井——自然电位测井SP
在井内砂岩和泥岩接触面附近的自然电位等效电路中, Ed与Eda是相互叠加的. 静自然电位 在相当厚的砂岩和泥岩接触面处的自
然电位幅度基本上是产生自然电场的 总电动势SSP,也称静自然电位.
地球物理测井——自然电位测井SP
2、自然电位曲线特点
自然电位(△VSP)是指自然电流在井中泥浆柱上产 生的电压降。
Vs pIrm 1
Es rt rirsh
rm rm rm
测量SP时,地面电极N的VN≠0,导致SP曲线没有零刻度,用箭 头上标的正负表示电位的相对高低,通常选择泥岩的自然电位
SP_自然电位测井曲线的形状
![SP_自然电位测井曲线的形状](https://img.taocdn.com/s3/m/2d94622fb4daa58da0114ab2.png)
第二节 自然电位测井曲线的形状在井钻穿地层的过程中,地层与钻井液相接触,产生扩散吸附作用,在钻井液与地层接触面上产生自然电位。
下面分析夹在厚层泥岩中的砂岩自然电位曲线的形状。
一、井内自然电场的分布若砂岩的地层水矿化度为C 2,泥岩的地层水矿化度为C 1,钻井液的矿化度为C mf,,设C 1> C 2>C mf ,井内自然电位的分布如图1-4所示。
在砂岩和钻井液的接触面上,由于扩散作用产生扩散电动势E d 为:C C K E mfd d 2lg = (1-6)在泥岩和钻井液的接触面上,由于扩散吸附作用产生的扩散吸附电动势E da :C C K E mfda da 1lg = (1-7)在泥岩和砂岩的接触面上,由于扩散吸附作用,产生的扩散吸附电动势E da :C C K E da da 21lg = (1-8) 在井与砂岩、泥岩的接触面上,自然电流回路的总自然电动势Es ,是每个接触面上自然电动势的代数和。
E s =C C K mf d 2lg +C C K mf da1lg -C C K da 21lg =C C K mf d 2lg+K da (C C mf 1lg -C C 21lg ) 图1-4砂泥岩交界面处自然电场的分布 =C C Kmf d 2lg + K da C C mf 2lg =(K d + K da) C C mf 2lg =K C C mf2lg(1-9) 式中 K=(K d +K da )——自然电位系数。
对于纯砂岩和泥岩地层,其地层水和钻井液滤液的盐类为氯化钠,在25℃时,K d = -11.6mV,K da =59.1 mV ,K d -K da = -70.7 mV,令K= -( K d -K da )=70.7 mV 代人式(1-9),E S =C C mf 2lg7.70 (1-10) 在溶液的浓度不很大时,可以认为电阻率与浓度成反比。
则式(1-10)可写成: R R E mfS 2lg 7.70= (1-11)式中 R mf ——钻井液滤液电阻率;R 2——砂岩地层水电阻率,以下用R w 表示。
测井原理总结sp曲线
![测井原理总结sp曲线](https://img.taocdn.com/s3/m/64de87fbaef8941ea76e05df.png)
1:SP测井曲线的特征及影响因素(2)曲线特征a.曲线对地层中点对称,地层中点处异常值最大;b.厚地层(h>4d)的自然电位曲线幅度ΔUsp近似等于SSP,曲线的半幅值点深度正对应着地层界面,因此可用半幅点法确定地层界面;c.随地层厚度的变小,自然电位曲线幅度ΔUsp下降,,曲线顶部变尖,底部变宽,ΔUsp 小于SSP,而且界面位置离开.半幅值点向曲线峰值移动。
.2使用自然电位测井曲线时应注意的几个问题:⑴自然电位测井曲线没有绝对零点,而是以泥岩井段的自然电位幅度作基线,曲线上方标有带极性符号的横向比例尺,它与曲线的相对位置,不影响自然电位幅度的读数。
⑵自然电位幅度ΔUsp的读数是基线到曲线极大值之间的宽度所代表的毫伏数。
⑶在砂泥岩剖面井中,一般为淡水泥浆钻进(Cw>Cmf),在砂岩渗透层井段自然电位曲线出现明显的负异常;在盐水泥浆井中(Cw<Cmf),则渗透层井段出现正异常,这是识别渗透层的重要特征。
3、影响因素Es 的大小取决于岩性、地层温度、地层水和泥浆中所含离子成分以及泥浆滤液电阻率与地层水电阻率之比。
自然电流I 的分布则决定于流经路径中介质的电阻率及地层厚度和井径的大小。
A 、地层温度的影响式中Kd|t=18℃为温度为18℃时的扩散电动势系数;t 为地层温度。
Ka 的温度换算公式与Kd 的形式相同。
B 、地层水和泥浆滤液中含盐浓度比值的影响ΔUsp 主要取决于自然电场的总电动势SSP 。
显然,ΔUsp 与SSP 成正比,而SSP 的大小取决于岩性和Cw /Cmf 。
因此,在一定的范围内,Cw 和Cmf 差别大,造成自然电场的电动势高,曲线变化明显。
C 、地层水和泥浆滤液中含盐性质的影响地层水和泥浆滤液内所含盐类不同,则溶液中所含离子不同,离子价也不同。
由于不同离子的离子价和迁移率均有差异,直接影响Kd 和Ka 的大小,因而也就影响了Es 的数值D 、井的影响(包括井径和泥浆电阻率)如上所述,自然电位异常幅度实际是自然电流在其所经过的泥浆柱上的最大电位降落。
地球物理测井:第03章 自然电位SP
![地球物理测井:第03章 自然电位SP](https://img.taocdn.com/s3/m/02d1d97c964bcf84b8d57b05.png)
2020/12/12
17
3.3 自然电位测井影响因素
1. 影响静自然电位SSP的因素
2020/12/12
1
第三章 自然电位测井
3.1 井下自然电位的产生 3.2 自然电位的测量 3.3 自然电位测井影响因素 3.4 SP测井的主要应用
2020/12/12
2
3.1 井下自然电位的产生
钻井后,由于电化学作用,自然产生多种电动势, 包括扩散电动势、扩散吸附电动势、过滤电动势等。但 对自然电位测井起主要作用的是扩散电动势和扩散吸附 电动势,其它电动势一般可以忽略。
产生自然电场的主要原因:
➢ 地层水溶液离子浓度与泥浆滤液的离子浓度不同,产生 离子扩散;
➢ 岩石颗粒表面对离子有吸附作用; ➢ 泥浆滤液向地层中渗透作用。
2020/12/12
3
1. 扩散电动势 ——纯岩石中地层水与泥浆之间的直接扩散
砂岩孔隙中的地层水与井内 泥浆之间,相当于不同浓度的两 种NaCl溶液直接接触。离子将从 高浓度的岩层一方朝着井内直接 扩散。由于Cl-的迁移率大于Na +,扩散结果:低浓度的泥浆一 方出现过多的Cl-,带负电,高 浓度的岩层一方,相对剩余Na+ 离子,带正电。从而产生了电位 差——地层一方的电位高于泥浆 一方的电位。
11
2020/12/12
12
第三章 自然电位测井
3.1 井下自然电位的产生 3.2 自然电位的测量 3.3 自然电位测井影响因素 3.4 SP测井的主要应用
2020/12/12
13
3.2 自然电位的测量
1. 自然电位SP的理论计算
自然电流:I SSP rm rsh rsd
测量的自然电位异常幅度值Usp :自然电流流过井内泥浆柱电
自然电位SP测井
![自然电位SP测井](https://img.taocdn.com/s3/m/15887f0beefdc8d376ee32ee.png)
勘探开发工程监督管理中心
二、自然电位测井及曲线特征
在砂泥岩剖面井 中,一般为淡水泥浆 钻进(Cw>Cmf),在砂 岩渗透层井段自然电 位曲线出现明显的负 异常;
在盐水泥浆井中 (Cw<Cmf),则渗透层 井段出现正异常。
这是识别渗透层 的重要特征。
泥岩基线
负
正
异
异
常
常
负
正
异
异
常
常
勘探开发工程监督管理中心
SSP 69.6 lg Rmf Rw
勘探开发工程监督管理中心
二、自然电位测井及曲线特征
按照上图中的等效电路,假设自然电流I所流经的泥浆、 砂岩、泥岩各段等效电阻分别为rm、rsd、rsh。
勘探开发工程监督管理中心
二、自然电位测井及曲线特征
rsh rm
rsd
rm 为泥浆等效电阻、rsd为砂岩等效电阻、rsh为泥岩等效电阻
ΔUsp与SSP的区别
ΔUsp——以泥岩为基线的,目的层自然电位异常幅度,数值受到目的层厚度的 影响。
SSP ——以相当厚的纯泥岩为基线的,相当厚的的纯砂岩自然电位异常幅度, 数值与厚度无关,与K有关,因K=Kd-Kda,所以SSP与扩散电动势系数( Kd)和扩散吸附电动势系数(Kda)有关。
或者可以理解为:
造成自然电场的电动势高,曲线变化明显。
勘探开发工程监督管理中心
三、影响因素
如图是XXX井 的综合曲线 图,1270米以下 地层水矿化度高, Cmf<<Cw,SP曲线 为负异常,SP曲 线分层能力强; 到1270米以上地 层水矿化度发生 了变化,往上Cw 变小, SP曲线负 异常幅度变小, 逐渐变为无异常、 小幅度的正异常, 用SP曲线不能划 分储层。
自然电位SP测井
![自然电位SP测井](https://img.taocdn.com/s3/m/15887f0beefdc8d376ee32ee.png)
勘探开发工程监督管理中心
三、影响因素
如图是XXX井 的综合曲线 图,1270米以下 地层水矿化度高, Cmf<<Cw,SP曲线 为负异常,SP曲 线分层能力强; 到1270米以上地 层水矿化度发生 了变化,往上Cw 变小, SP曲线负 异常幅度变小, 逐渐变为无异常、 小幅度的正异常, 用SP曲线不能划 分储层。
目录
一、自然电场的产生 二、自然电位测井及曲线特征 三、影响因素 四、自然电位曲线应用 五、监督工作控制节点
勘探开发工程监督管理中心
二、自然电位测井及曲线特征
在纯泥岩层,由于离子 的扩散作用,形成扩散 吸附电动势,井壁内侧 富集正电荷。 在纯砂岩层,将泥饼看 成是渗透性隔膜,由于 离子的扩散作用,形成 扩散电动势,井壁内侧 富集负电荷。
Usp Irm SSP rm rm rsd rsh
Usp SSP
1
1 rsd rsh
rm
对于巨厚地层,砂岩和泥岩层的截面积比井的截面积大得多,所以rm比rsd、
rsh大得多,因此,目的层自然电位幅度约等于静自然电位,即ΔUsp ≈ SSP 。 而对于一般有限厚地层的ΔUsp则小于SSP值。
勘探开发工程监督管理中心
目录
一、自然电场的产生 二、自然电位测井及曲线特征 三、影响因素 四、自然电位曲线应用 五、监督工作控制节点
勘探开发工程监督管理中心
几个概念:
• 泥浆:钻井时在井内流动的一种介质。 • 泥浆滤液:在一定压差下,进入到井壁地层孔隙
内的液体。 • 地层水:地层孔隙内的水。 • 溶液的矿化度:溶液含盐的浓度。溶质重量与溶
目录
一、自然电场的产生 二、自然电位测井及曲线特征 三、影响因素 四、自然电位曲线应用 五、监督工作控制节点
自然电位SP
![自然电位SP](https://img.taocdn.com/s3/m/dba6621fc281e53a5802ffff.png)
第三章自然电位测井(SP) 自然电位测井是在裸眼井中测量井轴上自然产生的电位变化变化,,以研究井剖面地层性质的一种测井方法以研究井剖面地层性质的一种测井方法;; 是最早使用的测井方法之一是最早使用的测井方法之一,,简便而实用简便而实用,,是砂泥岩剖面淡水泥浆裸眼井必测的项目之一面淡水泥浆裸眼井必测的项目之一。
对于区分岩石性质,尤其是在区分泥质和非泥质地层方面尤其是在区分泥质和非泥质地层方面,,更有其突出的优点的优点。
(S pontaneous P otential otential))3.1 3.1 井下自然电位的产生井下自然电位的产生3.2 3.2 自然电位的测量自然电位的测量3.3 3.3 自然电位测井影响因素自然电位测井影响因素3.4 SP 3.4 SP测井的主要应用测井的主要应用第三章自然电位测井3.1 3.1 井下自然电位的产生井下自然电位的产生钻井后钻井后,,由于电化学作用由于电化学作用,,自然产生多种电动势自然产生多种电动势,,包括扩散电动势包括扩散电动势、、扩散吸附电动势扩散吸附电动势、、过滤电动势等过滤电动势等。
但对自然电位测井起主要作用的是扩散电动势和扩散吸附电动势电动势,,其它电动势一般可以忽略其它电动势一般可以忽略。
产生自然电场的主要原因:地层水溶液离子浓度与泥浆滤液的离子浓度不同地层水溶液离子浓度与泥浆滤液的离子浓度不同,,产生离子扩散离子扩散;;岩石颗粒表面对离子有吸附作用岩石颗粒表面对离子有吸附作用;;泥浆滤液向地层中渗透作用泥浆滤液向地层中渗透作用。
1. 1. 扩散电动势扩散电动势————纯岩石中地层水与泥浆之间的直接扩散纯岩石中地层水与泥浆之间的直接扩散砂岩孔隙中的地层水与井内泥浆之间泥浆之间,,相当于不同浓度的两种NaCl NaCl溶液直接接触溶液直接接触溶液直接接触。
离子将从高浓度的岩层一方朝着井内直接扩散扩散。
由于由于Cl Cl -的迁移率大于的迁移率大于Na Na+,扩散结果扩散结果::低浓度的泥浆一方出现过多的方出现过多的Cl Cl -,带负电带负电,,高浓度的岩层一方浓度的岩层一方,,相对剩余相对剩余Na Na +离子离子,,带正电带正电。
测井曲线及含义
![测井曲线及含义](https://img.taocdn.com/s3/m/ff3e958702d276a200292e16.png)
一、自然电位测井:(SP)测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
二自然电位测井
![二自然电位测井](https://img.taocdn.com/s3/m/319409ea910ef12d2af9e72e.png)
2
测井仪器的组成及工艺过程
地面仪器
电 缆
井下仪器
3
SP 的 成 因
井中泥浆矿化度与地层水矿化度的不同
导致产生
电化学电动势
泥浆柱与地层之间的压力差
导致产生
动电学电动势
4
电化学电动势包括: •扩散电动势(diffusion potential) (通常在渗透层井壁附近产生) •扩散吸附电动势(diffusion adsorption potential) (通常在泥岩段井壁附近产生)
6
当达到动态平衡时(?),溶液接触面附近的电动势为一常数, 此电动势被称为扩散电动势,用符号Ed表示. Ed=KdlgCW/Cmf Kd称 为扩散电动势系数,
对于NaCl溶液,在温度为18oC时, Kd=-11.6mv
7
NaCl 溶液 纯泥岩隔板 扩散过程与纯砂岩隔板时类似,但由于
泥岩对离子的选择吸附作用(离子筛),
由细到粗 , 是水退的结果 , 底部渐变接触 , 顶部突变接触 ; 曲线
光滑或齿化的程度是沉积能量稳定或变化频繁程度的表示 .这
些都同一定沉积环境形成的沉积物相联系可作为单层划相的
标志之一.
29
多层曲线形态反映一个沉积单位的纵向沉积序列 ,可作为划
分沉积亚相的标志之一.
SP曲线形态较简单,又很有地质特征,因而便于井间对比,研
通常指纯砂岩和纯泥岩 交界面处的电化学总电动势.
井下自然电流I 自然电位幅度△Usp
SSP I rm rsd rsh
U sp Irm
13
SP曲线形状特征
-
SP
+
泥岩 基线 CW>Cmf时 负 异常 CW<Cmf时 正异常
自然电位,自然伽马测井曲线在文15块的应用(一)
![自然电位,自然伽马测井曲线在文15块的应用(一)](https://img.taocdn.com/s3/m/dedb46e577eeaeaad1f34693daef5ef7ba0d120d.png)
自然电位,自然伽马测井曲线在文15块的应用(一)自然电位,自然伽玛测井曲线在文15块的应用什么是自然电位和自然伽玛测井曲线?自然电位和自然伽玛测井曲线是两种地球物理测井技术,它们能够对地下岩石的性质、含油气程度等进行分析和识别。
自然电位(SP)测井是指将针对地下岩石中离子的自然分布所产生的电位信号进行测量和记录。
在油气勘探中,自然电位的变化能够对应不同深度和含油气程度的地层。
自然伽玛测井是通过记录地下自然辐射的伽玛射线强度变化来分析地层的物性和组成。
这种测井技术能够识别不同的岩石类型和目标层,也能够判断地层是否含有放射性物质。
文15块特征文15块是位于中国东海南部的一个海域油气勘探区域,它的地质特征主要包括:•由白垩系陆源碎屑岩、张家港组、青龙山组等构成的沉积层•浅海到近岸浅海的环境,受潮汐调节影响•低或中等成熟度的油气,以及与之相关的地层构造和地层圈闭自然电位和自然伽玛测井在文15块中的应用在文15块中,自然电位和自然伽玛测井曲线具有以下应用:1. 确认地层边界和岩性通过记录自然电位和自然伽玛曲线,可以在地层中确定不同层位和边界。
由于岩石的物性、组成和厚度等因素会对自然电位和自然伽玛产生影响,所以这些曲线能够提供较为准确的地层分类和识别。
2. 研究油气运移规律和圈闭特征文15块中的油气主要聚集在岩石孔隙和构造圈闭中,自然电位和自然伽玛曲线能够为研究这些圈闭的特征提供数据支撑。
例如,自然电位在圈闭上会形成正负极性反转的现象,而自然伽玛曲线则能够反映圈闭中油气的厚度和有无。
3. 评价油气含量和成熟度自然电位能够反映不同深度地层的含盐程度和流体性质,从而可以对油气含量进行初步估算。
同时,自然伽玛曲线还能够表示油气组分中的碳-氢比,从而提供油气成熟度的信息。
结论总的来说,自然电位和自然伽玛测井曲线是重要的地球物理测井技术,在油气勘探中起着至关重要的作用。
在文15块这一海域油气勘探区域,这两种技术也有着广泛的应用,为勘探和开发工作提供了重要的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等效电路图
U SP SSp
1 rsd rsh 1 rm
第一章 自然电位测井(SP)
§2 自然电位测井原理及曲线特征
2、总电动势
在纯的、巨厚含水砂岩地层:测量结果 Usp可以看作 是静自然电位SSP; Usp SSP
对于薄层: r Usp I r SSP rm SSP sd m rsh rsd rm 含油气地层: Usp SSP
因而,在砂泥岩剖面,实际上测量得到的SP电位实际 上都小于静自然电位,故而SSP应在井段内的测量结果 最大值处读取。
2
—
半幅点及半幅点法确定地层界面方法: 半幅点:SP曲线基线与最大值的0.5倍处 半幅点法确定地层界面方法:1~4步
+
0.5△USP a
3
h
4
b
△USP
1 半幅点法确定地层界面示意图
1、判断岩性,划分渗透层;
2、用于地层对比;
3、求地层水电阻率; 4、估算地层泥质含量; 5、判断水淹层; 6、研究沉积相。
•曲线特点
砂泥岩剖面: 泥岩处 砂岩处 SP曲线平直(基线) 负异常(Rmf > Rw )
负异常幅度 与粘土含量 成反比,Rmf / Rw 成正比
四、自然电位测井曲线应用
图1-6 自然电位测井理论曲线
厚层砂岩总电动势(静自然电位):
rsh rsd
rm
SSP I rm I rsd I rsh
总电流:
I
SSP rm rsd rsh
有限厚砂岩层自然电位幅度:
U sp
SSP rm I rm rm rsd rsh
与静自然电位关系:
SSP 69.6 lg Rmf Rw
§2 自然电位测井原理及曲线特征
2、SP( Usp )曲线及其特点
①SP曲线要素
随电极M的上升,测量一条随井深变化的曲线, 即为SP曲线,曲线的基本形态如图所示。 基线—实测SP曲线没有绝对的零点,而是以井 段中较厚的泥岩层的SP幅度为基线,称为泥岩基 线; 异常—在砂岩层处SP曲线相对于泥岩基线发生 偏转,对应的曲线峰称为异常。曲线相对于泥岩 基线可以向正方向偏转,称为正异常;也可以向 负方向偏转,称为负异常。 正异常:盐水泥浆 负异常:淡水泥浆
自然电位测井(SP)
本章的主要内容 1、井内自然电场 2、自然电位测井原理及曲线特征 3、自然电位曲线的主要用途 划分岩性(储集层)、确定Rw、计 算Vsh、判断水淹层。
§1井内自然电场
导线 + — + — + — + — Cw + — Cm 电极
渗透性薄膜
一、扩散电动势
“负”离子Cl迁移率》“正” 离子Na迁移率
二、扩散吸附电动势
导线
— — — —
+ + + + Cm + Nacl溶液 电极
Cw
粘土隔板
—
Cw>Cm
粘土颗粒表面具“-”电性,有选 择性吸附“正”离子Na
Байду номын сангаас
C1 R2 Eda Kda lg Kda lg C2 R1
纯泥岩层的扩散-吸附电动势
在纯泥岩层,井壁处地层水矿化度 Cw,泥浆滤液矿化度Cmf,对于淡 水泥浆,则Cmf<Cw,将泥岩看成 是粘土隔板,则由于离子的扩散作 用:
Nacl溶液
Cw>Cm
扩散电动势产生示意图
纯砂岩层的扩散电动势
在纯砂岩层,井壁处地层水矿化度 Cw,泥浆滤液矿化度Cmf,对于淡 水泥浆,则Cmf<Cw,将泥饼看成 是渗透性隔膜,则由于离子的扩散 作用:
Ed Kd lg
Cw Rm f Kd lg Cm f Rw
图1-3井内自然电场分布示意图
Cw Rm f C1 R2 Eda Kdalglg Kda Kda lg Eda Kda lg Cm2 Rw Cf R1
图1-3井内自然电场分布示意图
扩散吸附电动势:
E da K da
Cw lg Cm
溶液矿化度转化为溶液电阻率后:
E da K da
Rmf lg Rw
扩散吸附电动势系数:Kda——与阳离子交换能力有关
若储层中泥值的阳离子交换量较高,则会导致低电阻率油层。
§2自然电位测井原理及曲线特征
§2 自然电位测井原理及曲线特征 第一章 自然电位测井(SP)
2、总电动势
E总 Ed Eda K lg Rmf def Rw SSP
通常把 E 称为静自然电位,记 作SSP; 总 Ed的幅度称为砂岩线; Eda的幅度叫泥岩线。 在18 oC,极限情况下,静自然电 位系数: K=Kd-Kda=-11.6-58=69.6 ( mv ) , 所以,在18℃时的纯砂岩层处的 SSP为:
1.划分渗透层
幅度、半幅点
—
0.5△USP
+
a
h
b
△USP
砂泥岩剖面较常用。
地层对比
注意:
淡水——下部水淹
无论是淡水还是咸水: 大段对比确定基线; 符合地质规律。
正韵律下部易水淹; 反韵律上部易水淹;
电阻率测井的应用
1、岩性识别