测井曲线的识别及应用(3)
测井曲线的应用
主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井曲线综合解释课件
测井曲线种类
01
02
03
电测井曲线
包括电阻率曲线、自然电 位曲线等,反映地层的导 电性、自然电场等电学性 质。
声波测井曲线
包括声速测井、声幅测井 等,反映地层的声学性质 和岩石机械性质。
核测井曲线
包括伽马测井、中子测井 等,利用放射性核素测量 地层的放射性。
测井曲线应用
地层评价
通过分析测井曲线,可以 对地层进行岩性、物性、 含油性等方面的评价。
多学科交叉 测井曲线综合解释将与地质学、地球物理学、数学等多个 学科交叉融合,形成更加系统化和科学化的解释方法。
数据共享与协同工作 随着大数据和云计算技术的发展,测井数据将实现共享, 多学科专家可以协同工作,共同完成测井曲线综合解释任 务。
测井曲线综合解释技术的挑战与机遇
1 2 3
数据处理难度大 测井数据量大、维度多,需要高效的数据处理和 分析技术,对硬件和软件要求较高。
测井曲线综合解释课件
目 录
• 测井曲线概述 • 测井曲线解释基础 • 测井曲线综合解释方法 • 测井曲线综合解释应用 • 测井曲线综合解释展望
contents
01
测井曲线概述
测井曲线定义
• 测井曲线定义:测井曲线是利用测井技术测量并绘制出的地层 岩石的物理性质变化曲线,反映了地下岩层和流体的物理性质。
多学科知识融合难度高 测井曲线综合解释需要多学科知识的融合,如何 将不同学科的知识有机地结合起来是技术难点之 一。
解释结果的不确定性 由于地质条件的复杂性和测井数据的局限性,测 井曲线综合解释结果存在一定的不确定性,需要 不断完善和改进解释方法。
测井曲线综合解释技术的未来发展方向
集成化解释平台
未来将开发更加集成化的测井曲 线综合解释平台,实现数据管理、
各条测井曲线的原理及应用
各条测井曲线的原理及应用引言测井是地质勘探中不可或缺的技术手段之一。
随着勘探深度的增加和技术的进步,测井曲线的种类也逐渐增多。
本文将介绍几种常见的测井曲线,包括电阻率曲线、自然伽马曲线、声波曲线和中子曲线的原理及应用。
1. 电阻率曲线电阻率曲线是测井中最常见的曲线之一,用于反映地层的电阻率特性。
在测井时,通过测量地层对射入电流的电阻来得到电阻率曲线。
电阻率曲线的应用包括:- 地层分类:根据电阻率曲线的特征,可以将地层分为不同类型,如油层、水层和盐层等。
- 识别流体类型:通过电阻率曲线的变化,可以判断地层中的流体类型,如水、油或气体等。
- 沉积环境分析:电阻率曲线对地层的沉积环境也有一定的指示作用,如高电阻率的地层可能是砂岩,低电阻率的地层可能是页岩等。
2. 自然伽马曲线自然伽马曲线是记录地层自然伽马辐射强度的曲线,用来确定地层的物理性质和放射性岩石的含量。
自然伽马曲线的应用包括: - 确定放射性岩层:通过自然伽马曲线的变化,可以定量地确定地层中放射性岩石的含量。
- 钻井定位:自然伽马曲线常用于钻井中的测井工作,通过分析伽马辐射来确定钻头所处的位置和地层的特征。
- 地层对比:自然伽马曲线可以用于地层的对比,从而帮助地质学家更好地理解地层的时空分布。
3. 声波曲线声波曲线记录了地层中声波的传播速度和衰减特性,用于刻画地层的物理性质和孔隙度。
声波曲线的应用包括: - 地层属性分析:通过分析声波曲线的特征,可以确定地层的孔隙度、渗透率和饱和度等物理属性。
- 油气识别:声波曲线可以帮助判断地层中的油气类型和含量,对于油气勘探具有重要意义。
- 工程设计:声波曲线在工程设计中也有一定的应用,如在隧道掘进中可以通过声波曲线判断地层的稳定性。
4. 中子曲线中子曲线是记录测井装置发射的中子数与到达探测器的中子数之比的曲线。
中子曲线的应用包括: - 流体识别:通过中子曲线可以识别地层中不同类型的流体,如水、油和气体等。
测井曲线基本原理及其应用测井曲线基本原理及其应用
测井曲线基本原理及其应用测井曲线基本原理及其应用一.国产测井系列1、标准测井曲线2.5m底部梯度视电阻率曲线。
地层对比,划分储集层,基本反映地层真电组率。
恢复地层剖面。
自然电位(SP)曲线。
地层对比,了解地层的物性,了解储集层的泥质含量。
2、组合测井曲线(横向测井)含油气层(目的层)井段的详细测井项目。
双侧向测井(三侧向测井)曲线。
深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。
0.5m电位曲线。
测量地层的侵入带电阻率。
0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。
补偿声波测井曲线。
测量声波在地层中的传输速度。
测时是声波时差曲线(AC)自然电位(SP)曲线。
井径曲线(CALP)。
测量实际井眼的井径值。
微电极测井曲线。
微梯度(RML),微电位(RMN),了解地层的渗透性。
感应测井曲线。
由深双侧向曲线计算平滑画出。
[L/RD]*1000=COND。
地层对比用。
3、套管井测井曲线自然伽玛测井曲线(GR)。
划分储集层,了解泥质含量,划分岩性。
中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。
校正套管节箍的深度。
套管节箍曲线。
确定射孔的深度。
固井质量检查(声波幅度测井曲线)二、3700测井系列1、组合测井双侧向测井曲线。
深双侧向测井曲线,反映地层的真电阻率(RD)。
浅双侧向测井曲线,反映侵入带电阻率(RS)。
微侧向测井曲线。
反映冲洗带电阻率(RX0)。
补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。
反映地层的致密程度。
补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。
补偿中子测井曲线(CN)。
测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%)自然电位曲线(SP)自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。
划分岩性,反映泥质含量多少。
测井九条曲线的应用
① ②
③
砂岩的流体为气时:含氢量低
密度(DEN)
反应地层孔隙度
※测得地层孔隙度为有效孔隙度 划分岩性 判断气层 计算孔隙度 块煤的密度为1.4g/m3 粉煤的密度为1.7~1.8g/m3
地层在各曲线中的反应
GR 煤层 低 泥岩 高 灰岩 低 高 DNL 低 RT 高 低 高 低 DT 高 CNL 高 高 低 DEN 高 高
自然伽玛(GR) 自然电位(SP) 微球聚焦(RXO) 岩性(DEN) 深侧向(LLD) 浅侧向(LLS) 声波(DT) 中子(CNL) 密度(DNL)
自然伽玛(GR)
一、作用 反应地层的泥质含量 判断地层盐型、计算泥质含量 二、岩性的反应出 ★ 泥岩的GR最高 ★ 煤岩与灰岩的GR最低
• 反应地层的孔隙度 • 岩性反应 1.泥岩的声波 2.砂岩的声波 3.灰岩的声波 4.煤岩的声波
300µ/m 270µ/m 300µ/m 300µ/m
中子(CNL)
• • ☆ • 反应地层孔隙度 反应气层 中子测得孔隙度为有效孔隙度 测含氢量 泥岩含氢量高 煤岩含氢量高 灰岩含氢量低 砂岩含氢量根据流体改变
自然电位(SP) spontaneous potential
作用 (1)反应地层渗透率 (2)测定渗透率、矿化度
微球聚焦(RXO)
反应电阻率
深、浅侧向(LLD、LLS)
• 反应地层电阻率 • 岩性反应 1、泥岩的电阻率小 2、砂岩的电阻率根据流体的不同在变化 3、煤岩与灰岩的电阻率高
声波(DT)
常规测井培训3孔隙度曲线
5.6 资料应用
确定岩性和孔隙度
这是其主要用途,并常与中子孔隙度测井等结合使用。
确定泥质含量
可以利用密度-声波时差交会图;也可利用Pe或U计算泥质 含量。
划分裂缝带和气层
裂缝发育时,泥浆进入裂缝,使b、和Pe值都会有显示。 气层的判断要与其它资料结合,地层含天然气可使b值降 低,而密度孔隙度φD增大。
能量最大,即氢对快中子的减速能力最强。快中子被减速就会变成超热 中子或热中子; 热中子与地层原子处于热平衡状态,不再减速,而由密度大的区域向密 度小的区域扩散,直至被地层原子核俘获为止; 地层常见元素中,对热中子俘获能力最强的是氯,因此岩石对热中子的 俘获能力主要取决于含氯量。氯主要存在于地层水中。
(3)补偿声速测井
单发双收主要缺点:井径变化(扩大)界面处, 声波时差出现“假异常”;
双发双收补偿声速:相当于两个单发双收声系, 井径变化对它们的影响相反,取二者平均值,消 除假异常。
4.3 影响因素
地层厚度的影响 厚度大于间距的地层称为厚层,小于间距的 称为薄层。由于声速测井的输出(时差)代 表R1R2间地层的平均时差,因此它们的声速 测井时差曲线存在一定差异。
滑行波产生条件:
➢ v2>v1
➢ 临界角入射
(2)单发双收声速测井
通过测量到达接收探头的 时间差反映地层速度;
声系:一个发射探头,两 个接收探头;
声波时差:声波传播单位 距离所用的时间,单位s/m, 常用μs/m或μs/ft 。
通过测量滑行波到达两个 接收探头的时间差,换算 为声波时差,沿井剖面连 续测量,记录声波时差曲 线,常用AC或Δt表示。
公式适用于:均匀粒间孔隙、固结压实纯地层。其它情况
需要校正,常见的淡压水实泥校浆正:公62式0:
测井曲线ppt课件
随钻测井技术
要点一
总结词
随钻测井技术能够在钻井过程中实时获取测井数据,有助 于及时调整钻井参数和优化钻井方案。
要点二
详细描述
随钻测井技术是一种将测井设备安装在钻头上的技术,能 够在钻井过程中实时获取地层的测井数据。这使得在钻井 过程中能够及时了解地层信息和调整钻井参数,提高了钻 井效率和成功率。同时,随钻测井技术还可以减少钻后测 井的时间和成本,为石油勘探和开发节省了资源。
地质构造识别
测井曲线可以反映地层的构造特征,如断层、褶皱等,有助于地质构造的识别和分类。
地质构造与油气关系
研究地质构造与油气的关系,有助于分析油气聚集的条件和规律,指导油气勘探和开发 。
05
测井曲线的发展趋势与展 望
高分辨率测井技术
总结词
高分辨率测井技术能够提供更精确的地层信息,有助于发现微小地质构造和地层变化。
类。
测井曲线解释实例
砂泥岩地层解释
针对砂泥岩地层的测井曲线,通 过分析曲线形态和参数提取,判 断地层的岩性、物性和含油性。
碳酸盐岩地层解释
针对碳酸盐岩地层的测井曲线,通 过分析曲线形态和参数提取,判断 地层的岩性、裂缝和溶洞等特征。
油气水层识别
利用测井曲线识别油气水层,结合 地质资料和生产动态信息,对油气 水层进行准确判断和评价。
沉积相分析
根据测井曲线反映出的地层结构和岩石物理性质,可以分析沉积相的类型和分布规律。
储层参数计算与流体性质分析
储层参数计算
利用测井曲线可以计算出储层的孔隙度 、渗透率等参数,为储层评价和开发方 案提供依据。
VS
流体性质分析
通过分析测井曲线特征,可以推断出地层 中流体的类型、性质和分布情况。
测井曲线综合解释
密度曲线
总结词
反映岩层密度的曲线
详细描述
密度曲线是通过测量地层对伽马射线的吸收能力来反映岩层的密度。在测井曲线 上,密度较高的岩层通常对应于砂岩或石灰岩,而密度较低的岩层则可能表示泥 岩或页岩。
中子曲线
总结词
反映岩层含氢量的曲线
详细描述
中子曲线是通过测量地层对中子的吸收能力来反映岩层的含氢量。在测井曲线上,中子吸收能力较强 的岩层通常表示含氢量较高的泥岩或页岩,而中子吸收能力较弱的岩层则可能表示含氢量较低的砂岩 或石灰岩。
地层倾角法是通过测量地层的倾斜角 度来判断地层的岩性和物性,该方法 需要使用特殊的测量仪器和数据处理 技术。
交会图法是最常用的方法之一,通过 将不同测井曲线绘制在一张图上,利 用它们的交会关系来判断地层的岩性、 物性和含油性。
模式识别法是一种基于人工智能和机 器学习的方法,通过训练模型来识别 地层的岩性和物性,该方法需要大量 的训练数据和计算资源。
数据噪声干扰
测井数据容易受到多种噪声的干 扰,如环境噪声、设备噪声等, 这些干扰会影响数据的准确性和 可靠性。
数据标准化和归一
化
由于不同测井设备的测量范围和 精度可能存在差异,需要进行标 准化和归一化处理,以确保数据 的可比性和一致性。
多参数综合分析的复杂性
参数间相互影响
测井曲线包含多个参数,这些参数之间可能 存在相互影响和耦合关系,需要进行深入分 析和综合考虑。
根据测井曲线数据,确定该库区存在软弱夹层和 裂隙,可能对水库的稳定性和安全性造成影响。
结论
建议对该库区进行进一步工程地质勘查,加强监 测和维护,确保水库的安全运行。
05
测井曲线综合解释的挑 战与展望
数据处理难度大
主要测井曲线含义和意义
普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成 人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布 特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。 ⑤地层对比。 电极系测井 2.5 米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上 可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。
一、自然电位测井:
测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率 Rmf 和地层水电阻率 Rw 的关 系一致。Rmf≈Rw 时,SP 几乎是平直的; Rmf>Rw 时 SP 为负异常;Rmf<Rw 时,SP 在渗透层表 现为正异常。 自然电位测井 SP 曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地 层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw 时,SP 出现正异常。 淡水层 Rw 很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移
十、自然伽马测井
自然伽马测井是在井内测量岩层中自然存在的放射性核素衰变过程中放射出来的γ射线的强度 来研究地质问题的一种测井方法。 GR 的用途:①判断岩性。②地层对比。③估算泥质含量。 大井眼处,自然伽马低值显示
十一、补偿中子测井(CNL,Φ%)
补偿中子测井是采用双源距比值法的热中子测井,它沿井剖面测量由中子源所造成的热中子通量 (即能量为 0.025—0.01ev 的热中子空间分布密度)。补偿中子测井直接给出石灰岩孔隙度值曲 线。如果岩石骨架为其它岩性,则为视石灰岩孔隙度。 主要应用:①确定地层孔隙度。②计算矿物含量③ΦD—ΦN 曲线重叠直观确定岩性。④与补偿 密度曲线重叠判断气层。 补偿中子测井 致密层测井值应与岩石骨架值相吻合。
测井曲线特征及综合应用.(DOC)
测井曲线特征及综合应用测井曲线特征及综合应用一、介绍测井曲线的用途 (2)二、测井资料的综合运用 (7)1、岩层界面 (7)2、确定地层的电阻率 (7)3、确定地层的孔隙度 (8)4、确定地层传声速度 (9)5、确定地层的含泥量 (9)6、确定地层的含H量 (9)7、确定地层的密度 (10)8、综合判断地层的岩性 (10)9、综合判断油气水层 (13)一、介绍测井曲线的用途二、测井资料的综合运用1、岩层界面2、确定地层的电阻率3、确定地层的孔隙度4、确定地层传声速度5、确定地层的含泥量6、确定地层的含H量7、确定地层的密度8、综合判断地层的岩性1、含钙层:声波时差曲线显示低值,电阻曲线显示高值,微电极显示刺刀状、尖峰状,自然电位相应幅度变小。
2、水淹层:油层水淹后,梯度曲线明显上抬,三侧向电阻降低,自然电位基线偏移,自然电流出现偏大,声波时差增大。
3、高压层的识别:声波读值大,微电极曲线基值大,自然电位电流读值小,井径读值大。
9、综合判断油气水层1、⑴渗透层。
⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm。
⑶标准水层其电阻率接近于同井段的泥岩。
在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层的电阻率。
2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值。
⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包。
声波时差大,甚至比泥岩还要大,而且有周波跳跃的现象,中子伽马通常幅度高。
⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较)。
十、油气水界面的化分1、油水界面的划分:⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低。
⑵感应曲线上在油水界面上幅度变化特别明显。
⑶自然电位曲线在油水界面上有一个不很明显的台阶,含油部分异常小,含水部分异常大。
浅谈三条测井曲线
浅谈三条测井曲线作者:汝西来源:《活力》2014年第12期1 引言油气是储存于地下深处的储层中,在油田勘探和开发阶段,测井资料解释已成为正确认识和掌握油田地质情况的有效手段。
而自然伽玛曲线、自然电位曲线、微电极曲线是测井资料解释图中最常用的曲线,下面我们来介绍这三种曲线。
2 测井曲线:自然电位、微电极、自然伽玛曲线2.1 自然电位曲线特点2.1.1 当地层、泥浆是均匀的,上下围岩岩性相同,自然电位曲线对地层中心对称。
2.1.2 在地层顶底界面处,自然电位变化最大,当地层厚度(大于4倍井径)时,可用曲线半幅点确定地层界面。
2.1.3 测量的自然电位幅度,为自然电流在井内产生的电位降,它永远小于自然电流回路总的电动势。
2.1.4 渗透性砂岩的自然电位,对泥岩基线而言,可向左或向右偏转,它主要取决于地层水和泥浆滤液的相对矿化度。
2.2微电极曲线的特点2.2.1 泥岩层:非渗透地层曲线无幅差,或很小的正负不规则的幅度差,曲线呈直线状;2.2.2 砂岩层:渗透性地层微电位幅度大于微梯度的幅度,正幅度差;2.2. 3钙质层:微电极幅度很高,呈锯齿状。
2.3 自然伽玛曲线的特点2.3.1 曲线对称于地层中点,在地层的中点处有极大值或极小值反映放射性的大小;2.3.2 当地层厚度小于三倍的钻头直径d。
时,极大值随地层厚度增大而增大(极小值随地层厚度增大而增大而减小)。
当地层厚度大于等于3倍钻头直径(h≥3d。
)时,极大值(极小值)为一个常数;与地层厚度无关,与岩石的自然放射性强度成正比;2.3.3当h≥3d。
时,由曲线半幅点确定地层厚度等于地层真厚度。
当h3三条测井曲线的应用3.1确定岩性由于不同岩层在自然电位、微电极曲线上有不同的特征,根据这些特征我们能够定性地判断岩性。
3.2划分砂、泥岩剖面的渗透性地层3.2.1自然电位曲线,当泥浆滤液电阻率Rmf大于地层水电阻率Rwf时,渗透性地层在自然电位曲线上显示负异常,反之,当Rmf3.2.2微电极曲线,在钻井过程中,由于钻井工程上的需要,总是井内泥浆柱的压力大于地层压力,因此在渗透性地层的井壁上形成泥饼,并有侵入带存在。
测井曲线油层识别
井 壁
Rt Rtr Rx o
泥
钻头
饼
直径
冲过 原 洗渡 状 带带 地
层
泥 浆
增阻泥浆侵入
减阻泥浆侵入
5、普通视电阻率测井及其应用
电阻率法测井是通过测量钻井剖面上各种岩石和矿物电阻率来 区别岩石性质的方法。电流以A为中心呈球形辐射状流出。
梯度电极系:梯度电极系就是成对电极靠得很近, 而不成对电极离得较远的电极系。
当侵入较深时,侧向测井电流线成水平圆盘状从井轴向四面发射,而感 应测井电流线是绕井轴的环流。因此,对于侧向测井,泥浆、侵入带和地层 的电阻是串联的,而对感应测井,它们则是并联关系。
这意味着,感应测井值受两个带中电阻率较低的带的影响较大,而侧向 测井值受电阻率较高的带影响较大。因此,如果Rxo>Rt时,采用感应测井确 定Rt较侧向测井优越;如果Rxo<Rt时,选用侧向测井较好。
感应测井、微电极系测井等。
1、自然伽玛测井及其应用
原理:通过测量井内岩层中自然存在的放射性元素核衰变过程中放射出来的γ射线的强度来认识岩层的一种 放射性测井法,其γ射线强度与放射性元素的含量及类型有关(岩石的放射性是由岩石中所含的U、Th、k 系放射性同位素引起的)。
沉积岩的自然放射性,大体可分为高、中、低三种类型。 ①高自然放射性的岩石:包括泥质砂岩、砂质泥岩、泥岩,以及钾盐层等,其自
声波时差测井是孔隙度测井系列的主要方法。
4、声波时差测井及其应用
应用
(1)划分岩性,作地层对比
砂泥岩剖面:一般情况是 砂岩:显示为低时差400—180、
越致密声时越低; 泥岩:显示为高时差548—252; 页岩:介于砂岩与泥岩之间;
4、声波时差测井及其应用
测井曲线划分油水层知识讲解
测井曲线划分油水层石油知识:测井曲线划分油、气、水层(多学点,没坏处)油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
测井原理及各种曲线的应用
一、SP曲线和GR曲线测井基本原理用淡水泥浆钻井时,由于地层水矿化度小于泥浆滤液矿化度而在砂岩段形成扩散电位——在井眼内砂岩段靠近井壁的地方负电荷富集,地层内砂岩段靠近井壁的地方正电荷富集,导致砂层段井眼泥浆的电势低于砂层电势,正象一个平行于地层且正极指向地层的“电池”(第一个)。
在泥岩段,因为泥浆滤液与地层水之间存在矿化度差及选择性吸附作用形成吸附电位——在井眼内泥岩段靠近井壁的地方正电荷富集,地层中泥岩段负电荷富集,导致泥岩段井眼泥浆的电势高于地层电势,正象一个平行于地层且正极指向井眼的“电池”(第二个)。
又因为泥浆和地层各具导电性,正象两条导线把以上两个“电池”串联了起来而形成回路,这样在地层中电流从砂岩段(第一个电池正极)流向泥岩段(第二个电池负极);在井眼中电流从泥岩段(第二个电池正极)流向砂岩段(第一个电池负极)。
在此回路中,地层也充当电阻的作用,总电动势等于扩散电动势和吸附电动势之和。
用M电极在井眼中测的自然电流在泥浆中产生的电位降即得自然电位曲线。
其值在正常情况下与对应地层中泥质含量关系密切,砂岩中泥质含量增加,则电位降下降,异常幅度减小;砂岩中泥质含量下降,则电位降上升,异常幅度增大。
另外,当泥浆柱与地层流体间存在压力差时发生过滤作用形成过滤电动势——动电学电位。
沉积岩的放射形取决于岩石中放射性元素的含量,放射性元素的含量主要取决于粘土和泥质的含量,粘土和泥质含量越高放射性越强。
GR曲线主要测量地层的放射性。
1、曲线幅度反映沉积时水动力能量的强弱;2、曲线形态反映物源供给的变化和沉积时水动力条件的变化;3、顶、底部形态的变化反映沉积初、末期水动力能量和物源供给的变化速度;4、曲线的光滑程度水动力对沉积物改造所持续时间的长短;5、曲线的齿中线组合方式反映沉积物加积特点;6、曲线包络形态反映在大层段内垂向层序特征和多层砂在沉积过程中能量的变化。
影响自然电位曲线异常幅度的因素:(1)岩性、地层水与泥浆含盐度比值的影响。
测井曲线判断岩性
利用测井资料判断岩性及油气水层一、普遍电阻率测井(双侧向、三侧向、2.5m、4.0m、七侧向、微电极)1、基本原理:电阻率测井是由一个供电电极或多个供电电极供给低频或较低频电流I,当电流通过地层时,用另外的测量电极测量电位U,利用Ra=K U/I K:电极系数Ra:视电阻率U:电位I:电流2、应用(1)求地层电阻率利用微球形聚焦、微电极,求取冲洗带电阻率。
利用浅侧向、2.5m求取侵入带电阻率。
利用深侧向、4.0m求取原状地层电阻率。
(2)确定岩性界面:利用微球形聚焦、微电极划分界面,界面划在曲线最陡或半幅点处。
利用侧向划分界面,界面可划在曲线半幅点处。
利用2.5m划分界面,顶界划在极小值,底界划在极大值。
(3)判断岩性泥岩:低电阻,微球形聚焦、微电极、双侧向基本重合,2.5m、4.0m平直。
灰质岩:高阻,微球形聚焦,微电极、双侧向基本重合,2.5m、4.0m都高。
盐膏岩:电阻特别高,井径规则时深侧向>浅侧向>微球聚焦。
4.0m>2.5m>微电极。
页岩、油页岩:高阻,井径规则时微球、双侧向基本重合,4.0m、2.5m、微电极基本重合。
(4)判断油气水层①油气层:高阻,A、Rmf>Rw ,增阻侵入,随探测深度增加电阻率降低。
Rmf――泥浆滤液电阻率,Rw――地层水电阻率。
B、Rmf<Rw ,减阻侵入,随电探测深度增加电阻率增加。
②水层:低阻A、Rmf>Rw,增阻侵入,R深<R浅。
B、Rmf<Rw,减阻侵入,R深>R浅。
C、Rmf≈Rw,则R深≈R浅。
R深――深电极R浅――浅电极(5)识别裂缝发育带碳酸盐岩剖面裂缝发育带,在高阻中找低阻。
二、感应测井1、基本原理感应测井是测量地层的电导率。
它是由若干个同轴线围组成的-组发射线圈和一组接受线围的复合线圈系。
9条常规测井曲线作用
对于砂岩骨架,主要矿物为石英,其声波时差为182 us/m。Rt为当前地层的电阻率,m为胶结指数为2。
t) ?.。确定泥质含量Vsh,采用了老地层GCUR=2.0,
新地层GCUR=3.7。需强调的是,在同一解释井段,如果油气层与水层岩性、地层结构和孔隙度基本相同,
则油气层是纯水层的电阻率的3-5倍。水层自然电位异常最大,油气层异常偏小,油水同层介于他们之间,
并且厚度较大的油水同层,自上而下电阻率明显的减小。
分层后,要从有关的主要测井曲线将代表
双测向(DLL)或者双感应(DIL)--电阻率
微球(MSFL)--电阻率
井陉(CAL)
此外特殊方法还有
声电成像(CBIL/CAST;STAR/XMRI/FMI)
偶极子声波/全波列声波 (MAC/XMAC;WSTT)
核磁成像(NMR/MRIL)
地层测试(FMT/RFT/SFTT/MDT)
这是裸眼测井最基本的系列,可以解决储层划分、孔隙度计算、油气层识别(饱和度计算)等基本问题。
SP-GR-ZDL-CN-BHC-DLL(DIL)-MSFL-CAL
自然电位(SP)
自然伽玛(GR)--泥质含量,校深
岩性密度(ZDL或者LDT)--孔隙度
补偿种子(CNS)--孔隙度
补偿声波(BHC)--孔隙度
自然伽马值较高,井径测井体现为扩径,深中浅测井电阻率表现为低阻,声波测井曲线数值大>300us/m.
碳酸盐岩剖面电阻率一般较高,自然电位效果不好。为区分岩性和划分储层,一般使用自然伽马测井曲线识别,
石油知识:测井曲线划分油、气、水层
油、气、水层在测井曲线上显示不同的特征:(1)油层:声波时差值中等,曲线平缓呈平台状。
自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。
微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。
长、短电极视电阻率曲线均为高阻特征。
感应曲线呈明显的低电导(高电阻)。
井径常小于钻头直径。
(2)气层:在自然电位、微电极、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显数值增大或周波跳跃现象,中子、伽玛曲线幅度比油层高。
(3)油水同层:在声波时差、微电极、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。
(4)水层:自然电位曲线显示正异常或负异常,且异常幅度值比油层大;微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。
2、定性判断油、气、水层油气水层的定性解释主要是采用比较的方法来区别它们。
在定性解释过程中,主要采用以下几种比较方法:(1)纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。
一般油气层的电阻率是水层的3倍以上。
纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。
(2)径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。
在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。
一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。
(3)邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。
测井曲线特征及识别岩性
1.1测井曲线特征1.1.1电阻率曲线曲线特点双侧向是探测不同径向深度电阻率的测井方法。
通常情况下,裂缝的存在使双侧向出现差异,模拟实验表明,低角度裂缝的双侧向值呈负差异,而高角度裂缝的双侧向值呈正差异,双侧向幅度差不仅与裂缝的产状有关,而且与裂缝的张开度有关,因此在一些裂缝段也可能无差异。
1.1.2声波曲线曲线特点裂缝在声波曲线上的反映与井筒周围裂缝的产状及发育程度有关。
声波曲线对高角度裂缝没有反映,对低角度裂缝或网状裂缝,声波测井值将相应增大;当遇到大的水平裂缝或网状裂缝时,声波能量急剧衰减而产生“周波跳跃”现象。
因此利用声波时差可以识别水平裂缝或网状裂缝,但不能用于识别垂直裂缝。
声波曲线对裂缝的显示主要取决于裂缝的张开度、发育程度、充填物和流体的性质。
声波变密度测井对裂缝的探测是基于含流体裂缝面使声波波列发生畸变,出现波列的能量衰减、干扰和波列转换,形成声波幅度、相位和频率明显变化,出现“人”形或“V”形、扰动的锯齿形,以及条带变浅等。
横波和斯通利波衰减的突出,可指示斜交的裂缝。
纵波幅度的衰减多见于高角度直裂缝;而横波幅度的衰减则多出现在低角度或水平裂缝。
裂缝在声波时差曲线上的反映与井筒周围裂缝的产状及发育程度。
1.1.3自然电位曲线曲线特点a.当地层、泥浆是均匀的,上下围岩岩性相同,自然电位曲线对地层中心对称;b.在地层顶底界面处,自然电位变化最大,当地层较厚(大于四倍井径)时,可用曲线半幅点确定地层界面;c.测量的自然电位幅度为自然电流在井内产生的电压降,它永远小于自然电流回路总的电动势;d.渗透性砂岩的自然电位,对泥岩基线而言,当地层水矿化度大于泥浆滤液矿化度时,自然电位显示为负异常,当地层水矿化度小于泥浆滤液矿化度时,显示为正异常,如果泥浆滤液的矿化度与地层水矿化度大致相等时,自然电位偏转幅度很小,曲线无显示异常。
影响因素:a.地层厚度、半径的影响:当h>4d时,自然电位异常幅度近似等于静自然电位,当h<4d时,自然电位异常幅度小于静自然电位,厚度越小,差别越大,异常顶部变窄,底部变宽,不能用半幅点确定地层界面;b.地层电阻率、泥浆电阻率以及围岩电阻率的影响,Rt / Rm 比值增大(Rt增大或Rm减小),自然电位幅度值降低,Rs增大,其幅值也减小;c.泥浆侵入带的影响:泥浆侵入带的纯在,相当于井径扩大,自然电位异常幅度值降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲测井曲线的识别及应用
钻井取芯、岩屑录井、测井是目前比较普及的三种认识了解地层的方法。
钻井取芯直观、准确,但成本高、效率低。
岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。
测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的;具有经济、实用、收获率高,易保存的优势,是目前我们认识地层的主要途径。
测井系列:鄂尔多斯盆地常规测井系列由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。
探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。
测井结果的表现形式有综合测井图和标准测井图两种。
综合测井图:重点反映目的层段钻井剖面的地层特征。
测量井段由井底到直罗组底部,比例尺1:200,斜井在目的层段有校深图。
综合测井图在油田开发阶段的地层对比划分中使用较多。
标准测井图:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,近几年的标准测井图仅比综合测井图少了一项微电极测井。
标准测井图在区域勘探阶段的地层对比划分中使用较多。
名词解释:
泥饼:在井筒压力作用下,泥浆中的水分进入渗透性地层后,泥浆颗粒吸附在井壁上,形成的固体物质。
泥饼的厚度一般在3—5厘米之间。
冲洗带:冲洗带是紧靠井壁附近,地层中的流体几乎被全部赶走了的部分。
冲洗带宽度(深入地层的范围)一般约7—8厘米。
侵入带:从冲洗带到地层的过渡段,泥浆滤液与地层中的流体混合的部分。
侵入带宽度一般1~2米。
第一节、测井曲线的识别
1、感应测井
感应测井是利用电磁感应的原理来测量地层的导电性能。
双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值。
深感应
探测深度距井筒约4米左右,反映的是原始地层的电阻率。
中感应反映的是距井筒2米左右的侵入带的电阻率。
八侧向反映的是井壁附近冲洗带的电阻率。
这种组合比较清楚的指示了电阻率的径向变化。
是我们判定油水层、定量解释砂岩的含油、含水饱和度和划分油水界面的主要依据。
非渗透性的泥、页岩,没有泥饼和侵入带,深、中、浅三个部位的电阻率差别较小,三条曲线接近或重合。
在致密砂岩段,八侧向反映的是冲洗带+过渡带的电阻率,深、中感应反映的均是原始地层的电阻率。
所以,深、中感应电阻值相等曲线重合,八侧向电阻率值较高曲线峰态明显。
渗透性好的砂岩段侵入带较深,深、中、八三条曲线差异较大,渗透性越好曲线间距越大。
曲线的半幅点为层系界面。
如何利用感应曲线判断油水层
当原始地层为水层时,地层电阻值向着远井方向递减,含水饱和度越高电阻率越小;电阻率值深感应小于中感应,在测井图上,深感应曲线位于中感应左侧。
当原始地层为油层时,油层电阻值高于侵入带,所以,深感应电阻率大于中感应,在测井图上,深感应曲线位于中感应右侧。
综上所述,以中感应曲线为中轴,深感应曲线负偏时,判定是水层;深感应曲线正偏时,判定是油层。
2、微电极测井
微电极系由三个电极测得的微梯度和微电位两条曲线组成。
微梯度探测横向深度4—5厘米,显示的是泥饼的电阻值(泥饼的电阻率通常为泥浆滤液电阻率的1—2倍);微电位探测深度8—10厘米,显示的是冲洗带的电阻值。
当地层为非渗透性的泥、页岩时井壁无泥饼和冲洗带,梯度电阻值等于或接近电位电阻值,曲线重合或叠置;当地层为渗透性的砂岩时,梯度电阻值小于电位电阻值,曲线出现差异,差异越大说明砂岩渗透性能越好。
微电极系由于电极距短,反应灵敏,极板紧贴井壁受泥浆影响小对层界面反映清晰,划分2~5米薄层时使用较多,曲线的拐点处为小层界面。
3、四米电阻测井
四米电阻测井主要用于定性划分大段岩石性质和判定砂岩的含油、含水性能。
一般情况下,泥岩、页岩、煤表现为高电阻,砂岩中等~略低电阻,凝灰岩低电阻。
但仅根据四米视电阻率数值的大小,并不能准确判定它所反映的岩石性质,因为砂岩含油时电阻会上升,含水时电阻会下降,油层粒度较细、地层水矿化度较高或泥浆侵入较深时电阻率也较低。
这种视电阻率解释的多义性,必须用其他测井曲线来弥补。
4、声速测井
声速测井是一种研究声波在岩石单位距离的传播时间的测井方法。
它利用声波在不同密度的岩石中传播速度的差异,判定岩性和定量计算孔隙度的大小。
声速测井也叫声波时差测井,曲线幅度的高低反映的是声波穿越地层用的时间。
泥岩、页岩、煤较疏松,声波的传播速度较慢,穿越单位厚度地层用的时间长,所以,曲线幅度较高,呈尖刀状向右突出。
灰岩、钙质夹层岩性致密,声波的传播速度较快曲线幅度较低,呈小尖峰状向左突出。
砂岩的致密程度介与泥岩与灰岩之间,对声波的传导能力也居二者之间,所以,声波时差比泥岩小而比灰岩大,曲线居上述二者之间且形态较平直。
随着砂岩物性和孔隙中填充物的变化、砂岩的声速曲线也会有一些小的起伏或摆动。
疏松砂岩时差增大,曲线向右抬升;致密砂岩时差缩小,曲线向左偏移。
延长组油层时差一般在220 微秒/米左右,延安组油层时差一般在240
微秒/米左右。
密度测井曲线与声速测井曲线形态接近,但对泥页岩反应更灵敏,尖刀状峰值更高,两条曲线互相参照解释储层物性精度会更高。
5、井径测井
井孔直径的变化也是岩石性质的一种间接反映。
泥、页岩层常因泥浆的浸泡和冲刷造成井壁坍塌,出现井径扩大。
渗透性岩层常因泥饼使井径缩小,而
在致密岩层处井径一般变化不大,实际井径接近钻头直径。
井径是识别岩性、地层对比划分的重要依据之一。
6、自然电位测井
自然电位测井获取的是井内不同深度上的自然电位与地面上某一点的固
定电位值之差。
自然电位测井曲线图上用每厘米偏转所代表的毫伏数和正负方向来表示井内自然电位数值的相对高低,而无绝对的零线。
通常把自然电位曲线上对应厚层泥岩的自然电位值的连线当作基线,称为泥岩基线。
某一地层的自然电位相对于泥岩基线发生偏离时,则称为自然电位异常,曲线偏向泥岩基线的左方为负异常,偏向泥岩基线的右方为正异常。
这一偏转方向,主要取决于泥浆滤液矿化度与地层水矿化度的相对大小。
在一般情况下,泥浆滤液矿化度小于地层水矿化度,因此自然电位显示为负异常。
在自然电位曲线上有异常出现的地方,该异常相对于泥岩基线的最大偏转,称自然电位异常幅度。
储层物性越好、厚度越大,自然电位曲线负偏幅度越大。
纯砂岩的自然电位负偏幅度最大。
随着砂岩中泥质含量的增加或粒度减小或孔隙减少,自然电位曲线负偏幅度随之减小。
因此,根据自然电位曲线负偏幅度变化,可以定性判断地层渗透性、旋回性、粒度等。
自然电位测井主要用于区分地层的岩石性质。
常用曲线的半幅点来进行分层。
7、自然咖玛测井
粘土颗粒能够吸附较多的放射性元素的离子,所以泥岩就具有较强的自然放射性。
利用这一特性测量地层咖玛射线总强度,用于区分岩性、定量计算地层的泥质含量的测井方法叫自然咖玛测井。
泥岩、页岩自然咖玛强度高,所以,咖玛曲线幅度较高,呈尖刀状向右突出。
砂岩自然咖玛强度低,所以,咖玛曲线幅度较低。
煤自然咖玛强度最低,所以,咖玛曲线呈尖刀状向左突出。
自然咖玛曲线不但与自然电位曲线具有良好的匹配性,而且,自然咖玛曲线对岩性的变化、薄层间的差异,反映更精确一些。
一般情况下,用曲线半幅点确定岩层界面,岩层较薄时则用曲线拐点划分界面。
测井曲线受泥浆性能、温度、仪器等多种因素影响,一条曲线往往不能准
确的反映地下情况,必须把几条曲线结合起来分析。
第二节、测井曲线的应用
1.测井曲线的地质用途
感应测井、八侧向测井、微电极测井、四米电阻测井都是以测定岩石的电阻率为物理前提,但曲线的用途各不相同。
感应—八侧向测井用于判定砂岩的含油水层性能。
微电极常用于判断砂岩渗透性和薄层划分。
四米电阻、声速、井径、自然电位、自然咖玛主要用于岩性识别与划分。
2、延安组、延长组常见岩石的测井曲线特征(电性特征)
砂岩:低伽玛、负高(左偏)自然电位、小井径、中声速、中~低电阻(4 m)、中~低感应。
泥岩:高伽玛、低自然电位、大井径、高声速、高电阻(4m)、高感应。
长7油页岩:以极高伽玛、自然电位曲线负偏幅度较高(甚至高过砂岩),区别于泥岩。
煤线:低伽玛、低自然电位、大井径、高声速、高电阻(4m)、高感应。
低伽玛是测井图上煤线与泥岩的主要区分标志。
凝灰质泥岩:尖刀~指状低感应、高声速、大井径、高伽玛。