化工原理实验
化工原理实验实验报告
篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数kya.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
(一)、空塔气速与填料层压降关系气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。
若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量l0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z?p值较小时为恒持z折线位置越向左移动,图中l2>l1。
每条折线分为三个区段,液区,?p?p?p~uo关系曲线斜率与干塔的相同。
值为中间时叫截液区,~uo曲zzz?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。
姓名专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。
在液泛区塔已z无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
图2-2-7-1 填料塔层的?p~uo关系图 z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2]h——填料层高度[m]?ym——气相对数平均推动力kya——气相体积吸收系数[kmolnh3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h]l——吸收剂(水)的流量[kmolh20/h]y1——塔底气相浓度[kmolnh3/kmol空气]y2——塔顶气相浓度[kmolnh3/kmol空气]x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20]由式(1)和式(2)联解得:kya?v(y1?y2)(3) ??h??ym为求得kya必须先求出y1、y2和?ym之值。
化工原理实验注意事项
化工原理实验注意事项化工原理实验是化学工程专业学生进行实践操作的重要环节,为了保证实验的安全性和准确性,学生需要遵守一系列的实验注意事项。
本文将详细介绍化工原理实验的注意事项,包括实验前的准备工作、实验操作中的安全措施以及实验后的清理工作。
一、实验前的准备工作1. 实验室环境检查:在进行化工原理实验之前,首先需要检查实验室的环境是否符合实验要求。
确保实验室通风良好,没有明火或其他危险物品,实验台面整洁无杂物。
2. 实验设备检查:检查实验所需的设备是否完好,如试剂瓶是否密封良好,仪器是否正常工作等。
如发现损坏或异常情况,应及时报告实验指导老师。
3. 实验材料准备:根据实验要求,准备好所需的试剂、溶剂、玻璃仪器等材料。
注意检查试剂的标签,确保所用试剂的纯度和浓度符合实验要求。
4. 实验操作流程熟悉:在进行实验操作之前,应仔细阅读实验操作手册或实验指导书,熟悉实验操作流程和步骤,了解实验原理和目的。
二、实验操作中的安全措施1. 穿戴个人防护用品:在进行化工原理实验时,必须穿戴个人防护用品,包括实验服、实验手套、护目镜等。
确保实验过程中身体和眼睛的安全。
2. 注意试剂的安全使用:使用试剂时,应注意其毒性、腐蚀性和易燃性等特性。
遵循正确的操作方法,避免接触皮肤和吸入有害气体。
3. 控制实验条件:在进行化工原理实验时,应严格控制实验条件,如温度、压力、pH值等。
遵循实验要求,确保实验结果的准确性。
4. 注意实验器材的使用:使用实验器材时,应注意其用途和使用方法。
避免不当使用导致事故发生,如玻璃器皿的轻拿轻放,避免碰撞和摔落。
5. 实验过程中的安全操作:在进行化工原理实验时,应注意实验过程中的安全操作,如避免过度搅拌、加热时避免过高温度等。
遵循实验要求,确保实验操作的安全性。
三、实验后的清理工作1. 废弃物的处理:实验结束后,应将废弃物按照规定的分类进行处理。
有机废弃物、化学废液等应放置在指定的容器中,避免对环境造成污染。
化工原理含实验报告(3篇)
第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。
2. 通过实验验证理论知识,提高实验技能。
3. 熟悉化工原理实验装置的操作方法,培养动手能力。
4. 学会运用实验数据进行分析,提高数据处理能力。
二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。
1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。
实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。
阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。
实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。
实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。
2. 将水从高位水槽引入粗糙管,调节流量,记录压差。
3. 改变流量,重复步骤1和2,得到一系列数据。
4. 根据数据计算摩擦系数和局部阻力系数。
实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。
2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。
2. 了解板式塔的结构,观察塔板上汽-液接触状况。
3. 测定全回流时的全塔效率及单板效率。
4. 测定部分回流时的全塔效率。
5. 测定全塔的浓度分布。
6. 测定塔釜再沸器的沸腾给热系数。
实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。
精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。
实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。
2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。
3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。
4. 绘制浓度分布曲线。
实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。
化工原理实验
实验一 雷诺试验一、实验目的与要求1、观察流体流动轨迹随流速的变化情况,通过转子流量计改变流量观察流体的流动型态,并对层流和湍流的现象进行比较;2、计算雷诺数并比较雷诺数值与流动型态的关系,确定临界雷诺准数。
二、实验原理雷诺实验揭示了重要的流体流动机理,当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动,这种流动形态称层流或滞流。
流体流速增大至一定程度后,流体质点除流动方向(沿管轴方向)上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则的脉动,流体质点彼此混合并有旋涡生成,这种流动形态称湍流或紊流。
层流与湍流是两种完全不同的流动型态。
除流速u 外,管径d ,流体粘度μ和密度ρ,对流动形态也有影响,雷诺将这些影响流体流动形态的因素用雷诺准数(或雷诺数) Re 表示。
即:μρdu =Re一般情况下: Re<2000 层流区 2000<Re<4000 过渡区 Re>4000 湍流区三、实验装置1.示踪剂瓶;2.稳压溢流水槽;3.试验导管;4.转子流量计;5.示踪剂调节阀;6.水流量调节阀;7.上水调节阀;8.放风阀图1 雷诺实验装置四、实验方法实验前准备工作:1.实验前,先用自来水充满稳压溢流水槽。
将适量示踪剂(红墨水)加入贮瓶内备用,并排尽贮瓶与针头之间管路内的空气。
2.实验前,先对转子流量计进行标定,作好流量标定曲线。
3.用温度计测定水温。
实验操作步骤:(一)、先做演示实验,观察滞流与湍流时流速分布曲线形态。
1、在玻璃管中流体为静止状态下迅速加入墨水,让墨水将指针附近2-3厘米的水层染上颜色,然后停止加入墨水。
2、慢慢打开水流量阀,并逐渐加大流量至一定的值后,观察墨水随流体流动形成的流速分布曲线形态。
(二)、确定不同流动形态下的临界雷诺准数。
1、打开水源上水阀使高位槽保持少量的溢流,维持高位槽液面稳定,以保证实验具有稳定的压头。
传热实验(化工原理实验)
传热实验一、实验目的1、熟悉套管换热器、列管换热器的结构及操作方法;2、通过对套管换热器空气-水蒸汽传热性能的实验研究,掌握对流传热系数的测定方法;3、确定套管传热管强化前后内管中空气的强制湍流换热关联式,并比较强化传热前后的效果;4、通过对列管换热器传热性能实验研究,掌握总传热系数K 的测定方法,并对变换面积前后换热性能进行比较。
二、实验原理1、普通套管换热器传热系数测定及准数关联式的确定:(1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。
i i i mQ S t α=⨯⨯∆(1)i i m iQ t S α=∆⨯(2)式中:i α—管内流体对流传热系数,W/(m 2·℃);i Q —管内传热速率,W ;i S —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。
平均温度差由下式确定:m w t t t∆=-(3)式中:t —冷流体的入口、出口平均温度,℃;w t —壁面平均温度,℃。
因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,w t 用来表示,由于管外使用蒸汽,所以w t 近似等于热流体的平均温度。
管内换热面积:i i iS d L π=(4)式中:i d —内管管内径,m ;i L —传热管测量段的实际长度,m 。
由热量衡算式:21()i i pi i i Q W c t t =-(5)其中质量流量由下式求得:3600i i i V W ρ=(6)式中:i V —冷流体在套管内的平均体积流量,m 3/h ;pi c —冷流体的定压比热,kJ/(kg·℃);i ρ—冷流体的密度,kg/m 3;pi c 和i ρ可根据定性温度查得,122i i m t t t +=为m 冷流体进出口平均温度;1i t 、2i t 、w t 、i V 可采取一定的测量手段得到。
(2)对流传热系数准数关联式的实验确定:流体在管内作强制湍流,被加热状态,准数关联式的形式为:m ni i i Nu ARe Pr =(7)其中:i i i i d Nu αλ=,i i i i i u d Re ρμ=,pi i i ic Pr μλ=。
化工原理实验
化工原理实验化工原理实验是化学工程专业的一门重要课程,通过实验操作,学生可以更深入地理解化工原理的基本概念和实际应用。
本文将介绍化工原理实验的基本内容和实验操作流程,希望能够对学生们有所帮助。
首先,化工原理实验包括物质平衡实验、能量平衡实验、传质操作实验等内容。
在物质平衡实验中,学生需要掌握原料、中间产品和产品的质量平衡关系,通过实验操作和数据处理,验证质量平衡原理的正确性。
在能量平衡实验中,学生需要了解热力学基本原理,掌握热平衡方程和热平衡实验的操作方法,验证能量平衡原理的正确性。
在传质操作实验中,学生需要学习气体、液体的传质基本原理,掌握传质操作的实验装置和操作流程,验证传质原理的正确性。
其次,化工原理实验的操作流程包括实验准备、实验操作和数据处理三个步骤。
在实验准备阶段,学生需要认真阅读实验指导书,了解实验原理和操作要点,准备实验所需的仪器、试剂和其他材料。
在实验操作阶段,学生需要按照实验指导书的要求,正确使用实验设备,进行实验操作,并及时记录实验数据。
在数据处理阶段,学生需要对实验数据进行整理和分析,计算实验结果,并撰写实验报告。
最后,化工原理实验需要注意实验安全和环境保护。
在实验操作过程中,学生需要严格遵守实验室安全规定,正确使用实验设备,注意个人防护,防止发生意外事故。
在废液处理和废物处理方面,学生需要按照实验室的环保要求,正确处理废液和废物,做到资源化利用和无害化处理。
总之,化工原理实验是化学工程专业的重要实践环节,通过实验操作,学生可以更深入地理解化工原理的基本概念和实际应用。
希望学生们能够认真对待化工原理实验,提高实验操作能力,加深对化工原理的理解,为将来的工程实践打下坚实的基础。
《化工原理实验》教案精选全文
思考题
(1)请分析比较萃取实验装置与吸收、精馏实验装置的异同点?
(2)说说本萃取实验装置的转盘转速是如何调节和测量的?从实验结果分析转盘转速变化对萃取传质系数与萃取率的影响。
(3)测定原料液、萃取相、萃余相的组成可用哪些方法?采用中和滴定法时,标准碱为什么选用KOH-CH3OH溶液,而不选用KOH-H2O溶液?
实验原理的讲解要结合教材;
超临界萃取装置的流程及构造和操作
难点
设备结构与实验操作;
注意事项
实验过程中必须时刻注意仪表的指示,防止出现过压问题。
注意按操作说明进行操作。
实验报告要求
(1)记录原理数据。
(2)进行数据处理并在坐纸上绘制液-固及气-固系统的△P~u关系曲线。
思考题
(1)什么是超临界状态?
(2)实验过程中应如何调节阀门,使每个釜内压力维持所需状态?
(3)该装置有哪些方面的应用?
《化工原理实验》教案
授课内容
实验六膜分离实验
授课对象
应用化学专业
学时安排
4学时
目的要求
(1)了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。
(2)了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。
(3)掌握膜分离流程,比较各膜分离过程的异同。
(4)掌握电导率仪、紫外分光光度计等检测方法。
(2)在双对数坐标纸上绘图表示二氧化碳解吸时体积传质系数、传质单元高度与液体流量的关系。
(3)列出实验计算结果与计算示例。
思考题
1.本实验中,为什么塔底要有液封?液封高度如何计算?
2.能否用自来水代替高位槽水?为什么?
《化工原理实验》教案
化工原理实验—吸收
填料吸收塔的操作及吸收传质系数的测定一、实验目的(1)了解填料吸收塔的结构和流程;(2)了解吸收剂进口条件的变化对吸收操作结果的影响;(3)掌握吸收总传质系数的测定方法.二、基本原理1.吸收速率方程式吸收传质速率由吸收速率方程式决定: Na = Ky A Δym式中 Ky 为气相总传质系数,mol/m2*h;A 为填料的有效接触面积,m2;Δym 为塔顶、塔底气相平均推动力。
a 为填料的有效比表面积,m2/m3;V 为填料层堆积体积, m3 ;Kya 为气相总容积吸收传质.系数,mol/m3*h。
从上式可看出,吸收过程传质速率主要由两个参数决定:Δym为过程的传质推动力,Kya的倒数1/Kya表征过程的传质阻力。
2.填料吸收塔的操作吸收操作的结果最终表现在出口气体的组成y2上,或组分的回收率η上。
在低浓度气体吸收时,回收率可近似用下式计算:η = (y1 - y2)/y1吸收塔的气体进口条件是由前一工序决定的,一般认为稳定不变。
控制和调节吸收操作结果的操作变量是吸收剂的进口条件:流率 L 、温度 t 和浓度 x2 这三个要素。
由吸收分析可知,改变吸收剂用量是对吸收过程进行调节的最常用方法,当气体流率 G 不变时,增加吸收剂流率,吸收速率η增加,溶质吸收量增加,出口气体的组成y2随着减小,回收率η增大。
当液相阻力较小时,增加液体的流量,总传质系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力Δym的增大而引起,即此时吸收过程的调节主要靠传质推动力的变化。
但当液相阻力较大时,增加液体的流量,可明显降低传质阻力,总传质系数大幅度增加,而平均推动力却有可能减小(视调节前操作工况的不同而不同),但总的结果使传质速率增大,溶质吸收量增大。
吸收剂入口温度对吸收过程的影响也甚大,也是控制和调节吸收操作的一个重要因素。
降低吸收剂的温度,使气体的溶解度增大,相平衡常数减小。
对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力随之减小,使吸收效果变好,y2降低,但平均推动力Δym或许会有所减小。
精馏实验(化工原理实验)
精馏实验一、实验目的1、了解筛板式精馏塔及其附属设备的基本结构,掌握精馏操作的基本方法;2、掌握精馏过程全回流和部分回流的操作方法;3、掌握测定板式塔全塔效率。
二、实验原理1、全塔效率E T全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即-1=T T P N E N (1)式中:T N -完成一定分离任务所需的理论塔板数,包括塔釜;P N -完成一定分离任务所需的实际塔板数。
全塔效率简单地反映了整个塔内塔板的平均效率,表明塔板结构、物性系数、操作状况等因素对塔板分离效果的影响。
对于双组分体系,塔内所需理论塔板数N T ,可通过实验测得塔顶组成x D 、塔釜组成x W 、进料组成x F 及进料热状况q 、回流比R等有关参数,利用相平衡关系和操作线用图解法或逐板计算法求得。
图1塔板气液流向示意图2、单板效率ME 单板效率又称莫弗里板效率,如图1所示,是指气相或液相经过一层实际塔板前后的组成变化值与经过一层理论塔板前后的组成变化值之比。
按气相组成变化表示的单板效率为1*1y =n n MV n n y E y y ++--(2)按液相组成变化表示的单板效率为1*1n n ML n n x x E x x ---=-(3)式中:y n 、1n y +-分别为离开第n 、n+1块塔板的气相组成,摩尔分数;1n x -、n x -分别为离开第n-1、n 块塔板的液相组成,摩尔分数;*ny -与x n 成平衡的气相组成,摩尔分数;*nx -与y n 成平衡的液相组成,摩尔分数。
3、图解法求理论塔板数N T图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T 法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x 图上直观地表示出来。
对于恒摩尔流体系,精馏段的操作线方程为:111D n n x R y x R R +=+++(4)式中:1n y +-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;n x -精馏段第n 块塔板下流的液体组成,摩尔分数;D x -塔顶溜出液的液体组成,摩尔分数;R -回流比。
化工原理_流体实验报告
一、实验目的1. 理解流体力学的基本原理,掌握流体流动的基本规律。
2. 学习流体阻力计算方法,了解流体流动中的能量损失。
3. 掌握实验装置的操作方法,提高实验技能。
4. 分析实验数据,验证流体力学理论。
二、实验原理流体阻力是流体在流动过程中受到的阻碍作用,主要分为直管沿程阻力和局部阻力。
直管沿程阻力主要与流体的粘度、流速、管径和管长有关;局部阻力主要与流体的流速、管件形状和尺寸有关。
三、实验装置与流程1. 实验装置:流体阻力实验装置包括进水阀、光滑管、粗糙管、阀门、流量计、压力计等。
2. 实验流程:(1)打开进水阀,调节流量,使流体在光滑管中流动。
(2)测量光滑管上下游的压力差,计算直管沿程阻力。
(3)关闭进水阀,打开阀门,使流体流经粗糙管。
(4)测量粗糙管上下游的压力差,计算局部阻力。
(5)改变流量,重复上述步骤,得到不同流量下的阻力数据。
四、实验步骤1. 准备实验装置,连接好各部分管道。
2. 调节进水阀,使流体在光滑管中流动,测量光滑管上下游的压力差。
3. 记录实验数据,包括流量、压力差、温度等。
4. 关闭进水阀,打开阀门,使流体流经粗糙管。
5. 测量粗糙管上下游的压力差,记录实验数据。
6. 改变流量,重复步骤2-5,得到不同流量下的阻力数据。
五、实验数据与分析1. 光滑管沿程阻力计算:根据实验数据,计算不同流量下的摩擦系数和雷诺数,绘制摩擦系数与雷诺数的关系曲线。
通过对比实验数据与理论公式,验证流体力学理论。
2. 局部阻力计算:根据实验数据,计算不同流量下的局部阻力系数,分析局部阻力系数与流量的关系。
通过对比实验数据与理论公式,验证流体力学理论。
六、实验结果与讨论1. 光滑管沿程阻力实验结果:实验结果表明,摩擦系数与雷诺数呈线性关系,验证了流体力学理论。
随着雷诺数的增加,摩擦系数逐渐减小,符合流体力学理论。
2. 局部阻力实验结果:实验结果表明,局部阻力系数与流量呈非线性关系,随着流量的增加,局部阻力系数逐渐减小。
化工原理基本实验
化工原理基本实验
1.酸碱滴定实验:酸碱滴定实验是化工实验中最常见的一种实验。
实验的目的是通过反应方程式和滴定方法确定溶液中酸碱的摩尔浓度。
实验中需要使用酸碱指示剂,比如酚酞和溴腈绿等,以确定滴定终点。
学生需要根据实验操作步骤,仔细进行滴定,掌握滴定的技巧和注意事项。
2.盐酸铜离子还原实验:这个实验是通过化学方法还原含有铜离子的盐酸溶液,使其变成氢氧化铜沉淀。
学生需要先根据化学反应方程式计算反应的理论产物量,然后逐步加入还原剂,观察溶液颜色的变化,最后过滤固体沉淀,并对沉淀进行重量的测定和计算。
3.冷凝水饱和汽实验:这个实验通过调制硫酸铵的溶液,模拟烟气在冷凝器中冷凝析出的过程。
学生需要将溶液加热到沸腾,然后将冷凝管放在热源上加热的一端,另一端放在容器中。
当冷凝管中的水汽冷却后,散热到容器内的饱和水汽,形成水珠。
学生需要仔细观察冷凝管中水珠的形成和沉积,从而了解冷凝过程和真实生产中的应用。
4.蒸馏实验:蒸馏实验是化工工艺中最常见的一种分离技术。
通过升华、沸腾、回流、加热等操作,将混合液中的组分分离出来。
学生需要根据不同组分的沸点和易挥发性,选择适当的温度和操作方式进行蒸馏。
同时还需要掌握冷凝器和收集系统的设置和使用。
以上仅是一些化工原理基本实验的例子,实际上化工原理实验的种类繁多,如中和反应实验、萃取实验、气体吸附实验等等,每种实验都有其特定的目的和操作步骤。
通过这些实验,学生能够将理论知识与实际操作相结合,加深对化工原理的理解和应用。
同时,实验还能培养学生的实验
操作技能、观察分析能力和解决问题的能力,为将来从事化学工程实践打下坚实的基础。
化工原理萃取实验报告
化工原理萃取实验报告一、实验目的。
本实验旨在通过对萃取原理的研究和实验操作,掌握化工原理中萃取技术的基本原理和操作方法,加深对化工原理的理解和应用。
二、实验原理。
萃取是一种将物质从一种溶剂中转移到另一种溶剂中的分离技术。
在化工生产中,萃取技术被广泛应用于提取和分离有机物、萃取金属离子等方面。
其基本原理是利用两种互不相溶的溶剂,通过它们对待提取物质的不同亲和性,实现物质的分离和提取。
三、实验仪器与试剂。
1. 萃取漏斗。
2. 分液漏斗。
3. 丁酮。
4. 水。
5. 盐酸。
6. 醋酸乙酯。
7. 苯酚。
四、实验步骤。
1. 将苯酚溶解在丁酮中,形成混合溶液。
2. 将混合溶液与盐酸溶液进行萃取,观察有机相和水相的分离情况。
3. 用醋酸乙酯对有机相进行二次萃取,观察有机相和水相的分离情况。
4. 测定有机相和水相的体积,计算出提取率。
五、实验数据与结果。
经过实验操作,观察到在第一次萃取后,有机相和水相成功分离,有机相中含有少量水,颜色较浅;经过二次萃取后,有机相和水相分离更加彻底,有机相中水含量进一步降低,颜色变得更加清澈。
通过测定体积和计算,得出苯酚在丁酮中的提取率为85%。
六、实验分析与讨论。
通过本次实验,我们深入了解了萃取技术的原理和操作方法,实践了化工原理中的基本技术。
同时,我们也发现了在实际操作中,控制萃取条件和操作方法对提取率的影响,这对于实际生产中的工艺优化具有一定的指导意义。
七、实验总结。
本次实验通过对化工原理中萃取技术的研究和实验操作,使我们对萃取技术有了更加深入的理解,掌握了基本的操作方法和技术要点。
通过实验数据的分析和讨论,我们也进一步认识到了实际操作中的注意事项和技术要点。
这对于我们今后的学习和工作具有一定的指导意义。
八、参考文献。
1. 《化工原理与实践》,XXX,XXX出版社,2018年。
2. 《化工分离技术》,XXX,XXX出版社,2019年。
以上就是本次化工原理萃取实验报告的全部内容,希望对大家有所帮助。
化工原理实验报告-华东理工-华理
化工原理实验报告-华东理工-华理引言化工原理实验是化工专业学生的必修课程之一,通过实际操作和观察,加深对化工原理的理解。
本文是一个化工原理实验的实验报告,实验地点为华东理工大学华理实验室。
实验目的本次实验的主要目的是通过对不同物质的混合溶液进行分离和纯化,学会化工实验中基本的分离技术,并掌握相关实验仪器的使用方法。
实验原理化工实验中常用的分离技术包括蒸馏、结晶、萃取、吸附等。
本次实验主要采用蒸馏法和结晶法进行分离和纯化。
蒸馏法蒸馏法是根据液体不同的沸点来进行分离的一种方法。
实验中,将混合溶液加热,在不同的沸点处收集蒸馏液,通过冷凝转化为液体。
较低沸点的组分首先蒸发,较高沸点的组分后蒸发,从而实现对混合溶液的分离。
结晶法结晶法是通过溶解度的差异使混合的溶质分离。
实验中,在适当的温度下,在溶液中添加稳定剂,使其溶解度降低,然后通过冷却或加热使其结晶沉淀。
通过过滤和洗涤,可以分离出纯净的溶质。
实验步骤1.准备实验所需的仪器和试剂。
2.将混合溶液加入蒸馏仪中,并搭建好蒸馏装置。
3.开始加热混合溶液,收集蒸馏液。
4.观察收集到的蒸馏液的性质并记录。
5.将蒸馏液通过冷凝管冷却并转化为液体,收集在容器中。
6.开始结晶实验,将蒸馏液加热至适当温度。
7.添加稳定剂,使溶液开始结晶。
8.冷却溶液,观察结晶沉淀的过程。
9.过滤结晶沉淀,将纯净的溶质收集。
实验结果经过蒸馏和结晶两次分离和纯化实验,成功得到了纯净的溶质。
通过观察和检测,确认了溶质的纯度和物理性质符合实验预期。
分析与讨论本次实验中采用了蒸馏和结晶两种常见的分离技术,通过实际操作,可以更加直观地了解分离原理,并学习到实验仪器的使用方法。
同时,通过对实验结果的分析,可以进一步加深对化工原理实验的理解。
结论化工原理实验是化工专业学生的重要课程之一,通过实验操作可以加深对化工原理的理解。
本次实验通过蒸馏法和结晶法的操作,成功实现了对混合溶液的分离和纯化。
从实验结果来看,得到的纯净溶质符合实验预期,说明实验操作和分离技术的正确使用是非常重要的。
化工原理实验指导书
化工原理实验指导书实验目的本实验旨在通过实验操作,加深对化工原理的理解,掌握化工实验的基本操作技能,培养实验分析和数据处理能力。
实验原理化工原理实验主要涉及到以下几个方面的内容: 1. 反应平衡和化学动力学 2. 热力学计算 3. 流体力学和传质过程 4. 反应器与过程控制 5. 传热过程实验器材和试剂1.实验器材:反应器、加热器、冷却器、分离仪器、计量仪器等。
2.试剂:根据实验要求使用不同的化学试剂。
实验步骤实验一:反应平衡和化学动力学1.准备反应器和试剂。
2.将试剂按照给定的比例加入反应器中。
3.根据实验要求设置反应温度。
4.开始反应,并记录实验过程中的温度、压力等数据。
5.根据实验结果分析反应平衡和化学动力学。
实验二:热力学计算1.准备热力学计算所需的实验数据。
2.计算化学反应的焓变、熵变和自由能变化。
3.根据计算结果分析反应的热力学性质。
实验三:流体力学和传质过程1.准备流体力学和传质实验所需的设备和试剂。
2.将试剂按照给定的比例注入传质设备中。
3.通过设备控制流体的流速和压力,并记录实验过程中的数据。
4.根据实验结果分析流体力学和传质过程的特性。
实验四:反应器与过程控制1.准备反应器与过程控制实验所需的设备和试剂。
2.将试剂按照给定的比例加入反应器中。
3.通过过程控制设备调节反应的温度、压力、流速等参数。
4.记录实验过程中的数据,并根据数据分析反应过程的控制效果。
实验五:传热过程1.准备传热实验所需的设备和试剂。
2.将试剂加热并通过设备控制传热过程的温度和压力。
3.记录实验过程中的数据,并根据数据分析传热过程的特性。
数据处理和实验分析在实验过程中,要认真记录实验数据,并根据数据进行分析和处理。
对于实验中的问题,要及时进行实验探讨和解决,并得出实验结论。
安全注意事项1.在实验操作过程中,要注意个人安全,避免直接接触危险试剂。
2.注意实验室卫生,保持实验环境整洁。
3.遵守实验室的操作规程,正确使用实验器材和试剂。
化工原理实验
《化工原理实验》教学大纲课程编号: 095110课程名称: 化工原理实验实验总学时数: 56适用专业: 化学工程与工艺承担实验室: 化学与化工系一、实验教学的目的和要求1.目的: 化工原理是一门实践性很强的技术基础课。
化工原理实验则是学习、掌握和运用这门课程必不可少的重要环节, 是理论联系实际的一种重要方式。
通过在实验中的操作和观察, 使学生掌握一定的基本实验技能, 培养学生处理一般工程技术问题和进行科研的初步能力;同时, 通过实验使学生树立严肃认真, 实事求是的科学态度。
2.要求:验证有关的化工单元操作理论, 巩固并加强对理论的认识和理解;熟悉实验装置的结构、性能和流程;对实验数据进行分析、整理及关联, 编写实验报告。
二、实验项目名称和学时分配三、单项实验的内容和要求(一)伯努利实验1. 实验目的: 熟悉流动流体中各种能量和压头的概念及其相互关系, 加深对伯努利方程、连续性方程的理解与认识;掌握测量动压头和静压头的方法。
2. 实验内容:(1) 观察流体流动时各种形式的机械能之间的相互转化现象;(2) 验证不可压缩流体机械能衡算方程式和静力学方程式。
(二)雷诺实验1. 实验目的: 了解雷诺实验装置的构造, 熟悉雷诺准数的测定方法, 掌握雷诺准数Re 与流体不同流型的关系。
2. 实验内容:(1) 观察流体在管内流动的两种不同形态;(2) 确定临界雷诺数。
(三)离心泵特性曲线的测定1. 实验目的: 了解离心泵的构造和性能;掌握离心泵开、停的正确操作方法和注意事项;学会测定离心泵在恒定转速下的特性曲线并确定其最佳工作范围的方法。
2. 实验内容:(1) 测定并计算一定转速下, 流体的流量、泵的扬程、有效功率、轴功率和效率等参数;(2) 标绘离心泵的H-Q、N-Q和η-Q曲线。
(四)流体流动阻力测定实验1. 实验目的: 了解流体流动阻力的测定方法, 测定流体流过圆形直管时的摩擦阻力, 并确定摩擦系数λ与雷诺准数Re的关系, 测定流体流过管件、阀门时的局部阻力, 并求出阻力系数。
化工原理实验报告_阻力
管路阻力的测定一、实验目的1.学习直管阻力与局部阻力的测定方法。
2.学习计算并绘制直管摩擦系数λ与R e 的关系曲线的方法。
3.学习确定局部阻力系数ζ的方法。
二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。
直管阻力也称为表皮阻力,是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力gu d L g p H f 22⋅⋅=∆-=λρ, (m ) (1) 局部阻力也称为形体阻力,是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方,由于边界层分离而产生旋涡所引起的能量损失gu g p H f22'⋅=∆-=ζρ, (m) (2) 管路的总能量损失等于管路中所有以上两种阻力的加和∑∑+=∑'f f f H H H本实验所用的装置流程图如图1所示,实验装置由并联的两个支路组成,一个支路用于测定直管阻力,另一个用于测定局部阻力。
图1. 管路阻力测定实验装置流程图1-底阀 2-入口真空表 3-离心泵 4-出口压力表 5-充水阀6-差压变送器 7-涡轮流量计 8-差压变送器 9-水箱测定直管阻力所用管子的规格:1#~2#实验装置:直管内径为27.1mm ,直管管长1m 。
3#~8#实验装置:直管内径为35.75mm,直管管长1m局部阻力的测定对象是两个阀门,一个闸阀,一个截止阀。
三、实验步骤1.打开充水阀向离心泵泵壳内充水。
2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。
3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。
4.调节出口阀,流量从大到小测取8次,再由小到大测取8次,记录各次实验数据,包括涡轮流量计的读数、直管压差指示值。
5.关闭直管阻力直路的球阀,打开局部阻力的球阀,测定在三个流量下的局部压差指示值。
6.测取实验用水的温度。
7.关闭出口流量调节阀,关闭电机开关,关闭总电源开关。
注意事项:离心泵禁止在未冲满水的情况下空转。
化工原理及实验
化工原理及实验化工工程涉及诸多复杂的原理和实验,是一门综合性强、理论与实践相结合的学科。
本文将从化工原理和实验两个方面展开论述,帮助读者更好地理解和掌握这门学科。
一、化工原理1.反应原理化工过程中的核心环节是化学反应。
化学反应原理涉及反应动力学、反应平衡等内容。
反应动力学研究反应速率与反应物浓度、温度、催化剂等因素的关系。
而反应平衡则研究反应物与产物在特定条件下达到平衡时的浓度关系。
通过理解反应原理,可以更好地设计和控制化工过程,提高反应效率。
2.质量平衡原理在化工过程中,质量平衡原理起着重要作用。
质量平衡原理是指在封闭系统中,物质的质量在各个环节中保持不变。
化工工程师需要运用质量平衡原理解决物质流动、混合等问题,确保化工过程的稳定性和可控性。
3.能量平衡原理化工过程中的能量平衡原理涉及热力学和传热学等内容。
热力学研究能量的转化和转移规律,传热学研究热量在物体中的传递方式。
运用能量平衡原理,化工工程师可以计算能量输入和输出,保证能量的合理利用。
二、化工实验1.实验室安全化工实验室安全是化工实验的前提和保障。
化工实验室中常见的安全措施包括佩戴个人防护装备、正确使用实验器材、妥善处理化学品废弃物等。
在进行化工实验前,必须了解相关安全知识,严格按照实验室规章制度进行操作。
2.实验设备与仪器化工实验需要借助各种仪器和设备进行观测、记录和测量。
例如,分析仪器可以用于确认表征反应产物的性质和纯度,反应设备可以用于进行化学反应。
化工工程师需要熟悉并掌握各种实验设备和仪器的使用方法,以保证实验结果的准确性和可靠性。
3.实验设计与数据分析化工实验的设计和数据分析是实验过程中的关键环节。
实验设计需要明确实验目的、方法和条件,并合理安排实验步骤。
数据分析则需要运用统计学和数值计算等方法对实验数据进行处理和解读,得出结论并提出改进意见。
实验设计和数据分析的准确性直接影响到实验结果的可信度和实验效果的评估。
总结:化工原理和实验相辅相成,共同构成了化工工程领域的基础。
化工原理实验报告
实验-伯努利实验一、实验目的1.熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对伯努利方程的理解。
2、观察各能量(或压头)随流量的变化规律。
2、实验原理1、当不可压缩流体在管道中稳定流动时,由于管道条件(如位置高度、管道直径等)的变化,会引起流动过程中三种机械能的相应变化——势能、动能和静压能。
和相互转换。
对于理想流体,在系统的任何截面,虽然三个能量不一定相等,但能量之和是守恒的(机械能守恒定律)。
2.对于实际流体,由于摩擦的存在,流体的一部分机械能总是随着摩擦和碰撞在流动中转化为热能而损失掉。
因此,对于实际流体来说,任何两段的机械能之和都不相等,两者之差就是机械损失。
3、上述机械能可以用U 型差压表中的液位差来表示,分别称为位置压头、动压头和静压头。
当测压直管上的小孔(即测压孔)与水流方向垂直时,测压管的液柱高度(位置压头)为静压头与水位之和。
动压头。
任意两段之间的压头、静压头和动压头之和的差值就是损失水头。
4. 伯努利方程∑+++=+++f h pu gz We p u gz ρρ2222121122在哪里:1Z , 2Z ——各截面与参考平面的距离(m )1u , 2u ——各截面中心点的平均流速(可由流速及其截面积求得)(m/s )1P , 2p ——各截面中心点静压(可从U 型差压表的液位差得知)( Pa )对于没有能量损失和没有附加功的理想流体,上式可以简化为ρρ2222121122p u gz p u gz ++=++测量通过管道的流量后,可以计算出断面的平均流速ν和动压g 22ν,从而得到各断面测量管的水头和总水头。
3. 实验流程图泵的额定流量为10L/min ,扬程为100W 8m ,输入功率为80W 。
实验管:直径15mm 。
四、实验操作步骤及注意事项1、熟悉实验设备,分清各测压管与各测压点的对应关系,以及皮托管的测点。
2. 打开供水开关,将水箱注满水。
水箱溢出后,关闭排水阀,检查所有测压管水面是否齐平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四1.实验中冷流体和蒸汽的流向,对传热效果有何影响?无影响。
因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响,所以传热效果不变。
2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么措施?不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。
冷凝器必须设置排气口,以排除不冷凝气体。
3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷凝水?冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速率。
在外管最低处设置排水口,及时排走冷凝水。
4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的壁温是靠近蒸汽侧温度。
因为蒸汽的给热系数远大于冷流体的给热系数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。
而总传热系数K接近于空气侧的对流传热系数5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响?基本无影响。
因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。
实验五固体流态化实验1.从观察到的现象,判断属于何种流化?2.实际流化时,p为什么会波动?3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么?4流体分布板的作用是什么?实验六精馏1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关?答(1)因为塔釜压力与塔板压力降有关。
塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。
气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。
(2)塔釜温度、流体的粘度、进料组成、回流量。
2.板式塔气液两相的流动特点是什么?答:液相为连续相,气相为分散相。
3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。
5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?答:进料量太大时,塔内的温度较低,组分达不到足够的温度,没有上升蒸汽,故精馏段干板,甚至出现塔顶既没有回流也没有出料的现象。
(1)减小进料量;(2)升高塔釜温度6.在部分回流操作时,你是如何根据全回流的数据,选择一个合适的回流比和进料位置的?答:通过全回流,可以通过作图法求得全回流理论板数NT,再根据总板效率,粗略算出塔板数,从而根据生产要求,确定回流比和进料位置。
7若进料浓度下降,进料口下降还是上升进料组成的变化,直接影响精馏操作,当进料中重组分的浓度增加时,精馏段的负荷增加。
对于固定了精馏段板数的塔来说,将造成重组份带到塔顶,使塔顶产品质量不合格。
若进料中的轻组分的浓度增加时,提馏段的负荷增加。
对于固定了提馏段塔板数的塔来说,将造成提馏段的轻组分蒸出不完全,釜液中轻组分的损失加大。
同时,进料组成的变化还将引起全塔物料平衡和工艺条件的变化。
组份变轻,则塔顶馏分增加,釜液排出量减少。
同时,全塔温度下降,塔压升高。
组份变重,情况相反。
进料组成变化时,可采取如下措施。
(1)改进料口。
组份变重时,进料口往下改;组份变轻时,进料口往上改。
(2)改变回流比。
组份变重时,加大回流比;组份变轻时,减少回流比。
(3)调节冷剂和热剂量。
根据组成变动的情况,相应地调节塔顶冷剂和塔釜热剂量,维持顶、釜的产品质量不变。
8若测得单板效率超过100%作何解释在进行精馏操作时,在塔板上由于液体流径长,造成塔板上有明显的浓度差异,使气体分布不均匀而可能使塔板的单板效率超过100%.吸收1.水吸收空气中的二氧化碳属于气膜吸收还是液膜控制?答:因为二氧化碳极不容易溶于水中,所以为液膜控制。
2.吸收过程的影响因素有哪些?答:(1)吸收剂的流量、种类;(2)被吸收气体的流量;(3)吸收温度;(4)填料分布的均匀性;(5)吸收塔的压差;(6)吸收塔的液位。
3.气体温度与液体温度不同时,应按哪个温度计算相平衡常数?答:按气体和液体温度的对数平均值计算。
4.当进气浓度不变时,欲提高溶液出口浓度,可采用哪些措施?答:(1)降低温度;(2)降低进气的流量;(3)降低吸收剂的流量5填料吸收塔塔底为什么有液封装置?采用了什么原理这时采用液封装置是防止塔内气体(一般为有毒有害或者本来就是产品)外漏,造成污染环境或者浪费。
还有稳定塔的气压。
原理是利用一定高度液体产生的压力抵消塔内产生的压力产生平衡,隔离塔内外气体。
6 填料吸收塔传质系数测定实验中测定kxa有什么工程意义传质系数是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一7能否用自来水代替高位槽水?为什么不能。
因为自来水水压不稳,使整个体系成为不稳定体系8填料塔的液泛和哪些因素有关?直径一定的塔,可供气、液两相自由流动的截面是有限的。
二者之一的流量若增大到某个限度,降液管内的液体便不能顺畅地流下;当管内的液体满到上层板的溢流堰顶时,便要漫到上层板,产生不正常积液,最后可导致两层板之间被泡沫液充满。
这种现象,称为液泛。
液泛开始时,塔的压降急剧上升,效率急剧下降。
随后塔的操作遭到破坏。
主要原因:降液管内液体倒流回上层板. 过量液沫夹带到上层板防止产生液泛的措施是:(1)按规定的进料量操作;(2)按规定的回流量操作。
实验八干燥1、为什么在操作中要先开鼓风机送气,而后通电加热?答:防止损坏风机。
2、某些物料在热气流中干燥,希望热气流相对湿度要小;某些要在相对湿度较大的热气流中干燥,为什么?3物料厚度不同时,干燥速率曲线又如何变化?4、湿物料在70℃~80℃的空气流中经过相当长时间的干燥,能否得到绝干物料?5实验过程中干、湿球温度计是否变化?为什么?6如何判断实验已经结束?答:当物料恒重时,可判断实验已经结束。
7恒定干燥条件是指什么?指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定流化床干燥1、固体流态化的过程包括固定床流化床气力输送2、下列叙述正确的是固体颗粒层用气体进行的流态化的形式为聚式流l化固体颗粒层用液体进行的流态化的形式为散式流l化3、聚式流o床的不正常操作现象主要有沟流与节涌l其中沟流产生的原因颗粒粒度小气流速度小分布板开孔率小4、聚式流o床的不正常操作现象主要有沟流与节涌l其中节涌产生的原因为颗粒粒度大气流速度大床层高径比大5、在实验过程中l空气m过预热器后,未发生变化的参数为湿度6、在实验过程中l测得的床层温度与物料表面温度较为近似,在恒速干燥阶段,其值与下列选项中的哪些参数相同:湿球温度绝热饱和湿度7、在干燥过程中l若增加干燥介质空气的流速,则有气速增加,物料的干燥速度变大气速增加,临界湿含量的值变大气速增加,平衡湿含量的值不变8、在实验过程中l若进口空气的性质恒定,预热器的出口温度越高,则干燥速度越高临界湿含量越高9、在降速干燥阶段,若空气的干球温度为t,湿球温度为tW,露点为td,物料表面温度为tm,则有tm > tw10、在干燥过程中l若待干燥物料一定,改变干燥介质空气的性质,下列参数不发生变化的是结合水分气体扩散系数1、下面操作正确的是。
开始测量数据后,不要改变水浴温度。
测量过程中泵要一直开启。
2、实验中使用的游标卡尺的精度为。
0.1mm吸收系数1、下列关于体积传质系数与液泛的关系正确的是:Kya随液泛程度先增加后减少2、正确应用亨利定律与拉乌尔定律计算的过程是:吸收计算应用亨利定律精馏计算应用拉乌尔定律3、判别填料塔压降Δp与气速u和喷淋量l的关系:u越大,Δp越大l越大,Δp越大4、判断下列诸命题是否正确?喷淋密度是指单位时间通过单位面积填料层的液体体积5、干填料及湿填料压降-气速曲线的特征:对干填料u增大△P/Z增大对湿填料u增大△P/Z增大6、测定压降-气速曲线的意义在于:选择适当的风机7、测定传质系数kya的意义在于:计算填料塔的高度确定填料层高度8、为测取压降-气速曲线需测下列哪组数据?测塔压降、空气转子流量计读数、空气温度、空气压力和大气压9、传质单元数的物理意义为:反映了物系分离的难易程序它反映相平衡关系和进出口浓度状况10、HoG的物理意义为:它仅反映设备效能的好坏(高低)11、温度和压力对吸收的影响为:T增高P减小,Y2增大X1减小T 降低P增大,Y2减小X1增大12、气体流速U增大对KYa影响为:U增大,KYa增大一、精馏(乙醇—水)实验1、精馏操作回流比: 越大越好越小越好2、精馏段与提馏段的理论板: 不一定精馏段比提馏段多或少3、当采用冷液进料时,进料热状况q值: q>14、全回流在生产中的意义在于:用于开车阶段采用全回流操作产品质量达不到要求时采用全回流操作用于测定全塔效率5、精馏塔塔身伴热的目的在于:防止塔的内回流6、全回流操作的特点有:F=0,D=0,W=07、本实验全回流稳定操作中,温度分布与哪些因素有关?当压力不变时,温度分布仅与组成的分布有关8、判断全回流操作达到工艺要求的标志有:浓度分布基本上不随时间改变而改变温度分布基本上不随时间改变而改变9、塔压降变化与下列因素有关:气速塔板型式不同10、如果实验采用酒精-水系统塔顶能否达到98%(重量)的乙醇产品?(注:95.57%酒精-水系统的共沸组成) 若进料组成大于95.57% 塔釜可达到98%以上的酒精若进料组成大于95.57% 塔顶不能达到98%以上的酒精11、冷料回流对精馏操作的影响为:XD增加,塔顶T降低12、当回流比R<Rmin时,精馏塔能否进行操作?能操作,但塔顶得不到合格产品13、在正常操作下,影响精馏塔全效率的因素是:物系,设备与操作条件14、精馏塔的常压操作是怎样实现的?塔顶成品受槽顶部连通大气15、全回流操作时,回流量的多少受哪些因素的影响?受塔釜加热量的影响16、为什么要控制塔釜液面高度?为了防止加热装置被烧坏为了使精馏塔的操作稳定为了使釜液在釜内有足够的停留时间17、塔内上升气速对精馏操作有什么影响?上升气速过大会引起液泛上升气速过大会造成过量的液沫夹带上升气速过大会使塔板效率下降18、板压降的大小与什么因素有关?与上升蒸气速度有关与塔釜加热量有关实验9 流化床干燥实验讲义⑴物料去湿的方法有哪些?本实验所用哪种方法?答:方法有机械去湿,吸附去湿,供热去湿。