地球物理测井各条测井曲线的原理及应用
测井曲线的应用
主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井曲线的原理及应用 - 副本
主要用途是: 1.确定地层的电阻率; 2.计算储层的含水饱合度; 3.判断油、气、水层。
电祖率测井主要作用
求解含油饱和度 例:Archie 公式(1942年)
(1)能准确地确定地层界面的深度,并能详细地划分薄地层。 (2)能判断地层的岩性和渗透性。 (3)能计算储集层的储集性和含油性参数。 (4)能划分和评价油层、气层和水层。
1、电阻率测井系列 提供地层真电阻率和侵入带电阻率以及泥浆侵入状况,确定 储层的含水饱和度。 2、岩性—孔隙度测井系列 用于识别岩性、计算地层孔隙度,判识油气、水层
地层因素 :
F
Ro Rw
a
m
电阻率增大系数: I Rt b
Ro
S
n w
含水饱和度:
Sw n
abRw
m Rt
泥浆侵入特征 在钻井过程中,井内泥浆柱的静压力通常大于地层压力,此压力差
使泥浆滤液进入渗透性地层,叫泥浆侵入。 泥浆中固体颗粒沉淀于井壁形成泥饼。泥饼的渗透性较差,因此形
岩石体积密度 ρb=(1-Vsh-)ρma+Vshρsh+ Sxoρf+ (1-Sxo)ρh
Ρh --岩石骨架、泥质、泥浆滤液和油气的密度; Vsh--泥质含量; --有效孔隙度; Sxo--冲洗带含水饱和度。
密度和岩性—密度测井的应用
1)确定岩性和孔隙度 (1)根据密度曲线和岩心分析资料回归“密度—孔隙度”经 验公式,或分析资料与密度、声波时差、中子等测井参数经多 元回归的经验公式,再计算新井的地层孔隙度。 (2)岩性单一时,也可以用以下公式计算孔隙度(φ)。
各条测井曲线的原理及应用
各条测井曲线的原理及应用引言测井是地质勘探中不可或缺的技术手段之一。
随着勘探深度的增加和技术的进步,测井曲线的种类也逐渐增多。
本文将介绍几种常见的测井曲线,包括电阻率曲线、自然伽马曲线、声波曲线和中子曲线的原理及应用。
1. 电阻率曲线电阻率曲线是测井中最常见的曲线之一,用于反映地层的电阻率特性。
在测井时,通过测量地层对射入电流的电阻来得到电阻率曲线。
电阻率曲线的应用包括:- 地层分类:根据电阻率曲线的特征,可以将地层分为不同类型,如油层、水层和盐层等。
- 识别流体类型:通过电阻率曲线的变化,可以判断地层中的流体类型,如水、油或气体等。
- 沉积环境分析:电阻率曲线对地层的沉积环境也有一定的指示作用,如高电阻率的地层可能是砂岩,低电阻率的地层可能是页岩等。
2. 自然伽马曲线自然伽马曲线是记录地层自然伽马辐射强度的曲线,用来确定地层的物理性质和放射性岩石的含量。
自然伽马曲线的应用包括: - 确定放射性岩层:通过自然伽马曲线的变化,可以定量地确定地层中放射性岩石的含量。
- 钻井定位:自然伽马曲线常用于钻井中的测井工作,通过分析伽马辐射来确定钻头所处的位置和地层的特征。
- 地层对比:自然伽马曲线可以用于地层的对比,从而帮助地质学家更好地理解地层的时空分布。
3. 声波曲线声波曲线记录了地层中声波的传播速度和衰减特性,用于刻画地层的物理性质和孔隙度。
声波曲线的应用包括: - 地层属性分析:通过分析声波曲线的特征,可以确定地层的孔隙度、渗透率和饱和度等物理属性。
- 油气识别:声波曲线可以帮助判断地层中的油气类型和含量,对于油气勘探具有重要意义。
- 工程设计:声波曲线在工程设计中也有一定的应用,如在隧道掘进中可以通过声波曲线判断地层的稳定性。
4. 中子曲线中子曲线是记录测井装置发射的中子数与到达探测器的中子数之比的曲线。
中子曲线的应用包括: - 流体识别:通过中子曲线可以识别地层中不同类型的流体,如水、油和气体等。
测井九条曲线的应用
① ②
③
砂岩的流体为气时:含氢量低
密度(DEN)
反应地层孔隙度
※测得地层孔隙度为有效孔隙度 划分岩性 判断气层 计算孔隙度 块煤的密度为1.4g/m3 粉煤的密度为1.7~1.8g/m3
地层在各曲线中的反应
GR 煤层 低 泥岩 高 灰岩 低 高 DNL 低 RT 高 低 高 低 DT 高 CNL 高 高 低 DEN 高 高
自然伽玛(GR) 自然电位(SP) 微球聚焦(RXO) 岩性(DEN) 深侧向(LLD) 浅侧向(LLS) 声波(DT) 中子(CNL) 密度(DNL)
自然伽玛(GR)
一、作用 反应地层的泥质含量 判断地层盐型、计算泥质含量 二、岩性的反应出 ★ 泥岩的GR最高 ★ 煤岩与灰岩的GR最低
• 反应地层的孔隙度 • 岩性反应 1.泥岩的声波 2.砂岩的声波 3.灰岩的声波 4.煤岩的声波
300µ/m 270µ/m 300µ/m 300µ/m
中子(CNL)
• • ☆ • 反应地层孔隙度 反应气层 中子测得孔隙度为有效孔隙度 测含氢量 泥岩含氢量高 煤岩含氢量高 灰岩含氢量低 砂岩含氢量根据流体改变
自然电位(SP) spontaneous potential
作用 (1)反应地层渗透率 (2)测定渗透率、矿化度
微球聚焦(RXO)
反应电阻率
深、浅侧向(LLD、LLS)
• 反应地层电阻率 • 岩性反应 1、泥岩的电阻率小 2、砂岩的电阻率根据流体的不同在变化 3、煤岩与灰岩的电阻率高
声波(DT)
测井曲线在矿山地质勘探工作中的应用
2020年 4月下 世界有色金属143地质勘探G eological prospecting测井曲线在矿山地质勘探工作中的应用李宏堂(陕西神延煤炭有限责任公司,陕西 榆林 719000)摘 要:在矿山勘探中,地球物理测井是一种重要手段,它是所采集的第一手资料,是矿物质、矿层在空间分布的最真实反映。
而三侧向电阻率、自然伽玛、密度三种重要曲线可以定量的解释出矿、矿层深厚度等重要特征,达到解决矿山地质勘查的核心问题,从而印证这三种曲线在矿山地质勘探中应用的重要性。
关键词:三侧向电阻率;自然伽玛;密度;矿山地质勘查中图分类号:P631.81 文献标识码:A 文章编号:1002-5065(2020)08-0143-2Application of logging curve in mine geological explorationLI Hong-tang(Shaanxi Shenyan Coal Co., Ltd., Yulin 719000,China)Abstract: In mine exploration, geophysical logging is an important means, it is the first-hand data collected, and it is the most real reflection of mineral and seam distribution in space. The three important curves of three lateral resistivity, natural gamma and density can quantitatively explain the important characteristics of ore drawing and ore bed depth, so as to solve the core problem of mine geological exploration, thus confirming the importance of the application of these three curves in mine geological exploration.Keywords: three lateral resistivity; natural gamma; density; Mine geological exploration地球物理测井是矿山地质勘探的重要手段之一,它是利用矿层与围岩存在着巨大的地球物理差异,即矿层相对于围岩具有明显的高电阻率、低自然伽玛、低密度等的特征差异进行解释推断(如图1)。
裸眼测井各条曲线的原理及应用(课件)
地面 仪器
归零点?
解释站资料处理
维修保养车间
测井起源于法国,1927年9月,法国人斯仑贝谢兄弟(Conrad Schlumberger和Marcle Schlumberger)发明了电测井,在法国Pechelbronn油 田记录了第一条电测井曲线。中国使用电法测井勘探石油与天然气始于 1939年12月。开始是简单的电阻率测井,直到1950年才出现侧向测井(聚 焦式电阻率测井),第一代侧向测井是三侧向,随后发展了七侧向、八侧 向、微侧向等,侧向测井出现后,普通电阻率测井被淘汰。法国人Doll提 出感应测井方法,1946年5月3日Doll所设计的仪器在美国德克萨斯州一个 油田的7号井中记录了第一条感应测井曲线,随后Doll还提出了几何因子理 论。 在声波测井方面,Mobil石油公司和Shell石油公司于50年代早期各自独立 地发展了声速测井。1952年,Summer和Broding提出了单发双收声波测井仪 。1964年,Schlumber公司把它改进为双发双收的井眼补偿声波测井仪。 放射性测井又称核测井,开始于20世纪30年代末,由美国和前苏联首先 使用自然γ 测井方法评价地层和区分岩性,后来,特别是60年代后发展为 系列核测井仪。
双感应 — 八侧 向(上古目的 层)
7
井径
油开发井测井系列
1:500测井 项目 (全井) 1 双感应 声波时差 自然电位 自然伽马 井径 井斜 2 3 4 5 6 7 8 1:200测井项目 选测项目 (目的层段) 双感应—八侧向 地层倾角 声波时差 补偿密度 自然伽马 自然电位 微电极 4米电阻率 井径 自然伽马能谱 补偿中子 地层测试
气开发井测井系列
1:500测井项目 (全井 )
1 2 3 4 5 双侧向 声波时差 自然电位 自然伽马 井径 1 2 3 4 5
地球物理测井3(自然电位测井)
3 自然电位测井(SP)
3 自然电位测井(SP)
斯仑贝谢1928年发 现了这样的现象:在未 通电的情况下,井中电 极(M)与位于地面的电 极(N)之间存在着电位 差,而且该电位差随着 地层的不同而变化。另 外,电位差的变化规律 性很强。
3 自然电位测井(SP)
后来、道尔、威利、费多尼、斯卡拉和 安德森等人对这一现象进行了研究,同时, 自然电位测井(SP)也就诞生了。
3.1.2 电化学作用与电化学电位
• 油井中的电化学作用主要包括两种: 一种是扩散作用,另一种是扩散吸附 作用。
3.1.2.1 扩散作用与扩散电位
3.1.2.1 扩散作用与扩散电位
• 当具有不同矿化度的两种流体相接 触时,离子将从浓度高的地方向浓 度低的地方移动,这种现象我们称 为扩散作用。
3.1.2.1 扩散作用与扩散电位
• 第二种为相对刻度 的曲线读值,首先 确定基线然后读取 相对值 。
1.2 自然电位测井曲线
关于相对刻度 的说明: • “-”为电位降低的 方向; • “+”为电位升高 的方向; • |—| 间距是电位的 变化量的大小的刻 度。
1.2.1 自然电位测井曲线的特点
• 在泥岩层处自然电位曲线的 测井值比较稳定。
K值的变化,
⑵ 温度对电阻率的 影响明显。
1.3.1 自然电位测井的影响因素
U SP I rm
U SP
rm
ES ri rt
rsh
rm
K lg C w
U SP
rm
ri
C mf rt
பைடு நூலகம்rsh
rm
• 地层厚度的影响 r=R×L/S S=h×井眼的周长
地球物理测#(第三章)核测井GR测井
Wi—为第i个能量窗的计数率 Ai、Bi、Ci—用刻度井得到的第 I能量窗的刻度系数 :统计因子 Th、U、K:表示钍、铀、钾的含量
地球物理测井—放射性测井
自然伽马能谱测井(NGS)
输出的测井曲线:SGR (GR总计数率) THOR钍含量 URAN铀含量 POTA钾含量
地球物理测井—放射性测井 三、NGS曲线应用
自然伽马能谱测井(NGS)
自然伽马能谱测井的地质依据,是U、Th, K在矿物和 岩石中的分布规律与岩石的矿物成分、成岩环境和地下 水活动有关。 一般说来,普通粘土岩中钾和钍含量高,而铀的含量 较低(相对于钾和钍)。据 Belk-nap, W. B. 等人由 200 块不同种类的粘土岩取得的分析数据,粘土岩中放射性
钾系的特征谱:1.46Mev
钍系的特征谱:2.62Mev
铀系的特征谱:1.76Mev
P128
在特征能量峰处的伽马射线的强度最大
地球物理测井—放射性测井
自然伽马能谱测井(NGS)
二、NGS的测井原理
核心部分是:多道分析器。 能够测量分析伽马射线的能谱 将能谱分为五个能级窗 两个低能窗、三个道能窗 W1:0.15-0.5 Mev W2:0.5-1.1Mev W3:1.32-1.575Mev (钾窗) W4:1.65-2.39Mev (铀窗) W5:2.475-2.765Mev(钍窗)
自然伽马测井
砂泥岩剖面(骨架不含放射性矿物)
随着泥质含量的增加, GR值增加。 泥岩-高值;砂岩-低值
GR 泥 岩 砂 岩
碳酸盐岩剖面相同
泥 岩
H
砂 岩
地球物理测井—放射性测井
地球物理测井—放射性测井
给定岩性剖面,请定性的画出GR曲线。 GR 泥灰岩 灰岩 泥岩
各条测井曲线的原理
一、各条测井曲线的原理及应用 二、测井曲线在油田开发中的综合应用 三、测井曲线异常原因分析: 四、新测井系列厚度解释偏少的原因分析
一、各条测井曲线的原理及应用
1.自然电位测井(SP) 2.声波时差测井(AC) 3.自然伽马 (GR) 4.视电阻率测井(RT) 5.三侧向测井(LLD/LLS)
测井起源于法国,1927年9月,法国人斯仑贝谢兄弟(Conrad Schlumberger和Marcle Schlumberger)发明了电测井,在法国Pechelbronn油 田记录了第一条电测井曲线。中国使用电法测井勘探石油与天然气始于 1939年12月。开始是简单的电阻率测井,直到1950年才出现侧向测井(聚 焦式电阻率测井),第一代侧向测井是三侧向,随后发展了七侧向、八侧 向、微侧向等,侧向测井出现后,普通电阻率测井被淘汰。法国人Doll提 出感应测井方法,1946年5月3日Doll所设计的仪器在美国德克萨斯州一个 油田的7号井中记录了第一条感应测井曲线,随后Doll还提出了几何因子理 论。
从曲线上比较容易选择区域 性对比标准层,所以当其它测井 曲线难以进行地层对比的剖面, 可以用自然伽玛曲线进行。另外, 曲线可在下套管的井中进行,因 此广泛应用于工程技术测井,如 跟踪定位射孔、找套管外窜槽等。
曲线应用
3.声波时差测井
原理:不同的地层中,声波的传播速度是不 同的。声波速度测井仪在井下通过探头发射 声波,声波由泥浆向地层传播,其记录的是 声波通过1米地层所需的时间△t(取决于岩 性和孔隙度)随深度变化的曲线。
-|25mv|+
泥
自然电位 原状地层
侵 入 带 ( 稀 溶
浆 ( 稀 溶 液 )
液
)
泥岩 砂岩
泥岩
测井曲线基本原理及其应用
测井曲线基本原理及其应用国产测井系列1、标准测井曲线2.5m底部梯度视电阻率曲线。
地层对比,划分储集层,基本反映地层真电组率。
恢复地层剖面。
自然电位(SP)曲线。
地层对比,了解地层的物性,了解储集层的泥质含量。
2、组合测井曲线(横向测井)石油,石化,化工, 化学,标准, 勘探,油藏,采油,测井,炼制, 储运, 工艺,设备, 环境,污水处理含油气层(目的层)井段的详细测井项目。
双侧向测井(三侧向测井)曲线。
深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS。
0. 5m电位曲线。
测量地层的侵入带电阻率。
0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。
补偿声波测井曲线。
测量声波在地层中的传输速度。
测时是声波时差曲线(AC)自然电位(SP曲线。
井径曲线(CALP。
测量实际井眼的井径值。
微电极测井曲线。
微梯度(RML,微电位(RMN, 了解地层的渗透性。
感应测井曲线。
由深双侧向曲线计算平滑画出。
[L/RD]*1000二COND 地层对比用。
套管井测井曲线自然伽玛测井曲线(GR)。
划分储集层,了解泥质含量,划分岩性。
中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。
校正套管节箍的深度。
套管节箍曲线。
确定射孔的深度。
固井质量检查(声波幅度测井曲线)二、3700 测井系列1、组合测井;双侧向测井曲线。
深双侧向测井曲线,反映地层的真电阻率(RD。
浅双侧向测井曲线,反映侵入带电阻率(RS。
微侧向测井曲线。
反映冲洗带电阻率(RX0)。
补偿声波测井曲线(AC,测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M。
反映地层的致密程度。
补偿密度测井曲线(DEN,测量地层的体积密度(g/cm3),反映地层的总孔隙度。
补偿中子测井曲线(CN。
测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%)自然电位曲线(SP)自然伽玛测蟛曲线(GR,测量地层的天然放射性总量。
测井曲线的识别及应用
第一讲测井曲线的识别及应用钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。
钻井获取的岩芯资料直观、准确,但成本高、效率低。
岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。
测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差异,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。
鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。
综合测井系列:重点反映目的层段钻井剖面的地层特征。
测量井段由井底到直罗组底部,比例尺1:200。
由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。
探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。
标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口〔黄土层底部〕,比例尺1:500,多用于盆地宏观地质研究。
过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。
近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。
一、测井曲线的识别微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。
微电极常用于判断砂岩渗透性和薄层划分。
感应—八侧向测井用于判定砂岩的含油水层性能。
四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分。
它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。
1、微电极测井大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。
泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。
冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8厘米。
主要测井曲线及其含义
主要测井曲线及其含义自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的"正〞、"负〞以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进展地层比照。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大〔浅部地层〕咸水泥浆〔相对与地层水电阻率而言〕自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移普通视电阻率测井〔R4、R2.5〕普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层比照。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;假设套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
微电极测井〔ML〕微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率R*o及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井曲线解释 (2)
主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw 时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井原理及各种曲线的应用
一、SP曲线和GR曲线测井基本原理用淡水泥浆钻井时,由于地层水矿化度小于泥浆滤液矿化度而在砂岩段形成扩散电位——在井眼内砂岩段靠近井壁的地方负电荷富集,地层内砂岩段靠近井壁的地方正电荷富集,导致砂层段井眼泥浆的电势低于砂层电势,正象一个平行于地层且正极指向地层的“电池”(第一个)。
在泥岩段,因为泥浆滤液与地层水之间存在矿化度差及选择性吸附作用形成吸附电位——在井眼内泥岩段靠近井壁的地方正电荷富集,地层中泥岩段负电荷富集,导致泥岩段井眼泥浆的电势高于地层电势,正象一个平行于地层且正极指向井眼的“电池”(第二个)。
又因为泥浆和地层各具导电性,正象两条导线把以上两个“电池”串联了起来而形成回路,这样在地层中电流从砂岩段(第一个电池正极)流向泥岩段(第二个电池负极);在井眼中电流从泥岩段(第二个电池正极)流向砂岩段(第一个电池负极)。
在此回路中,地层也充当电阻的作用,总电动势等于扩散电动势和吸附电动势之和。
用M电极在井眼中测的自然电流在泥浆中产生的电位降即得自然电位曲线。
其值在正常情况下与对应地层中泥质含量关系密切,砂岩中泥质含量增加,则电位降下降,异常幅度减小;砂岩中泥质含量下降,则电位降上升,异常幅度增大。
另外,当泥浆柱与地层流体间存在压力差时发生过滤作用形成过滤电动势——动电学电位。
沉积岩的放射形取决于岩石中放射性元素的含量,放射性元素的含量主要取决于粘土和泥质的含量,粘土和泥质含量越高放射性越强。
GR曲线主要测量地层的放射性。
1、曲线幅度反映沉积时水动力能量的强弱;2、曲线形态反映物源供给的变化和沉积时水动力条件的变化;3、顶、底部形态的变化反映沉积初、末期水动力能量和物源供给的变化速度;4、曲线的光滑程度水动力对沉积物改造所持续时间的长短;5、曲线的齿中线组合方式反映沉积物加积特点;6、曲线包络形态反映在大层段内垂向层序特征和多层砂在沉积过程中能量的变化。
影响自然电位曲线异常幅度的因素:(1)岩性、地层水与泥浆含盐度比值的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅双侧向电阻率测井
RMLL
micro lateral resistivity log
微侧向电阻率测井
CON
induction log
感应测井
AC
acoustic
声波时差
DEN
density
密度
CN
neutron
中子
GR
natural gamma ray
自然伽马
SP
spontaneous potential
-|25mv|+
泥
自然电位 原状地层
侵 入 带 ( 稀 溶
浆 ( 稀 溶 液 )
液
)
泥岩 砂岩
泥岩
1、自然电位测井
•曲线特点
砂泥岩剖面: 泥岩处 SP曲线平直(基线) 砂岩处 负异常(Rmf > Rw )
负异常幅度 与粘土含量成反 比,Rmf / Rw 成正比
曲线应用
① 划分岩层界面 ② 确定渗透性岩层 ③ 确定水淹层
1:500测井项目 (全井 )
1 双侧向
1
2 声波时差
2
3 自然电位
3
4 自然伽马
4
5 井径
5
6 井斜
6
7
1:200测井项目 (目的层段) 双侧向—微球形聚焦
选测项目 地层倾角
岩性密度 补偿中子 声波时差 自然伽马 自然电位
井径
自然伽马能谱
微电阻率成像
声波成像
核磁共振
双感应—八侧 向(上古目的 层)
测井符号
英文名称
中文名称
Rt
true formation resistivity.
地层真电阻率
Rxo
flushed zone formation resistivity
冲洗带地层电阻率
Ild
deep investigate induction log
深探测感应测井
Ilm
medium investigate induction log
③判断水淹层
曲线应用
水淹层处,出现自然电位基线偏移的情况。
2、自然伽马和自然伽马能谱测井
原理:测量井剖面自然伽马射线的强度和能 谱的测井方法。
沉积岩中含有天然放射性同位素,不同 岩石所含放射性同位素的数量不同,衰变时 放射出的伽马射线的强弱也不同,因此自然 伽马测井曲线能够反映不同地层的岩性剖面。
自然电位
CAL
borehole diameter
井径
K
potassium
钾
TH
thorium
钍
U
uranium
铀
KTH
gamma ray without uranium
无铀伽马
NGR
neutron gamma ray
中子伽马
围岩
泥
地 层 厚 度
浆 泥饼
过
冲 洗 带
渡 带 或 环
未 侵 入 带
带
侵入带直径 di 井径 dn
• 气探井测井系列
1:500测井项目(全 井
1:200测井项目(目的层段)选测项目
1 双侧向 2 声波时差
1 双侧向—微球形聚焦 2 岩性密度
微电阻率成像 声波成像
3 自然电位
3 补偿中子
核磁共振
4 自然伽马
4 声波时差
5 井径 6 井斜
5 自然电位 6 自然伽马能谱
7 井径
8 地层倾角
9 双感应—八侧向(上古)
1、电法测井:研究地层电化学性质、电阻 率、电磁波的各种测井方法。
2、声波测井:研究地层纵波性质的自 然伽马、自然伽马能谱、密度、岩性—密 度、补偿中子各种测井方法。
4、其它测井:井温测井、地层测试器等。
1、 测井系列 well logging series 针对不同的地层剖面和不同的测井目的而确定的一套测井方法。 2、 组合测井 combination logging 将几种下井仪器组合在一起,一次下井可以测量多种物理参数 的一种测井工艺。 3、 标准测井 standard logging 以地层对比为主要目的,在自然伽马、自然电位、井径、声波 时差和电阻率等项目中选定不少于三项的测井方法,全井段进 行测量。 4、 电法测井 electrical logging 以测量地层电阻率和介电常数等物理参数为主的测井方法。 5、 声波测井 acoustic logging;sonic logging 测量声波在地层或井周其它介质中传播特性的测井方法。
目录
一、各条测井曲线的原理及应用 二、测井曲线在油田开发中的综合应用 三、测井曲线异常原因分析: 四、新测井系列厚度解释偏少的原因分析
一、各条测井曲线的原理及应用
1.自然电位测井(SP) 2.声波时差测井(AC) 3.自然伽马 (GR) 4.视电阻率测井(RT) 5.三侧向测井(LLD/LLS)
测井技术的分类:
油探井测井系列
1:500测井项目
1:200测井项目
(全井 )
(目的层段)
1 双感应
1 双感应—八侧向
2 声波时差
2 声波时差
3 自然电位 4 自然伽马 5 井径 6 井斜
3 补偿中子 4 补偿密度 5 自然伽马 6 自然电位 7 微电极 8 4米 9 井径
选测项目
地层倾角 自然伽马能 谱
气开井测井系列
油开井测井系列
1:500测井 项目
(全井)
1:200测井项目 选测项目 (目的层段)
1 双感应
1 双感应—八侧向 地层倾角
2 声波时差 2 声波时差
3 自然电位 3 补偿密度
4 自然伽马 4 自然伽马
5 井径
5 自然电位
6 井斜
6 微电极
7 4米电阻率
8 井径
自然伽马能谱 补偿中子 地层测试
常用测井曲线名称
中探测感应测井
Ils
shallow investigate induction log
浅探测感应测井
Rd deep investigate double lateral resistivity log
深双侧向电阻率测井
Rs shallow investigate double lateral resistivity log
2、自然伽马和自然伽马能谱测井
•测量基础
岩层中的天然放射性核素衰变伽马射线 岩性不同放射性核素的种类和数量不同
自然伽马射线的能量和强度不同 自然伽马测井曲线 GR 自然伽马能谱测井曲线—铀U、钍Th、钾K的含量
去铀自然伽马 CGR 总自然伽马 GR
曲线应用
①划分岩性 ②地层对比 ③确定泥质含量
围岩
1.自然电位测井(SP)
•原理:测量井中自然电场
Nv
井中电极M与地面 电极N M 之间的电位差
在未向井中通电的情况下,放在井中的两个电极 之间存在着电位差。这个电位差是自然电场产生的, 称为自然电位。在井中的自然电场是由地层和泥浆间 发生的电化学作用和动电学作用产生的。测量自然电 位随井深的变化叫做自然电位测井。